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Background. The development of strategies to accelerate disease resolution and shorten antibiotic therapy is imperative in 
curbing the global tuberculosis epidemic. Therapeutic application of novel vaccines adjunct to antibiotics represents such a strategy. 

Methods. By using a murine model of pulmonary tuberculosis (TB), we have investigated whether a single respiratory mucosal 
therapeutic delivery of a novel chimpanzee adenovirus-vectored vaccine expressing Ag85A (AdCh68Ag85A) accelerates TB disease 
control in conjunction with antibiotics and restricts pulmonary disease rebound after premature (nonsterilizing) antibiotic cessation.

Results. We find that immunotherapy via the respiratory mucosal, but not parenteral, route significantly accelerates pulmonary 
mycobacterial clearance, limits lung pathology, and restricts disease rebound after premature antibiotic cessation. We further show 
that vaccine-activated antigen-specific T cells, particularly CD8 T cells, in the lung play an important role in immunotherapeutic 
effects.

Conclusions. Our results indicate that a single-dose respiratory mucosal immunotherapy with AdCh68Ag85A adjunct to anti-
biotic therapy has the potential to significantly accelerate disease control and shorten the duration of conventional treatment. Our 
study provides the proof of principle to support therapeutic applications of viral-vectored vaccines via the respiratory route.
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Pulmonary tuberculosis (TB) remains the leading global in-
fectious cause of death, claiming 1.6 million lives yearly [1]. 
Although antibiotics are available for treating TB, their success 
relies on patient adherence to treatment guidelines. Given that 
effective therapy is complex, requiring the use of multiple anti-
biotics for a minimum 6 months, many patients fail to properly 
follow and complete antibiotic therapy [2, 3]. This leads to the 
relapse of active disease and is a major reason for the emergence 
of multidrug-resistant and extensively drug-resistant TB cases 
that are increasingly more difficult to treat and account for sig-
nificantly higher mortality rates [4, 5].

The development and implementation of effective vaccination 
strategies is central in combatting the TB epidemic. These vaccines 
are classified as prophylactic, postexposure (latent infection), and 

therapeutic vaccines [6–8]. Over the last 2 decades, significant 
progress has been made mostly in the development of prophy-
lactic vaccines and, to a lesser extent, postexposure vaccine strat-
egies [9]. However, the development of effective TB vaccines for 
therapeutic applications has lagged far behind.

 Therapeutic vaccines are designed to be administered in con-
junction with conventional TB antibiotic therapy to hosts with 
active disease. This strategy aims to boost or redirect the host 
anti-TB immune response to better control TB disease and/or 
shorten antibiotic therapy [8, 10–12]. In this regard, a limited 
number of subunit protein- and viral-based approaches have 
been explored for their therapeutic application [10, 13–16]. 
Although these studies have provided insights into the appli-
cability of therapeutic vaccine strategies, they led to either no 
efficacy [15] or variable efficacies in limiting infection and lung 
pathology [10, 13, 14, 16]. Of note, all of these therapeutic vac-
cines had to be given repeatedly via the parenteral route.

 We and others have developed viral-vectored TB vaccines for 
prophylactic applications after parenteral and respiratory mu-
cosal (RM) routes of immunization [17–25]. Via these studies, 
it has been well established that RM immunization is superior to 
the parenteral route via positioning protective T cell immunity 
in the respiratory mucosa before Mycobacterium tuberculosis 
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(M.tb) exposure. In a recent study, we showed that prophylactic 
vaccination with a chimpanzee adenovirus serotype-68 vectored 
vaccine expressing M.tb antigen Ag85A (AdCh68Ag85A) via the 
RM route provides robust immunity against M.tb challenge by 
reducing bacterial burden and lung pathology [26]. However, it 
has remained unclear whether such vaccine strategies can be ap-
plied therapeutically via the RM route, in conjunction with anti-
biotic therapy, to treat established pulmonary TB disease.

 In the current study, we have investigated the therapeutic 
potential of AdCh68Ag85A. For the first time, we demonstrate 
that a single delivery of RM TB vaccine in conjunction with 
conventional antibiotic therapy can significantly improve dis-
ease treatment and restrict disease relapse after antibiotic cessa-
tion. Our findings thus suggest that viral-vectored TB vaccines 
designed for prophylactic respiratory immunization can also be 
used for effective immunotherapeutic application.

