
A fully-automated event-based variant prioritizing solution to the 
CAGI5 intellectual disability gene panel challenge

Jingqi Chen1,2,3,*

1Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 
China

2Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan 
University), Ministry of Education, China

3Department of Plant & Microbial Biology, University of California, Berkeley, California, USA

Abstract

Recent applications of gene panel sequencing analysis have significantly helped with identifying 

genetic causes for inherited diseases. However, large amounts of candidate variants remain a major 

challenge for prioritizing, often requiring arbitrary cutoffs in multiple steps. In addition, existing 

tools often prioritize a list of promising candidates that require much manual work to evaluate. To 

this end, we designed an automated, basically cutoff-free scoring scheme named Context and 

Hereditary Event based Scoring Scheme (CHESS), that scores all possible inheritance events in 

each gene, by taking into consideration phenotypes, genotypes, and how the manual prioritization 

works. We applied CHESS to the Critical Assessment of Genome Interpretation 5 intellectual 

disability panel challenge, to assign clinical phenotypes to patients based on gene panel 

sequencing data. Through this blind testing, CHESS proved to be a leading and useful tool for 

genetic diagnosis in a research setting. Further analyses showed that precise phenotype terms 

played an important role in variant prioritization and that multiple etiologies may exist for some 

patients. CHESS also successfully identified many of the causal, putative and contributing 

variants. In the postchallenge analysis, we showed that our best submission performed slightly 

better than the predictions made by a state-of-the-art tool. We believe that CHESS can provide aid 

to this and many other diagnostic scenarios.
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1 | INTRODUCTION

Technology advances in recent years have made next-generation sequencing more and more 

affordable (Hayden, 2014). While whole-exome sequencing and whole-genome sequencing 

are in their infancy in clinical practice, gene panel sequencing has already been widely used 

in clinical laboratories for diagnosing diseases and identifying genetic causes, owing to the 

relatively lower cost, higher sequencing depth, and the disease-specific focus (Christensen, 

Dukhovny, Siebert, & Green, 2015; Prokop et al., 2018; Sun et al., 2015). Multiple studies 

have highlighted the accuracy, reproducibility, and general usefulness of gene-panel-based 

genetic testing for both rare and complex diseases (Dohrn et al., 2017; Manchanda & Gaba, 

2018; Schwarze, Buchanan, Taylor, & Words-worth, 2018; Sturm et al., 2018; Trump et al., 

2016; Turnbull et al., 2018). On the flip side, gene panel based procedures have 

shortcomings—they do not provide information for genes outside of the target set, 

alternative exons, and deep intron and intergenic information, making it important to define 

their scale of usage (Bodian, Kothiyal, & Hauser, 2018; Xue, Ankala, Wilcox, & Hegde, 

2015). Nevertheless, gene panels should be designed according to the research or application 

objectives.

Upon obtaining variants through a gene panel sequencing, the next question would be to 

identify causal, pathogenic variants relevant to the phenotype(s) of interest. Many methods 

have been developed for evaluating the pathogenicity of variants, such as SIFT (Ng & 

Henikoff, 2006), PolyPhen (Adzhubei et al., 2010), CADD (Kircher et al., 2014), and 

REVEL (Ioannidis et al., 2016). There are also multiple methods developed for evaluating 

the association of the genes (that the variants are located in) with the disease phenotypes, 

such as PHIVE (Robinson et al., 2014), Phevor (Singleton et al., 2014), and Phenolyzer 

(Yang, Robinson, & Wang, 2015). Pipeline-type tools, such as the Exomiser (Robinson et 

al., 2014), have integrated both types of methods, to produce prioritized candidate causal 

variants. Such methods and tools can be used in gene panel sequencing analyses, as well as 

in exome/genome sequencing analyses.

Gene-panel-based genetic testing has been applied to the research and clinical diagnosis of 

many diseases, including neurode-velopmental diseases (Dohrn et al., 2017; Trump et al., 

2016). Many neurodevelopmental disorders have profound heritability, highly heterogeneous 

genetic causes, and significant comorbidities (Blacher & Kasari, 2016; Brainstorm et al., 

2018; Lo-Castro & Curatolo, 2014). For instance, researchers have found that intellectual 

disability and epilepsy can have larger than 70% co-occurrence rates with autism spectrum 

disorders in some population (Mpaka et al., 2016). With prior knowledge of such disorders, 

the Padua Diagnostic Laboratory designed a gene panel primarily for studying the genetic 

mechanisms underlying the comorbidity of intellectual and autism spectrum disorders. The 

gene panel covered exons and exon-adjacent regions of 74 genes, known associated with 

seven major types of traits—the important questions to answer were whether this gene panel 

