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Abstract

Predicting the impact of mutations on proteins remains an important problem. As part of the 

CAGI5 frataxin challenge, we evaluate the accuracy with which Provean, FoldX, and ELASPIC 

can predict changes in the Gibbs free energy of a protein using a limited data set of eight 

mutations. We find that different methods have distinct strengths and limitations, with no method 

being strictly superior to other methods on all metrics. ELASPIC achieves the highest accuracy 

while also providing a web interface which simplifies the evaluation and analysis of mutations. 

FoldX is slightly less accurate than ELASPIC but is easier to run locally, as it does not depend on 

external tools or datasets. Provean achieves reasonable results while being computational less 

expensive than the other methods and not requiring a structure of the protein. In addition to 

methods submitted to the CAGI5 competition, and with the aim to inform about other methods 

with high accuracy, we also evaluate predictions made by Rosetta’s ddg_monomer protocol, 

Rosetta’s cartesian_ddg protocol, and thermodynamic integration calculations using Amber 

package. ELASPIC still achieves the highest accuracy, while Rosetta’s catesian_ddg protocol 

appears to perform best in capturing the overall trend in the data.
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Introduction

Advances in DNA sequencing technology have led to an enormous growth in the amount of 

available genomic data. Interpreting this wealth of data to provide meaningful and actionable 

insights remains a challenge. One important aspect of genome interpretation involves 

predicting the effect of missense mutations on the structure of proteins. Evaluating the 
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structural impact of a mutation, and the associated change in the Gibbs free energy of 

protein folding (ΔΔG), can assist in predicting the deleteriousness of a mutation (Glusman et 

al., 2017, p.), can offer a mechanism explaining how a particular mutation produces a 

particular phenotype (Nielsen et al., 2017), and could potentially guide the selection of 

treatment strategies and the development of targeted therapeutics to combat mutation effects 

(Albanaz, Rodrigues, Pires, & Ascher, 2017). While many tools exist for predicting the ΔΔG 

of mutations (Barlow et al., 2017; Baugh et al., 2016; Capriotti, Fariselli, & Casadio, 2005; 

Dehouck, Kwasigroch, Gilis, & Rooman, 2011; Kellogg, Leaver-Fay, & Baker, 2011; Park et 

al., 2016; Pires, Ascher, & Blundell, 2014b; Schymkowitz et al., 2005), the accuracy of 

those tools is difficult to ascertain. Most of the tools have been trained and validated on the 

same dataset of experimentally-measured ΔΔG values (Bava, Gromiha, Uedaira, Kitajima, & 

Sarai, 2004), and while they generally report good accuracies on that dataset, the results are 

more varied when it comes to new mutations that had not been evaluated previously (Buß, 

Rudat, & Ochsenreither, 2018; Geng, Xue, Roel-Touris, & Bonvin, 2019; Khan & Vihinen, 

2010; Kroncke et al., 2016; Potapov, Cohen, & Schreiber, 2009).

Critical Assessment of Genome Interpretation (CAGI) is a competition which allows for the 

objective evaluation and comparison of different methods at tasks relating to the 

interpretation of genomic variation. At the beginning of the competition, data providers 

release mutations, or entire genomes, for which they have experimental measurements, and 

research groups from around the world are invited to submit their predictions for those 

experimental measurements. At the end of the competition, independent assessors evaluate 

the submissions made for each challenge and use a pertinent set of metrics to select 

submissions that are the most accurate. The goal of the CAGI5 frataxin challenge was to 

predict changes in the Gibbs free energy of protein folding (ΔΔG) for eight mutations in 

human frataxin (FXN) protein. We made three submissions to this challenge, containing 

predictions made by Provean (Choi et al., 2012), FoldX (Guerois et al., 2002), and 

ELASPIC (Witvliet et al., 2016), with submission identifiers G6–3, G6–2, and G6–1, 

respectively. Predictions made by ELASPIC, a computational framework developed in our 

lab, were selected as the winning submission by the independent assessor.