METHODS

Detailed methods are provided in the online Supplement.

Animal Models

Female BALB/c mice (6–8 weeks old) were housed and used 
within the biosafety level 3 facility in accordance with guide-
lines of institutional Animal Research Ethics Board.

Mycobacterium tuberculosis Infection and Antibiotic Therapy

Mycobacterium tuberculosis H37Rv was prepared for infection 
via the RM route as described [21, 26]. Animals were treated 
with a triple antibiotic cocktail of rifampicin, isoniazid, and 
pyrazinamide via drinking water. The nonsterilizing antibiotic 
regimens were chosen in this immunotherapeutic investigation.

AdCh68Ag85A Immunotherapy

AdCh68Ag85A was administered intranasally (I.N.) or intra-
muscularly (I.M.) as described [18, 23, 26] to infected animals. 
Some animals received an empty AdCh68 control vector.

In Vivo T Cell Depletion

CD4 and CD8 T cells were depleted by intraperitoneal (I.P.) in-
jection of anti-CD4 (clone GK1.5) and anti-CD8 (clone 2.43) 
monoclonal antibodies (mAbs) [27].

Tumor Necrosis Factor α Protein Levels

Tumor necrosis factor α (TNFα) was measured in 
bronchoalveolar lavage (BAL) fluids and sera using enzyme-
linked immunosorbent assay (ELISA).

Mononuclear Cell Isolation and Intracellular Cytokine Staining

Lung mononuclear cells were isolated using our previously pub-
lished protocol [20, 21, 26]. Intracellular cytokine staining was 
performed after stimulation with antigens (Ags). Stained cells 
were acquired on a BD LSRFortessa cytometer, and data were ana-
lyzed using FlowJo software, version 10 (TreeStar, Ashland, OR).

Tuberculosis Disease Indices

Lung bacterial burden was evaluated by colony-forming unit 
(CFU) assay [26]. Lung sections were hematoxylin and eosin-
stained for histopathological analysis and quantification or Ziehl 
Neelsen-stained for visualization of acid-fast bacilli (AFB) [20].

T Cell and Macrophage Distribution by Immunohistochemistry

Immunohistochemical staining of CD4, CD8, and F4/80 was 
performed on deparaffinized sections using anti-mouse CD4, 
CD8, and F4/80 mAbs.

Statistical Analysis

Two-tailed Student t tests were used for comparison between 
2 groups. One-way analysis of variance was used followed by 
posttest Tukey analysis for multiple-group comparison using 
GraphPad Prism 8 software. Results were considered signif-
icant for P values ≤.05. Area-under-the-curve (AUC) analysis 
was done to summate changes in bacterial burden over time. 
Unpaired t tests were performed in AUC analysis.

RESULTS

AdCh68Ag85A Respiratory Mucosal Immunotherapy Improves Pulmonary 

Tuberculosis Disease Control During Antibiotic Therapy

With its demonstrated prophylactic efficacy [26], we investi-
gated whether AdCh68Ag85A could be used as a therapeutic 
vaccine adjunctive to a triple antibiotic therapy in treating pul-
monary TB. To this end, mice infected with M.tb for 4 weeks 
were treated with antibiotics alone (ABx) or in conjunction 
with intramuscular (ABx I.M. Vac.) or RM (ABx I.N. Vac.) 
immunotherapy with a single dose of AdCh68Ag85A at 4 
weeks postinitiation of antibiotic treatment (Figure 1A). A set 
of mice was left untreated. All groups of mice were sacrificed 
at 12 weeks postinfection and were assessed for TB disease in-
dices. As expected, antibiotic treatment significantly reduced 
pulmonary bacterial burden compared with untreated animals 
(Figure 1B). Parenteral immunotherapy (ABx I.M.Vac.) failed 
to significantly further enhance bacterial control. However, 
RM administration of AdCh68Ag85A (ABx I.N.Vac.) pro-
vided further significant reduction in bacterial burden by 
1.25 log, reducing pulmonary mycobacterial burden to 3.5 
log. Histological analysis revealed markedly reduced lung pa-
thology in ABx I.N.Vac. animals compared with those treated 
with ABx or in conjunction with parenteral immunotherapy 
(ABx I.M.Vac.) (Figure 1C).