Chen Page 2

Hum Mutat. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can help diagnose patients, and what tools could help uncover causal variants from the 

sequencing data generated by this gene panel. The Critical Assessment of Genome 

Interpretation (CAGI) organization provides a “blind test” platform for assessing 

computational tools designed for interpreting variants in the genome, through community 

experiments and competitions. To this end, the Padua Diagnostic Laboratory provided the 

74-gene panel sequencing results of 150 cases with neurodevelopmental disorders, as the 

data for the CAGI5 intellectual disability gene panel challenge. The challenge was to use the 

precalled genetic variants to predict the disease terms (among the seven traits) of cases as 

well as to prioritize the true genetic causes (causal variants). The submissions were then 

assessed by a designated independent assessor, primarily on how well the predicted disease 

terms aligned with the actual records. The predicted variants were also shared back with the 

data provider.

Given a large number of cases and disease terms to test, we used a fully-automated scoring 

scheme named Context and Hereditary Event based Scoring Scheme (CHESS). We designed 

the original form of CHESS for analyzing whole-exome sequencing family data. This CAGI 

challenge provided a chance for unbiasedly assessing this scoring scheme, so we made 

several adjustments to CHESS suitable for the data type of this challenge—gene panel 

sequencing data without family information, and generated three submissions named 

“stringent,” “medium stringent,” and “less stringent.” After the challenge, the assessor 

reported that the CHESS “less stringent” submission showed the best overall performance in 

predicting disease terms among all submissions by participants of this challenge. In this 

manuscript, we presented the CHESS scoring scheme and the predictions of disease terms in 

details. We also discussed postchallenge analyses based on the latest released causal, 

putative, and contributing variants by the data provider, as well as a comparison with 

predictions by a state-of-the-art tool for genetic diagnosis.

2 | METHOD

2.1 | Data preprocess

The precalled variants generated from the gene panel sequencing data were provided by the 

data provider. We then annotated the variants with VEP (McLaren et al., 2016), gnomAD 

v2.0.2 (Lek et al.,2016), and the precalculated REVEL scores (Ioannidis et al., 2016). 

REVEL was used for this challenge mainly because REVEL showed better performance 

than most other individual and ensemble methods for predicting rare variant pathogenicity 

(Ioannidis et al., 2016; Li et al., 2018). Variants mapped to multiple precalculated REVEL 

positions were scored as the largest REVEL score among the positions. Severest annotation 

by VEP (across all possible transcripts) was used for each variant. Only variants with 

putatively protein-altering annotation were used in the following analysis. We also excluded 

common variants--variants with minor allele frequency (MAF) ≧ 5%--from our analysis, 

since the seven diseases of interest were relatively rare genetic diseases. After these 

preprocess steps, a data matrix (see an example in the Supporting Information Data) 

containing variant locations and the above annotation information was generated for each 

sample, and was then used as the input data for the CHESS scoring step.
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2.2 | The scoring scheme of CHESS and settings for this challenge

The scoring scheme of CHESS contains two steps. As shown in Figure 1, the first step is 

variant scoring. The score of each variant is based on three major components—variant 

quality, predicted deleteriousness, and phenotype match. The calculation is designed as 

basically cutoff free, and will prioritize variants if any of the three parts stand out. 

Specifically, the equation is as follows:

Vscore = loge
qual +m1 + e

del+m2 + e
pheno +m3

3 ,

where for this challenge:

a) The variant quality “qual” was defined as GQ value transformed to the scale of 0 

to 1

b) The predicted deleteriousness “del” was defined as a sum of variant impact 

annotation (.5 for frameshift, and .25 for missense and inframe InDel) and 

REVEL score (transformed to 0–.5); notethat the parameters for different types 

of variants were set based on best knowledge and specifically for this challenge, 

and they may subject to changes if applied to different scenarios

c) The phenotype match score “pheno” was calculated using Phenolyzer (Yang et 

al., 2015) for each gene with each disease term (also 0–1)

d) For convenience, the modifiers “m1,” “m2,” and “m3” were all set to the rarity ((.

01-MAF)/.05).

The second step of CHESS is to integrate variant scores with all possible inheritance events. 