In this article we give a brief overview of different approaches for predicting the ΔΔG of 

mutations and describe the three submissions that we had made to the CAGI5 frataxin 

challenge. We also describe predictions made by three alternative methods: Amber 

Thermodynamic Integration (Amber TI) (Case et al., 2005), Rosetta’s ddg_monomer 

protocol (Kellogg et al., 2011), and Rosetta’s cartesian_ddg protocol (Park et al., 2016). 

While the latter predictions were not evaluated in the blind challenge and therefore have 

more potential for bias, we believe that including those predictions in our analysis is 

necessary in order to provide a comprehensive overview of the most widely-used methods.

Provean is a sequence-based method which uses the conservation pattern of amino acids to 

predict whether a given mutation is likely to be deleterious. Other examples of sequence-

based methods include SIFT (Ng & Henikoff, 2003), PolyPhen-2 (Adzhubei, Jordan, & 

Sunyaev, 2001), and CADD (Kircher et al., 2014). While sequence-based methods do not 

predict the ΔΔG of mutations directly, predictions made by sequence-based methods often 

correlate well with experimental ΔΔG measurements, since deleterious mutations are much 
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more likely to destabilize the structure of a protein than benign mutations (Berliner, Teyra, 

Colak, Garcia Lopez, & Kim, 2014; Kroncke et al., 2016).

FoldX and Rosetta are two examples of structure-based tools which use statistical potentials, 

in combination with various sampling techniques, to predict the ΔΔG of mutations. 

Statistical potentials are comprised of a diverse set of features, including energies calculated 

using molecular mechanics force fields, probabilities of finding specific backbone 

conformations and rotamers in high-resolution crystal structures, and outputs of custom 

routines designed to improve the concordance between experimental and predicted values. 

Those features are integrated together in various ways to make the final predictions. Existing 

methods using statistical potentials do not attempt to model large changes in protein 

conformation, either assuming that the backbone of a protein remains fixed or allowing only 

local movements around the site of the mutation.

ELASPIC is a meta-predictor, developed by our lab, which uses the gradient-boosted 

decision tree algorithm (Friedman, 2002) to integrate predictions made by Provean, 

empirical energy terms calculated using FoldX, as well as other features, in order to predict 

the ΔΔG of mutations. ELASPIC falls in the category of methods which use both sequence 

and structural information to predict the ΔΔG of mutations, with examples of other methods 

in this category being DUET (Pires, Ascher, & Blundell, 2014a), VIPUR (Baugh et al., 

2016), and STRUM (Quan, Lv, & Zhang, 2016). In every case, sequence and structural 

features are integrated using machine learning algorithms trained on datasets of 

experimentally-measured ΔΔG values (Bava et al., 2004; Moal & Fernández-Recio, 2012).

Amber TI is a protocol which uses Amber’s pmemdGTI module (Lee, Hu, Sherborne, Guo, 

& York, 2017) to simulate the transition from the wild type to the mutant protein and to 

calculate the ΔΔG of that transition. It falls in the category of methods performing 

“alchemical” free energy calculations, where molecular dynamics is used to model the 

transition from the wild type to the mutant protein and the energy of the transition is 

calculated using thermodynamic integration (TI), multistate Bennett Acceptance Ratio 

(mBAR), or other techniques (Gapsys, Michielssens, Seeliger, & de Groot, 2015; Lee et al., 

2017). The primary advantage of methods using alchemical free energy calculations is that 

they can be applied to a much broader set of problems, such as predicting the effect of 

mutations on the binding of small molecules (Lee et al., 2017) and on the stability of D-

amino acid peptides (Garton, Sayadi, & Kim, 2017). The primary disadvantage of 

alchemical free energy calculations is that they are much more computationally expensive 

than the other methods.