 Given that adjunct RM immunotherapy can significantly 
improve pulmonary TB disease, we assessed whether such im-
provement might have been rendered at the expense of over-
zealous acute tissue inflammation, which could pose a potential 
safety concern. For this, mice infected with M.tb for 4 weeks were 
treated with ABx or in conjunction with RM AdCh68Ag85A 
(ABx/I.N.Vac.) and sacrificed 72 hours postimmunotherapy. 
Bronchoalveolar lavage, lung tissue, and sera were examined 
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for proinflammatory TNFα levels and neutrophil infiltration. 
Collectively, in ABx/I.N.Vac. animals, BAL and serological con-
centrations of TNFα and neutrophil recruitment to the airway 
and lung did not increase over those treated with ABx (Figure 
1D). On the contrary, they appeared even lower in the BAL of 
ABx/I.N.Vac. animals.

 The above data suggest that compared with antibiotic 
therapy alone, a single dose of AdCh68Ag85A delivered via 
the RM route, but not via parenteral route, in conjunction with 

antibiotic therapy significantly accelerates bacterial clearance 
and reduces lung pathology.

AdCh68Ag85A Respiratory Mucosal Immunotherapy Controls Bacterial 

Infection in the Lung After Premature Antibiotic Therapy Cessation

Having established the potency of RM immunotherapy adjunc-
tive to continuing antibiotic treatment (Figure 1), we next set 
out to address whether RM immunotherapy can shorten antibi-
otic therapy and control antibiotic cessation-associated infection 
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Figure 1. AdCh68Ag85A respiratory mucosal immunotherapy improves tuberculosis (TB) disease control during antibiotic therapy. (A) Experimental schema. At 4 weeks 
post-Mycobacterium tuberculosis (M.tb) infection, mice were started on an oral antibiotic (antibiotics alone [ABx]) therapy of rifampicin, isoniazid, and pyrazinamide. A group 
of these mice was treated either intramuscularly (ABx I.M Vac.) or intranasally (ABx I.N. Vac.) with AdCh68Ag85A at 4 weeks after the initiation of antibiotic therapy. All 
mice were sacrificed 12 weeks postinfection for assessment of TB disease indices. A set of M.tb-infected animals were left untreated as controls (untreated). (B) Bar graph 
comparing bacterial burden assessed by colony-forming unit (CFU) assay in the lungs of 4 groups of mice. (C) Representative micrographs of lung sections stained with hema-
toxylin and eosin, comparing the extent of lung inflammation and granulomatous lesions. Scale bar indicates 500 µm. (D) Bar graphs showing levels of tumor necrosis factor 
α (TNFα) protein in the bronchoalveolar lavage (BAL) fluid and in sera, and frequencies of neutrophils (CD11b+Ly6G+) in the BAL and lung at 72 hours post-I.N. immunotherapy. 
Data are expressed as the mean ± standard error of the mean of 6–10 mice/group, representative of 3 independent experiments.
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rebound. To this end, animals were infected with M.tb and at 
week 4 postinfection, all animals were treated with triple anti-
biotics. In a set of animals, antibiotic therapy continued for a total 
of 8 weeks (ABx). In another set of animals, antibiotic therapy 
was prematurely stopped at 4 weeks (ABx cessation). A group of 
animals received a single dose of RM immunotherapy at the time 
when antibiotic therapy was stopped (ABx cessation+I.N.Vac) 
(Figure 2A). All animals were sacrificed 12 weeks postinfection 
and lungs were assessed for TB disease indices. Premature ces-
sation of antibiotic therapy (ABx cessation) led to a significant 
rebound of bacterial burden in the lung as indicated by a 1 log 
increase in CFU compared with animals receiving continuing 
antibiotic therapy (ABx) (Figure 2B). In contrast, lung bacte-
rial burden in animals treated with RM immunotherapy at the 
time of antibiotic cessation (ABx cessation+I.N.Vac) did not un-
dergo rebound with CFU kept similar to that in ABx animals 
with continuing antibiotic therapy. In support, the lungs of ABx 
cessation+I.N.Vac animals had reduced granulomatous lesions 

both in size and number compared with ABx cessation animals 
(Figure 2C). These data suggest that RM immunotherapy helps 
control TB disease in the lung even after premature antibiotic 
cessation.