For each possible inheritance event (dominant or recessive events, on autosomal 

chromosomes or the X chromosome), a final score is calculated based on score(s) of the 

variant(s) involved in this inheritance event.

2.3 | Adjustments and the three submissions

The following items were the special adjustments on the CHESS scoring scheme, made for 

generating our three submissions for the CAGI intellectual disability gene panel challenge:

(1) Since family information was not available, the estimated “de novo dominant” 

events could have a high false positive rate (FPR). The scores for such events 

were divided by two as an adjustment.

(2) For the same reason, the scores for estimated “compound heterozygous” events 

were calculated as the sum of scores of the two involved variants divided by 3 

(or 2, in “less stringent”).

(3) Special adjustments for the “stringent” submission: (a) variants called in more 

than 30% of the samples were excluded from the analysis; (b) only scores ≧.5 

were reported; (c) only the score of the top event (if >.5) for each disease was 

reported as the final score.
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(4) Special adjustments for the “medium stringent” submission: (a) variants called 

in more than 30% of the samples were excluded from the analysis; (b) only the 

score of the top event for each disease was reported as the final score.

(5) Special adjustments for the “less stringent” submission: (a) variants called in 

more than 50% of the samples were excluded from the analysis; (b) top two 

events for each disease were reported, and the final score was set as the mean of 

the two (in rare cases if the two top scored events come from the same gene, the 

larger score was used)

Based on the CHESS scoring scheme and all the adjustments discussed above, we calculated 

the final score for each of the seven disease terms for each case. We then used the final score 

of a disease term in each case as the predicted probability of the case having this disease. 

The variants involved in the top event(s) used for each final score were defined as the 

prioritized candidate variants. Please note that these adjustments were specifically made for 

this challenge, and should be evaluated case-by-case if the CHESS scoring scheme will be 

applied to other circumstances (see “CHESS for general usage” in the Supporting 

Information Data).

2.4 | Predictions made by the state-of-the-art method Exomiser

Since the Exomiser (Robinson et al., 2014) took HPO IDs, instead of disease terms, as the 

input, we first selected a single obviously closest HPO ID for each disease term based on our 

best knowledge. With each HPO ID, we then ran the Exomiser (Version 11.0.0) on the 

variants of each case using default settings. Following a similar strategy as “less stringent”, 

we took the average score of the top two variants (across all the inheritance events used in 

default settings) of the Exomiser as the predicted probability score and used these two 

variants as the Exomiser “Top 2” prioritized candidate variants.

2.5 | Scripts and packages

In-house scripts for CHESS were written in Perl. Most postchallenge analyses were 

performed using R. Receiver operating characteristic (ROC) curves were plotted using roc() 

from the R package pROC (Robin et al., 2011), and area under the ROC curve (AUCs) were 

calculated using auc() from the same R package.

3 | RESULTS

3.1 | Overview of the predictions in seven diseases

We used a scoring scheme named CHESS for predicting disease terms and prioritizing 

candidate variants for the CAGI5 intellectual disability gene panel challenge (see Section 2; 

Figure 1). Among the three submissions we made for this challenge, the third one (“less 

stringent”) had the best overall performance, when evaluated by AUC across all the seven 

disease terms—intellectual disability, autism spectrum disorder, epilepsy, microcephaly, 

macrocephaly, hypotonia, and ataxic gait (Figure 2; AUCLessStringent = .58). According to the 

assessor, our “less stringent” submission was also the best among all submissions received 

for this challenge based on the same measure, followed very closely by the second best, 

which was by another group (see the assessment of the CAGI5 intellectual disability gene 
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panel challenge published in the same special issue). However, all the submissions were 

actually only slightly, though significantly (according to the assessor), better than a random 

guess, highlighting the need to analyze the details and perhaps also a demand for better-

geared tools.

When breaking down into individual disease terms, “less stringent” predictions showed 

better performance in intellectual disability, macrocephaly, and microcephaly among the 

seven. The performance was not correlated with the affected rate of each disease in these 

patients. For all disease terms except “ataxia gait,” “less stringent” performed significantly 

better than random (1,000 times randomization; T test p value ≦.05). However, the actual 

AUC for each term was only slightly larger than the 1,000 times randomization average 

(Figure 3). Surprisingly, despite that this gene panel was originally designed for both 

intellectual disability and autism spectrum disorder, and that there was high comorbidity 

(68.9%) of the two diseases in this dataset, “less stringent” gave a much worse performance 

for autism spectrum disorder than for intellectual disability. We believe this was partially due 

to the complex nature of autism spectrum disorder—while intellectual disability was more of 

a type of rare inherited diseases.

