Skip to main content
. 2019 Sep 6;10:627. doi: 10.3389/fpsyt.2019.00627

Table 1.

Model Fit of the Latent Profile Analyses With Up to Six Latent Classes (N = 215).

Number of Latent Classes
1 2 3 4 5 6
Log-Likelihood −1,880.57 1,796.03 −1,759.05 −1,738.43 −1,720.87 −1,707.67
No. of Free Parameters 8 13 18 23 28 33
BIC a 3,804.68 3,661.88 3,614.77 3,600.39 3,592.12 3,592.57
Adjusted BIC 3,779.33 3,620.68 3,557.73 3,527.51 3,503.29 3,488.00
AIC 3,777.71 3,618.06 3,554.09 3,522.87 3,497.74 3,481.34
(−2)*Log-Likelihood Difference b 169.06 73.96 41.24 35.12 26.40
LMR LRT, p Value c, e <.001 .008 .263 .388 .034
Bootstrap LRT, p Value c, d <.001 <.001 <.001 <.001 <.001
1 – Entropy .873 .828 .826 .844 .827

AIC, Akaike’s information criterion; BIC, Bayesian information criterion; LRT, likelihood ratio test. aIncremental changes of BIC < 2 are considered marginal (Kass and Raftery (43), p. 777). bDifference between models with (k − 1) and k classes. cLMR, Likelihood ratio test according to Lo, Mendell, and Rubin (38). dLRT according to Nylund et al. (39). eIf < .05, a model with k latent classes will fit significantly better than a model with (k − 1) latent classes.