Adjunct Respiratory Mucosal Immunotherapy Accelerates Bacterial 

Clearance and Curbs Bacterial Rebound During Chronic Pulmonary 

Tuberculosis

Having established that adjunct AdCh68Ag85A RM immuno-
therapy is able to help control TB disease in a 12-week infec-
tion model (Figures 1 and 2), we next investigated the utility 
of this immunotherapeutic strategy in a protracted model of 
chronic TB disease. To this end, 4-week M.tb-infected mice 
were treated with ABx or ABx plus a single RM immuno-
therapy performed at week 8 (ABx/Vac.) and were sacrificed at 
4, 12, 16, and 20 weeks postinfection (ABx continuation phase) 
(Figure 3A). We observed that both ABx and ABx/Vac. led the 
bacterial burden in the lungs to continue to decrease (Figure 
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Figure 2. Respiratory mucosal immunotherapy controls bacterial infection in the lung after antibiotic cessation. (A) Experimental schema. At 4 weeks post-Mycobacterium 
tuberculosis (M.tb) infection, mice were started on oral antibiotic therapy. Groups of mice were treated for 4 (antibiotics alone [ABx] cessation) or 8 (ABx) weeks. In a set of 
animals, antibiotic therapy was ceased after 4 weeks and a single dose of AdCh68Ag85A was administered intranasally (ABx cessation+I.N.Vac.). All mice were sacrificed 
12 weeks postinfection for assessment of tuberculosis disease indices. (B) Bar graph comparing bacterial burden in the lungs of various groups of mice. (C) Representative 
micrographs of lung sections stained with hematoxylin and eosin, comparing the extent of lung inflammation and granulomatous lesions. Scale bar indicates 500 µm. Data 
are expressed as the mean ± standard error of the mean of 6–10 mice/group. CFU, colony-forming units.
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3B). However, the bacterial clearance in animals with adjunct 
RM immunotherapy (ABx/Vac.) was significantly accelerated 
(AUC  =  9.16 vs 9.635, P  =  .001), resulting in a significantly 
lower bacterial burden at 12 and 20 weeks postinfection com-
pared with ABx animals (Figure 3B). Thus, whereas ABx alone 
reduced the bacterial burden by 40-fold over the antibiotic 
continuation phase, conjunctive ABx/Vac. therapy brought it 
down by 60-fold (Figure 3C).

 We next determined whether adjunct immunotherapy could 
control disease rebound after premature antibiotic cessation in 
this protracted TB model. Thus, by the experimental design de-
scribed above, antibiotic therapy was stopped in a group of ani-
mals at 20 weeks postinfection, and animals were sacrificed and 
examined for the extent of disease rebound 4 weeks later (anti-
biotic cessation phase) (Figure 3A). The ABx animals showed 
a rapid bacterial rebound (1.5 log increase from the time of 
antibiotic cessation) equating to a 20-fold increase in bacte-
rial burden (Figure 3B and C). In contrast, ABx/Vac. animals 

showed a significantly restricted bacterial rebound (0.75 log, 
AUC = 3.324 vs 4.137, P <  .0001), equating to only a 10-fold 
increase (Figure 3B and C).