While one must exercise extreme caution when drawing conclusions from the small dataset 

of only eight mutations, we believe it is still beneficial to discuss the strengths and 

limitations of different methods belonging to each of those four categories. Additional blind 

assessments, with a larger number of mutations, are required to either corroborate or 

disprove our findings.
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Methods

FXN protein and mutations

FXN is a mitochondrial protein involved in iron-sulfur (Fe-S) cluster assembly, heme 

biosynthesis, and the oxidation of Fe2+ to Fe3+ (Bridwell-Rabb, Winn, & Barondeau, 2011; 

O’Neill et al., 2005). Disruption of the FXN gene can lead to Friedreich’s ataxia, a neuro- 

and cardio-degenerative disease with an autosomal recessive mode of inheritance and an 

estimated prevalence of 1 in 50,000 in the European population (Campuzano et al., 1996). 

The majority of patients with Friedreich’s ataxia are homozygous for a GAA repeat 

expansion in the first intron of the FXN gene, which causes a decrease in the amount of 

FXN that is transcribed (Campuzano et al., 1996). The remaining patients are heterozygous 

for a GAA repeat expansion and a point mutation, with over 20 distinct mutations known to 

cause the disease (Cossée et al., 1999; Galea et al., 2016; McCormack et al., 2000). Patients 

who are heterozygous for a GAA repeat expansion and a point mutation can exhibit a variety 

of phenotypes, depending on the mutation that is present (Cossée et al., 1999). In the case of 

missense mutations, it has been suggested that the phenotype depends the effect that the 

mutation has on the stability of FXN, the affinity of FXN for the iron-sulfur assembly 

complex (SDU), and the ability of FXN to allosterically activate this complex to promote 

iron-sulfur cluster biosynthesis (Bridwell-Rabb et al., 2011; Correia, Pastore, Adinolfi, 

Pastore, & Gomes, 2008).

For the CAGI5 frataxin challenge, thermodynamic effects of eight mutations in human FXN 

(NP_000135.2) were evaluated using far-UV circular dichroism and intrinsic fluorescence 

spectra (Petrosino et al., n.d.). Those experimental measurements were used to calculate 

changes in free energy of protein folding (ΔΔG) associated with the mutations. The goal of 

the challenge was to use computational tools to accurately predict those ΔΔG values.

ELASPIC web server

Provean scores (G6–3), FoldX ΔΔG values (G6–2), and ELASPIC ΔΔG values (G6–1) were 

obtained by submitting mutations from the frataxin challenge to the ELASPIC web server 

(Witvliet et al., 2016). Predictions made by ELASPIC for all mutations in the challenge are 

available at http://elaspic.kimlab.org/result/a5393e/ and Supp. Table S1. The ELASPIC web 

server uses FoldX version 3.0 beta 6.1, Provean version 1.1.5, and ELASPIC version 0.1.42, 

to make its predictions. For a larger set of mutations, predictions could also have been 

obtained using the ELASPIC command-line utility (Strokach, Corbi-Verge, Teyra, & Kim, 

2019). Since experimental and FoldX ΔΔG values are provided as changes in the Gibbs free 

energy of protein unfolding rather than protein folding, the sign of those values was 

reversed. The sign of the Provean scores was also reversed, since Provean predicts smaller 

values for deleterious mutations than for benign mutations, and deleterious mutations are 

more likely to be destabilizing.

Rosetta

Two Rosetta protocols exist for predicting the ΔΔG of mutations: the ddg_monomer protocol 

(Kellogg et al., 2011) and the cartesian_ddg protocol (Park et al., 2016). The ddg_monomer 

protocol uses flexible backbone design with the soft_rep_design energy function to generate 
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50 models of the wild type protein and 50 models of the mutant protein. The ΔΔG of the 

mutation is calculated as the difference in Rosetta energies between the 3 top-scoring wild 

type structures and the 3 top-scoring mutant structures (Kellogg et al., 2011). The 

cartesian_ddg protocol optimizes the wild type and mutant structures in cartesian space, 

rather than in torsion space, using the beta_nov16_cart energy function. The backbone of the 

protein is optimized for only those residues that are within 6 Angstroms or 3 amino acids of 

the mutated residue. The ΔΔG of the mutation is calculated as the energy difference between 

the refined mutant structure and the refined wild type structure, multiplied by an energy-

function-specific scaling factor (Park et al., 2016). Predictions by both the ddg_monomer 

protocol and the cartesian_ddg protocol were generated using Rosetta version 

2017.26.59567. System commands used to generate predictions by the two protocols are 

presented in Supp. Table S2.