The complexity of the diseases and the amount of knowledge available for each disease can 

be partially reflected by the range of gene phenotype scores automatically generated by 

Phenolyzer (Yang et al., 2015) for each disease term, as shown in Figure 3. We observed a 

moderate positive correlation between the performance AUCs and the median gene 

phenotype scores (Pearson correlation coefficient = .78, p value = .04). Since we used the 

disease terms, instead of fixed HPO terms, to generate the gene phenotype scores, the choice 

of words could potentially affect the outcome. For instance, in the submission, we used the 

term “ataxia gait” provided by the data provider, while most genes in the panel showed very 

low phenotype scores relating to this term, and the prediction performance was worse than 

random. After the challenge, we tried the term “ataxia,” which led to a slightly higher 

overall gene phenotype scores and slightly better performance (Figure 3). This was not 

unexpected as the gene panel was not primarily designed for ataxia gait or ataxia.

3.2 | Categorization of cases

We compared the predicted disease terms and the actual disease terms in details. Here we set 

the FPR for each disease term at .3, and defined that a disease term was predicted for a case 

if the prediction score was higher than the score at this FPR. For intellectual disability, the 

FPR was effectively .5, since there were only four cases without this disease. Of the 150 

cases, 106 have been predicted with at least one disease term. We then categorized each case 

into the following three types: (a) fully predicted, where all the actual disease terms for the 

case were predicted; (b) partially predicted, where at least one actual term was predicted and 

at least one actual term was missed; (c) fully missed, where none of the actual terms was 

predicted. In short, we identified 60, 46, and 44 cases as “fully predicted”, “partially 

predicted”, and “fully missed”, respectively. Many of the “fully predicted” cases have been 

predicted with terms in addition to their actual disease terms. On the other hand, 65% of the 

“fully predicted” cases had no information for at least three of the seven disease terms, 

indicating a lack of complete medical information for such cases.

Chen Page 6

Hum Mutat. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



All the 46 “partially predicted” cases were correctly predicted with intellectual disability. 

For 36 of the “partially predicted” cases, autism spectrum disorder was missed by our 

prediction. Among the 36, nine were actually predicted with a relatively high score for 

autism spectrum disorder—only smaller than the cutoff by less than .05. Similarly, among 

the 46 “partially predicted” cases, 14 of 17 epilepsy cases, 9 of 10 microcephaly cases, 12 of 

13 hypotonia cases, and all 3 ataxic gait cases were missed, while only 1 of 4 macrocephaly 

cases was missed. On the other hand, the predictions correctly marked most cases that did 

not have a certain disease term —there were few overpredictions. Overall, we observed a 

relatively poor recall in the “partially predicted” cases at the cutoff we chose (FPR at .3).

Surprisingly, the “fully missed” cases turned out to be cases with no predicted disease terms 

at all. The prediction scores of the “fully missed” cases for almost every disease term were 

much lower than the cutoffs. In fact, for all disease terms except ataxic gait, “fully missed” 

cases showed a lower affected rate compared to all other cases (odds ratios = .94, .85, .86, .

24, .63, and .70 for intellectual disability, autism spectrum disorder, epilepsy, micro-cephaly, 

macrocephaly, and hypotonia, respectively). This indicated that our predictions did capture 

some true signal useful for separating different types of cases. The true genetic causes of 

these cases either failed to be prioritized by our predictions or did not exist in the genomic 

regions covered by this gene panel.

3.3 | Postchallenge analyses: identification of causative variants

After the challenge was completed, the data provider released “causative variants,” “putative 

variants,” and “contributing factors” for 24, 16, and 12 cases, respectively. According to 

their definition, “causative variants” were identified through segregation analysis and 

genotype-phenotype correlation; “putative variants” were rare or novel variants, predicted as 

pathogenic, while without available segregation analysis; “contributing factors” were rare or 

novel variants, predicted as pathogenic, in relevant genes, while shared with healthy parents. 

Interestingly, there were no two cases that shared the same “causative variants,” “putative 

variants” or “contributing factors.”