 Because it is well documented that natural M.tb infection 
occurs after exposure to very few bacilli [28, 29], we further de-
termined the efficacy of AdCh68Ag85A RM immunotherapy in 
an infection model set up by a much reduced dose of M.tb (100 
CFU). Infected animals were subsequently treated with ABx or 
in conjunction with RM immunotherapy (ABx /I.N. Vac.) sim-
ilarly as described above except that they were sacrificed at 12 
and 16 weeks postinfection (ABx continuation phase) (Figure 
4A). In agreement with the earlier findings (Figure 3), both 
ABx and ABx /I.N.Vac. led to a sharp decline in lung bacte-
rial burden over time (Figure 4B). However, ABx/I.N.Vac. ani-
mals had the most significant CFU reduction in comparison to 
ABx-treated animals (AUC = 2704 vs 2995, P = .01), even with 
some animals with below-limit of CFU detection at 16 weeks 
postinfection (Figure 4B, dotted black line). Furthermore, when 
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Figure 3. Adjunct respiratory mucosal immunotherapy accelerates bacterial clearance and curbs bacterial rebound during chronic pulmonary tuberculosis. (A) Experimental 
schema. At 4 weeks postinfection, mice were started on an oral antibiotic therapy. Groups of mice were treated for 16 weeks. In a set of animals, a single dose of 
AdCh68Ag85A was administered intranasally (I.N.) at 4 weeks after the initiation of antibiotic therapy. Animals were sacrificed for analysis at specified time points. In some 
animals, antibiotic therapy was ceased at 20 weeks postinfection. Tuberculosis disease indices were assessed in these animals 4 weeks after the cessation of antibiotic 
therapy (week 24). (B) Line graph showing kinetic changes in bacterial burden in the lung. Unshaded area indicates antibiotic continuation phase and shaded area indicates 
antibiotic cessation phase. (C) Bar graph showing the mean fold changes in lung bacterial burden during the antibiotic continuation phase and subsequently during the anti-
biotic cessation phase. Data are expressed as the mean ± standard error of the mean of 10–12 mice/group, representative of 1 to 3 independent experiments (depending on 
the time point). ABx, antibiotics alone; CFU, colony-forming units; M.tb, Mycobacterium tuberculosis.
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assessed at 8 weeks (24 weeks postinfection) after antibiotic ces-
sation (Figure 4A), ABx/I.N.Vac. animals showed a remark-
ably limited rebound as indicated by minimal detectable CFU 
(AUC = 129.6 vs 1220, P < .005) (Figure 4B) and markedly re-
duced lung pathology (Supplementary Figure 1) in comparison 
to ABx animals.

The above data together indicate an even greater protective 
role by adjunct RM immunotherapy in a more clinically rele-
vant low-dose infection model.

Adjunct Respiratory Mucosal Immunotherapy Reduces Tuberculosis-

Associated Tissue Pathology and Enhances CD8 T  Cell Infiltration in 

the Lung

The extent of lung immunopathology is a critical index in as-
sessing TB disease and vaccine-induced protection and even 
more so in the setting of TB immunotherapy [16, 18, 30]. 
Thus, besides quantifying bacterial burden, we performed an 
in-depth histopathological examination of the lungs from our 
protracted TB disease model illustrated in Figure 3A. Antibiotic 
therapy alone reduced TB-associated lung pathology shown by 

decreasing granulomatous regions and inflammation over time 
(Figure 5A, B). In comparison, adjunct RM immunotherapy 
(ABx/Vac.) significantly accelerated the resolution of lung pa-
thology as indicated by major reductions in the severity and 
number of granulomatous lesions and overall reduced pulmonary 
inflammation at 12, 16 and 20, weeks postinfection (Figure 5A  
and B). Using 2-color immunohistochemistry, we examined 
the distribution of macrophages (F4/80+) and CD4+/CD8+ 
T cell subsets in consecutive lung sections obtained at 12 weeks 
postinfection. We found abundant presence of macrophages 
in the regions outside granulomatous lesions of ABx animals 
(Figure 5C, red arrows). In comparison, fewer macrophages 
were detected and were mostly localized within granulomatous 
regions in ABx/Vac. animals (Figure 5D, red arrows). On the 
other hand, considerably more CD8 T cells were found around 
and within granulomatous lesions in the lung of ABx/Vac. an-
imals (Figure 5D, yellow arrows). This contrasted greatly with 
a high CD4 versus CD8 T cell ratio and much less intensity of 
CD8 T cells in lung lesions of ABx animals (Figure 5C, yellow 
arrows).
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Figure 4. Efficacy of AdCh68Ag85A respiratory mucosal immunotherapy in a low infection dose model. (A) Experimental schema. Mice were infected and treated as de-
scribed in Figure 3A (schema) but with a low dose of Mycobacterium tuberculosis (M.tb) infection (100 colony-forming units [CFU]), and antibiotic therapy ceased at week 
16 postinfection. At specified time points, tuberculosis disease indices were assessed. (B) Line graph showing kinetic changes in bacterial burden in the lung. Unshaded 
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alone; I.N., intranasal.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz306#supplementary-data