Thermodynamic integration

Thermodynamic integration (TI) estimates the free energy of a physical process between two 

different states where the Hamiltonian H is linked to a parameter λ which is used to shift a 

system from a state A (λ = 0) to a state B (λ = 1) (Seeliger and de Groot, 2010). The free 

energies obtained are additively combined through the concept of closed thermodynamic 

cycles to obtain calculated free energies (Mitchell and McCammon, 1991). Folding free 

energy differences are obtained by the combination of the free energies between the 

unfolded state simulations and the free energies computed for the mutations in the folded 

protein. Although the unfolded state of a protein is challenging to model, different 

approaches have been proposed to approximate the reference state. Here, the unfolded states 

have been approximated by creating a model where the flanking residues of the position of 

interest are substituted by Glycines. This approach is widely used to mimic the unfolded 

state during a simulation (Seeliger and de Groot, 2010).

A pre-equilibrated structure tends to generate more stable ensembles and therefore more 

accurate estimations of the free energy (Garton et al., 2018). To that end, all water and ions 

atoms were removed from the structure with PDB code 1EKG. Correct protonation states 

were identified and annotated. Using TLEAP in AMBER16 (Case et al., 2005) and AMBER 

ff14SB force field (Maier et al., 2015), the structure was solvated by adding a 12 nm3 box of 

explicit water molecules, TIP3P. Next, Na+ and Cl- counterions were added to neutralize the 

overall system net charge, and periodic boundary conditions were applied. Following this, 

they were minimized, equilibrated and heated over 100 ps to 300 K and positional restraints 

were gradually removed. Bonds to hydrogen were constrained using SHAKE (Ryckaert, 

Ciccotti, & Berendsen, 1977) and a 2 fs time step was used. The particle mesh Ewald 

(Toukmaji, Sagui, Board, & Darden, 2000) algorithm was used to treat long-range 

interactions. Restraints were completely removed and full equilibration was achieved after 5 

ns. Then, the most representative structure was identified by clustering using the MMTSB 

toolset (Feig, Karanicolas, & Brooks, 2004) to be used as the initial structure for the 

subsequent TI.

All TI simulations were carried out using similar conditions. With the only exception of 1 

step was used for the integration of the equations of motion and SHAKE algorithm was 
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deactivated during the heated and pre-equilibration steps. And, a cutoff of 9 Å was used for 

long-range electrostatic interactions with the particle-mesh Ewald method (PME). The 

transformation between λ=0 and λ=1 was divided into 11 windows where the λ value 

changed from 0.0 to 1.0 with Δλ=0.1. The whole mutated residues were treated with 

softcore potentials, and the electrostatic and van der Waals forces were modified 

simultaneously. All the starting structures were first minimized and relaxed at 300 K in the 

NVT ensemble. The initial conformations for each λ window were sequentially generated 

with 1 ns pre-equilibration for each λ-value. 15 ns of MD simulations were performed for 

each λ window for every mutation. The first 1 ns data were discarded and the last 14 ns data 

were collected for data analysis at a sampling frequency of 500 fs. Each simulation was 

repeated 5 times to calculate the ensemble-averaged values. More information on the 

recommended setup protocol found in the references (Garton et al., 2018; Lee et al., 2017; 

Seeliger & de Groot, 2010). Input files and scripts can be found here: https://gitlab.com/

kimlab/rapid.