In our best submission--“less stringent,” top two potential inheritance events for each disease 

term for each case were prioritized, which corresponded to two to four variants per case per 

disease term. In the same cases, the prioritized variants were often the same or similar across 

different disease terms—only 16% cases had more than four total prioritized variants. We 

successfully identified “causal variants” for 11 cases (45.8%; note that in one case one of the 

two “causal variants” was missed), “putative variants” for 9 cases (56.3%), and “contributing 

factors” for 9 cases (75.0%; one case with one of the two “contributing factors” missed). 

Given that our predictions were made without access to the gender or family information, we 

consider “less stringent” did well in prioritizing candidate variants.

Interestingly, of the 29 unique cases that “less stringent” predicted correct variants for, the 

disease terms of ten cases were “fully missed” by “less stringent” (FPR at .3), as shown in 

Table 1. This indicated that (a) “less stringent” have the power to identify the “correct” 

candidate variants, but the connections between variants and specific disease terms have not 

been well established; (b) there may be other disease-causing or disease-contributing 
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variants that are missed by both “less stringent” and the date provider, or are not included in 

this gene panel analysis.

3.4 | Postchallenge analyses: comparison with the state-of-the-art tool Exomiser

We further evaluated our predictions by comparing them with the predictions by the state-of-

the-art tool Exomiser (Robinson et al., 2014). The Exomiser (Version 11.0.0) was applied to 

each case for each disease term following default settings, and the results were collected 

using a similar strategy as CHESS “less stringent” (see Section 2). In this analysis, the top 

two variants, as well as their scores predicted by the Exomiser, were used for each disease 

term for each case, so we termed this application of the Exomiser as Exomiser “Top 2”. For 

five out of the seven disease terms, the AUCs of CHESS “less stringent” were better than 

those of Exomiser “Top 2” (Figure 4; see also Figure S1 for comparison with Exomiser “Top 

1”). When pooling predictions for all seven disease terms together, Exomiser “Top 2” 

performed slightly better (AUC .62 Vs. .58). This indicated that Exomiser “Top 2” and 

CHESS “less stringent” could capture information in ways appropriate for different types of 

diseases.

As discussed previously, for each case with each disease term, Exomiser “Top 2” prioritized 

the top two variants, while CHESS “less stringent” prioritized variants in the top two events 

(usually 2–4 variants). We found that the prioritized variants of Exomiser tended to be more 

varied among different disease terms, than those by CHESS “less stringent”—Exomiser 

“Top 2” prioritized a median of seven unique variants for each case across all disease terms, 

while CHESS “less stringent” only prioritized a median of three unique variants for each 

case across all disease terms. However, Exomiser “Top 2” hit fewer cases with “correct 

variants” than CHESS “less stringent” (25 unique cases compared with 29), indicating that 

Exomiser “Top 2” variants may have a higher FPR. Nevertheless, the overlap between the 25 

and 29 cases were only 17 cases, meaning that both Exomiser “Top 2” and CHESS “Less 

Stringent” could provide novel “correct variants” for several cases that the other missed 

(Table 2).

Taken together, we consider CHESS “less stringent” performed slightly better than Exomiser 

“Top 2” in predicting five of the seven disease terms, and in prioritizing candidate variants. 

However, each of the two could provide some unique useful information that the other 

missed. We cautiously suggest that this conclusion may only apply to certain disease terms, 

as the scale of this analysis was very specific. In addition, since both CHESS and Exomiser 

used comprehensive phenotype-matching based gene scores to help prioritize variants, 

detailed clinical phenotype data (in addition to the disease terms) could potentially improve 

the outcome of each method.

4 | DISCUSSION

We presented the application of CHESS in the CAGI5 intellectual disability gene penal 

challenge, a fully automated and cutoff-free inheritance event-based scoring scheme for 

prioritizing candidate causal variants. The “less stringent” submission of CHESS performed 

slightly better than other submissions in predicting disease terms of patients in this 

challenge, and also slightly out-performed Exomiser “Top 2” in five of the seven disease 
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terms. Overall, the prediction AUC for each disease was not very high, though significantly 

higher than random. CHESS “less stringent” successfully prioritized “causal,” “putative” or 

“contributing” variants for 29 cases out of the 50 cases provided with such variants by the 

data provider, with relatively fewer “false positives” compared with Exomiser “Top 2”.