Mucosal Immunotherapeutic TB Vaccination • jid 2019:220 (15 October) • 1361

We also assessed lung histopathology upon disease rebound at 4 
weeks postantibiotic cessation (24 weeks postinfection) (Figure 
3A). In ABx animals, antibiotic cessation led to much worsened 

immunopathology as shown by large consolidated granuloma-
tous lesions in the lung (Figure 6A). At higher magnification, 
these lesions were characterized by islands of lipid-laden foamy 
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Figure 5. Adjunct respiratory mucosal immunotherapy reduces tuberculosis-associated tissue pathology and enhances CD8 T cell infiltration in the lung during antibiotic 
continuation phase. Experiments were set up as depicted in experimental schema Figure 3A. (A) Representative micrographs of lung sections stained with hematoxylin and 
eosin, comparing the extent of lung inflammation and granulomatous lesions at weeks 12, 16, and 20 weeks postinfection. Scale bars indicate 500 µm. (B) Line graph showing 
semiquantified area of lung inflammation. Displayed values are averages from 3 micrographs per mouse. (C and D) Representative micrographs of immunohistochemically 
stained lung sections at 12 weeks postinfection visualizing the spatial distribution of F4/80 macrophages (brown stain) and of CD4 (red stain) and CD8 (brown stain) T cells 
costained in consecutive sections. Red arrows highlight macrophage-rich areas. Yellow arrows highlight T cell-rich areas. Top panel scale bars indicate 500 µm; bottom panel 
scale bars indicate 50 µm. ABx, antibiotics alone.
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macrophages surrounded by mononuclear cells (Figure 6A, 
black arrows). Upon Ziehl-Neelsen staining for identifying AFB, 
these macrophages were densely packed with mycobacterial 
AFB and their products (Figure 6A, black arrows and red ba-
cilli). In contrast, the lungs of ABx/Vac. animals showed very 
limited pathological rebound with much less granulomatous 
lesion, few foamy macrophages, and minimally detectable AFB 
(Figure 6B, black arrows), consistent with at least 10-fold fewer 
CFU in the lungs of ABx/Vac. animals in the ABx cessation 

phase (Figure 3C). Immunohistochemistry provided similar 
findings as in Figure 5C with macrophages encasing granuloma-
tous lesions largely void of CD4 and CD8 T cells in ABx animals 
(Figure 6C, dotted black box). In contrast, the lungs of ABx/Vac. 
animals had fewer macrophages and a CD8 T cell-dominant re-
sponse within the lesions (Figure 6D, dotted black box).

 Taken together, the above data suggest that adjunct 
RM immunotherapy effectively controls TB disease even 
after premature antibiotic cessation, not only via reducing 
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Figure 6. Adjunct respiratory mucosal immunotherapy reduces tuberculosis-associated tissue pathology in the lung during antibiotic cessation phase. Experiments were 
set up as depicted in experimental schema Figure 3A. (A and B) Representative micrographs of lung sections stained with hematoxylin and eosin (H&E), comparing the 
extent of lung inflammation and granulomatous lesions at 4 weeks postantibiotic cessation (24 weeks). Scale bars indicate 500 µm. Higher magnifications of H&E micro-
graphs depict abundant foamy macrophages (H&E) colocalized with acid-fast bacilli (AFB) (black arrows). Scale bars indicate 50 µm. (C and D) Representative micrographs of 
immunohistochemically stained lung sections at 4 weeks postantibiotic cessation (24 weeks) visualizing the spatial distribution of F4/80 macrophages (brown stain) and CD4 
(red stain) and CD8 (brown stain) T cells costained in consecutive sections. Scale bars indicate 500 µm. ABx, antibiotics alone.
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mycobacterial bacillary burden but, importantly, via miti-
gating immunopathology in the lung. This vaccine-induced 
immunotherapeutic effect is closely associated with CD8 
T cell infiltration in the lung.