Metrics

The lines of best fit shown in Figure 1 were calculated using ordinary least squares. Mean 

absolute errors were calculated by taking the average of the absolute differences between 

expected and actual values. Pearson’s and Spearman’s correlation coeffiients were 

calculated using SciPy’s stats.pearsonr and stats.spearmanr functions (Jones, Oliphant, & 

Peterson, 2014). Balanced accuracy and area under the receiver operator characteristic were 

calculated using scikit-learn’s metrics.balanced_accuracy_score and metrics.roc_auc_score 

functions (Buitinck et al., 2013). When calculating balanced accuracy and the area under the 

receiver operator characteristic, mutations with an experimental ΔΔG greater than 1 kcal / 

mol were categorized as destabilizing and assigned a value of 1 while mutations with an 

experimental ΔΔG less than or equal to 1 kcal / mol were categorized as neutral and assigned 

a value of 0. When calculating balanced accuracy, we used a threshold of 1 kcal / mol to 

classify mutations as neutral or destabilizing.

Results

Comparing predictions

The correlations between predicted and experimental values for Provean (G6–3), FoldX 

(G6–2), ELASPIC (G6–1), Amber TI, Rosetta’s ddg_monomer protocol and Rosetta’s 

cartesian_ddg protocol are presented in Figure 1, while the residuals from the lines of best fit 

are displayed in Figure 2. Provean scores have the strongest correlation with experimental 

ΔΔG values, with a Pearson’s correlation coefficient of 0.89 and a p-value of 0.003 (Figure 

1). The primary reason for the strong correlation is that Provean correctly captures the trend 

for mutations p.Y123S and p.W173C, while other methods either overestimate or 

underestimate the impact of p.Y123S and underestimate the impact of p.W173C (Figure 2). 

The experimental ΔΔG for mutation p.Y123S is 4.48 kcal / mol, which is close to the ΔG of 

folding for FXN, reported to be 5.6 kcal / mol (Correia et al., 2008). However, Provean 

predicts that p.Y123S is less deleterious than p.W173C, which suggests that p.Y123S 

mutants still retain some residual function and are less detrimental to an organism than 

p.W173C mutants. Structure-based methods struggle with assigning a ΔΔG to mutations 
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p.Y123S and p.W173C because they do not model large changes in the conformation of the 

protein that are caused by those mutations. Furthermore, most structure-based methods are 

either trained or optimised using datasets of experimentally measured ΔΔG values, such as 

Protherm (Bava et al., 2004), and those datasets contain only few mutations with a ΔΔG 

above 5 kcal / mol. Amber TI predictions have the worst correlation with experimental ΔΔG 

values, with a Pearson’s correlation coefficient of 0.42 and a p-value of 0.3 (Figure 1D).

All methods, except for Rosetta’s cartesian_ddg protocol, overestimate the destabilizing 

impact of mutation p.D104G (Figure 2), which is only mildly destabilizing with a ΔΔG of 

0.255 kcal / mol. Mutation p.D104G introduces a glycine inside of an alpha helix, and 

glycines are strongly depleted inside alpha helices because of the high entropic cost 

associated with constraining the relatively large region of phi-psi space that glycines can 

occupy to the small region that is amenable to alpha-helix formation (Pace & Scholtz, 1998; 

Serrano, Neira, Sancho, & Fersht, 1992). In the case of mutation p.D104G, it is possible that 

this entropic cost is smaller than average because of other structural features, such as 

additional constraints introduced by the set of negative residues protruding from the alpha 

helix of FXN. Existing structure-based tools would not be able to evaluate the impact of 

such features on the entropic cost of alpha-helix formation because they do not model the 

full ensemble of conformations that a protein can occupy in the folded and unfolded states. 