Here are several interesting observations that could be useful for future investigation and 

perhaps future CAGI challenge designs. First, CHESS “less stringent” was the only one 

among our three submissions that used the top two events instead of trying to find one best 

event, yet it performed the best. This indicated that multiple, instead of single, etiologies 

may exist in at least some of the patients. The diseases of interest might have a large 

spectrum across the traditional concepts of “rare” and “complex” diseases. Second, we 

showed in the analyses that using slightly different terms may generate different results. This 

might suggest that current methods to associate genes with phenotypes were not perfect, but 

also highlighted the importance of standardizing disease terms and categorization. Third, it 

was tricky to try to set an FPR for intellectual disability, since there were only four true 

negative cases. We consider that more balanced numbers of positive and negative cases 

could provide more power to the overall assessment of performance.

There were two obvious pitfalls in our submissions. One was that we assumed these diseases 

should more or less follow the patterns of rare inherited diseases, so that we predicted 

disease terms fully based on the most possible genetic variants. The overall low 

performances might be partially owing to that the assumption was not entirely true. The 

other pitfall was that in our method we interrogated each disease term one by one, as if they 

were independent diseases. However, several of the diseases had high comorbidities, as 

previously reported (Blacher & Kasari, 2016; Lo-Castro & Curatolo, 2014; Mpaka et al., 

2016). In fact, the gene panel used in this CAGI challenge was originally designed to study 

the genetics underlying the comorbidities of intellectual disability and autism spectrum 

disorders. When dealing with this challenge, we did not have a good genetic model to 

follow, but we hope that with such data researchers can find better models to use in the 

future.

We consider it possible that the patients could have genetic causes outside of the 74 genes of 

this gene panel. After all, there have been at least hundreds of genes reported associated with 

intellectual disability (Wieczorek, 2018). With technology advancement leading to lower 

sequencing price, whole exome sequencing could be appropriate for identifying other 

genetic causes. Also, whole genome sequencing might help find causal structural variants 

for some cases, as reported by others that structural genomic variations were also among the 

important causes of intellectual disability (Vissers, Gilissen, & Veltman, 2016).

All in all, the CAGI5 intellectual disability gene panel challenge has provided a great 

opportunity for assessing tools as well as investigating the genetic causes of 

neurodevelopmental diseases. We consider that CHESS could provide useful results when 

analyzing genetic testing data such as in this CAGI challenge. CHESS was mainly designed 

for rare inherited diseases and could be applied to both gene panel and whole exome data. In 

this specific analysis, CHESS was performed using input data based on VEP annotation, 

gnomAD MAF, and REVEL scores. Nevertheless, researchers can use the CHESS 
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framework based on annotation generated based on other appropriate tools as well. We hope 

that this analysis would help inform future research, and hope that CAGI will continue to 

contribute to the genome interpretation area, both in research and in clinical applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
The workflow for predictions made by CHESS. The left half of this figure shows the scheme 

of the solution to the CAGI intellectual disability gene panel challenge. The right half of this 

figure shows the process of input data preparation and the CHESS scoring steps (the box by 

dotted line). CAGI, Critical Assessment of Genome Interpretation; CHESS, Context and 

Hereditary Event based Scoring Scheme
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FIGURE 2. 
The ROC curves of the three submissions. The light blue line represents CHESS “Medium 

Stringent”; the dark blue line represents CHESS “stringent”; the orange line represents 

CHESS “less stringent”. CHESS, Context and Hereditary Event based Scoring Scheme; 

ROC, receiver operating characteristic
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FIGURE 3. 
(a) Comparisons of prediction performances (quantified by AUCs) of CHESS “less 

stringent” versus “random median.” “Random median” refers to the median value of 1,000 

times randomizations. The randomization was done by shuffling of case IDs. Performances 

for all seven disease terms as well as the term “ataxia” are shown here. (b) The distribution 

of phenotype match scores of all the genes in the gene panel, for each of the seven disease 

terms as well as the additional term “ataxia.” AUCs, areas under the ROC curve; CHESS, 

Context and Hereditary Event based Scoring Scheme
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FIGURE 4. 
Comparisons of prediction performances (quantified by AUCs) of CHESS “less stringent” 

versus Exomiser “Top 2”. Performances for all seven disease terms are shown here. AUCs, 

areas under the ROC curve; CHESS, Context and Hereditary Event based Scoring Scheme

Chen Page 16

Hum Mutat. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen Page 17

TABLE 1

The categories of cases that are predicted with “causal variants,” “putative variants,” “contributing factors”

No. of cases

Predicted with

“Causal
variants”

“Putative
variants”

“Contributing
factors”

Terms “fully predicted” 7 4 0

Terms “partially predicted” 1 3 4

Terms “fully missed” 3 2 5
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