Adjunct Respiratory Mucosal Immunotherapy Enhances Antigen-

Specific CD8 T Cell Responses in the Lung and Confers Protection in a T 

Cell-Dependent Manner

Our results thus far have suggested a role of vaccine-induced 
CD8 T cells in accelerated resolution of TB disease and limiting 
disease rebound by adjunct AdCh68Ag85A immunotherapy. 
To investigate the mechanisms underlying the therapeutic ef-
ficacy of AdCh68Ag85A, we first examined T cell responses in 
the lung of animals treated with ABx or in conjunction with 
RM immunotherapy (ABx/Vac.) by flow cytometry (Figure 
7A). Immunotherapy caused a shift from an overall CD4 T 
cell-dominated response in the lung of ABx animals to a CD8 T 
cell-dominated response in ABx/Vac. animals (Supplementary 
Figure 2). By Ag-specific Ag85A CD8 tetramer (Tet) 
immunostaining or by specific Ag-stimulated intracellular cy-
tokine straining of total lung mononuclear cells, we found that 
although there was a very small frequency of CD8 T cells spe-
cific for Ag85A in ABx lungs, more than 50% of the CD8 T cells 
in the lung of ABx/Vac. animals were Ag85A-specific, resulting 
in a much greater number of Tet+ CD8 T cells (Figure 7B). These 
Ag-specific cells were functionally activated as indicated by 
their ability to produce interferon-γ upon stimulation (Figure 
7C, dot plots). In comparison, Ag85A-specific CD4 T cell re-
sponses were negligible (Figure 7C, bar graph), thus supporting 
the immunohistochemical findings (Figure 5D). Of interest, al-
though CD4 T cells dominated the lung in ABx animals, only a 
very small number of them were M.tb-specific, comparable to 
those in ABx/Vac. animals (Supplementary Figure 3). On the 
other hand, M.tb-specific CD8 T cell responses were markedly 
increased in ABx/Vac. animals compared with ABx animals.

 We next further investigated the role of T cells in protective 
immunotherapeutic effects of AdCh68Ag85A. To this end, mice 
infected with M.tb for 4 weeks started on antibiotics in conjunc-
tion with RM immunotherapy with AdCh68Ag85A (ABx/Vac.). 
A subset of ABx/Vac. animals received weekly I.P. injections of 
anti-CD4/CD8 antibodies until experimental endpoint (ABx/
Vac. T cell depleted), and an additional subset of animals re-
ceived RM empty viral vector lacking the Ag85A gene (ABx/
Empty vector) instead of AdCh68Ag85A. All animals were sac-
rificed 12 weeks postinfection and assessed for TB disease in-
dices (Figure 7D). We found that T cell ablation in ABx/Vac. 
animals was associated with a significant increase in pulmonary 
bacterial burden in comparison to their undepleted counter-
parts. On the other hand, the animals receiving only a control 
viral vector (ABx empty vector) also had heightened bacterial 
burden in the lung (Figure 7D). Taken together, the above data 
suggest that RM immunotherapy-induced Ag85A-specific T 

cells contribute directly to the protective therapeutic efficacy of 
AdCh68Ag85A.

DISCUSSION

The emergence of multidrug-resistant to total drug-resistant 
strains of M.tb and the paucity of new drugs call for developing 
new therapeutic strategies [1, 3]. In this study, we show that a 
single dose of adjunct AdCh68Ag85A RM immunotherapy ac-
celerates the resolution of pulmonary TB disease and limits dis-
ease rebound after premature antibiotic cessation in a model 
of chronic TB. Respiratory mucosal immunotherapy-induced 
Ag-specific T cells contribute to its protective therapeutic effi-
cacy. These data indicate that virus-based TB vaccines designed 
for prophylactic RM immunization have the potential for ther-
apeutic applications.

 Our study represents the first to show the potency of res-
piratory route of immunotherapy and its superiority over the 
parenteral route. Failure of parenteral immunotherapy to en-
hance TB disease control by antibiotics supports the impor-
tance of quantity and quality of Ag-specific T cells in the lung 
[7, 19, 31]. A  previous study has also shown the inability of 
repeated parenteral immunotherapies with adenoviral (Ad26/
Ad35)-vectored TB vaccines to enhance protection [15]. High 
Ag exposure associated with repeated parenteral immunother-
apies and ongoing TB infection may lead to impaired T  cell 
functions [32] and severe local adverse effects [9]. Such situ-
ations may likely be worsened during antibiotic therapy. By 
comparison, besides its potency in directly furnishing infected 
lungs with T cells, adenoviral-based RM immunotherapy 
may train/activate lung macrophages such that they not only 
have enhanced mycobactericidality but also become better re-
sponders to Ag-specific T cells [7, 27]. Indeed, we show here 
that a single dose of adjunct mucosal immunotherapy mark-
edly reduces both bacterial burden and pathology in the lung. 
This approach appears advantageous over a repeated parenteral 
immunotherapeutic strategy that significantly reduced lung pa-
thology but had a much less effect on bacterial control [16].

 Consideration of the timing of immunotherapy during an-
tibiotic therapy is also of importance, in particular to the safety 
and efficacy of RM immunotherapy [33]. In our study, RM 
immunotherapy was carried out until after 4-week antibiotic 
therapy. This was to ensure that antibiotic therapy had markedly 
reduced bacterial infection and antigenic load and associated 
inflammation in the lung. This helps avoid not only the mor-
bidity resulting from vaccine-enhanced inflammation [16, 30] 
but also T cell exhaustion [32].

 The protective correlates of anti-TB immunity have re-
mained to be established. Our current study provides the 
evidence that RM immunotherapeutic vaccine-induced in-
filtration of T cells, particularly CD8 T cells, in TB lesions 
plays an important protective role. A  recent study showed 
that M.tb-specific CD8 T cells recognize and inhibit M.tb 

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz306#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz306#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz306#supplementary-data
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Figure 7. Adjunct respiratory mucosal (RM) immunotherapy enhances antigen (Ag)-specific CD8 T cell responses in the lung and confers protection in a T cell-dependent 
manner. (A) Experimental schema. Mice were set up as depicted in experimental schema Figure 3A. (B) Representative dot plots depicting the frequencies and bar graph 
depicting absolute numbers of Ag85A-specific CD8 T cells as assessed by tetramer immunostaining. (C) Representative dot plots depicting the frequencies and bar graph 
depicting absolute numbers of Ag85A-specific IFNγ + T cells as assessed by intracellular cytokine staining after recombinant Ag85A stimulation of lung mononuclear cells. 
(D) Experimental schema. Mice were infected and treated with antibiotics as per Figure 1A. One set of animals received RM immunotherapy 4 weeks after the initiation of 
antibiotics (ABx/Vac.). T cells were subsequently depleted weekly after immunotherapy (ABx/Vac. T cell depleted). A set of animals received a single dose of AdCh68 empty 
control vector in place of AdCh68Ag85A (ABx/empty vector). Data are expressed as the mean ± standard error of the mean of 3 mice/group for B or C and 6–10 mice/group 
for D. ABx, antibiotics alone; CFU, colony-forming units.
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growth in infected macrophages [34]. Our data suggest that 
inducing Ag85A-specific CD8 T cells is a useful criterion for 
immunotherapeutic development. In addition to T cells, it is 
likely that vaccine-trained innate immune cells may also play a 
role because we have recently shown that adenoviral infection 
in the lung induces memory macrophages with enhanced anti-
microbial activities [27].

 The success of current TB antibiotic regimens is challenged by 
the length of therapy required to cure disease without rebound. 
Even with the implementation of Direct Observed Treatment, 
short course, treatment failures spike as high as 40% for individ-
uals with drug-resistant TB [2, 35, 36]. Treatment-shortening 
regimens are therefore highly sought after to improve antibiotic 
treatment success. Different from other immunotherapeutic 
studies published to-date, we show here that a single-dose im-
munotherapy with AdCh68Ag85A not only enhances infection 
control by antibiotics, but it also restrains disease rebound after 
antibiotic stoppage in a protracted TB disease model.

Our study establishes the therapeutic efficacy of AdCh68Ag85A 
in the context of pulmonary TB. Although this is the most 
prevalent form of the disease, TB in humans can manifest in 
extrapulmonary sites, and it would be relevant to examine the re-
lationship of its local therapeutic effects to extrapulmonary infec-
tion in future studies [37]. Furthermore, future work should also 
investigate whether our therapeutic vaccine strategy differentially 
affects replicating and dormant/persistent M.tb bacilli. This is of 
particular relevance because the latter underinvestigated myco-
bacterial population is thought to be a major contributor to the 
disease relapse post-antibiotic therapy [33, 38–40].

CONCLUSIONS

In conclusion, we have provided strong evidence to support the 
safe and effective immunotherapeutic application, via the res-
piratory route, of a recombinant chimpanzee adenovirus-based 
prophylactic TB vaccine. Further clinical translation shall help 
develop strategies to shorten antibiotic therapy and curb the 
emergence of drug-resistant disease.
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