Provean also predicts mutation p.D104G to be more deleterious than would be expected 

based purely on its ΔΔG value. Since mutation p.D104G removes an aspartic acid from a 

patch of negative residues on the surface of FXN, it is likely to have a negative effect on the 

role that FXN plays in the delivery of Fe2+ to proteins involved in heme biosynthesis and in 

the oxidation of Fe2+ to Fe3+. This acquired functional deficit would be consistent with the 

prediction made by Provean.

Evaluating method performance

We used several different metrics to quantify the accuracy of predictions made by the six 

methods and to provide an indication for their suitability for different applications (Figure 

3). Different properties of the methods may make them more well-suited to some 

applications than others. Therefore, we evaluate the performance of the six methods on three 

different subproblems. First, we evaluate the ability of the methods to predict with high 

accuracy the exact value of the ΔΔG caused by a mutation. Predicting the ΔΔG of individual 

mutations may be important when parametrizing thermodynamic models or when attempting 

to elucidate the mechanism by which a mutation causes a particular phenotype. Second, we 

evaluate the ability of the methods to capture the overall trend in ΔΔG values for a set of 

mutations. Capturing the correct trend in the data is important for applications such as 

protein design, where computational methods are often used to select mutations that are the 

most likely to stabilize a protein or increase its affinity to a target. Finally, we evaluate the 

ability of the methods to distinguish between neutral mutations and destabilizing mutations. 

Good performance on this task may be important if we want to predict when a mutation is 

likely to cause loss of function or result in disease.

In order to evaluate how well different methods can predict ΔΔG values of individual 

mutations, we calculated the mean absolute error between predicted and experimental values 
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(MAE) and the mean absolute error considering only those mutations that have an 

experimental ΔΔG less than 4 kcal / mol (MAE4). Mutations with a ΔΔG greater than 4 

kcal / mol are likely to produce either misfolded proteins or proteins with a substantially 

different structure, and predicting the exact ΔΔG of those mutations is not necessary for 

many applications. Predictions made by ELASPIC have the lowest MAE of 1.60 kcal / mol 

and the lowest MAE4 of 1.18 kcal / mol. FoldX has the second-lowest MAE of 2.01 and the 

second lowest MAE4 of 1.60. One reason why predictions made by ELASPIC have a lower 

MAE than predictions made by FoldX may be that, while FoldX uses a linear regression 

model to predict ΔΔG values from its energy terms, ELASPIC uses a gradient-boosted 

decision tree algorithm which can fit more complicated functions with less bias. Rosetta’s 

cartesian_ddg protocol has the highest MAE of the six methods compared in this study and 

an MAE4 that is higher than all methods except for Provean. This was surprising since the 

authors of the cartesian_ddg protocol report explicitly calibrating predicted values to match 

the ΔΔG values reported in the Protherm dataset (Park et al., 2016).

In order to evaluate how well different methods can capture the overall trend in the data, we 

calculated Pearson’s correlation coefficient (Pearson’s r), which describes how closely the 

predicted and experimental values are related by a linear model with Gaussian noise (it is 

easily swayed by outliers), and Spearman’s correlation coefficient (Spearman’s ⍴), which 

describes how well the methods can order mutations from least destabilizing to most 

destabilizing. Surprisingly, Provean has the highest Pearson’s r, with a value of 0.89, 

followed by Rosetta’s cartesian_ddg protocol, with a Pearson’s r value of 0.86. However, 

while Rosetta’s cartesian_ddg protocol has the highest Spearman’s ⍴ (0.88), Provean’s 

Spearman’s ⍴ is second last (0.54), largely because Provean assigns a higher score to 

p.D104G, mutation with the lowest experimental ΔΔG, than to five other mutations (Figure 

1A).

In order to evaluate how well the methods can distinguish between mutations that are neutral 

and mutations that are destabilizing we calculated the balanced accuracy and the area under 

the receiver operator characteristic. We defined mutations with experimental ΔΔG between 

−1 and 1 kcal / mol as neutral, and mutations with experimental ΔΔG greater than 1 kcal / 

mol as destabilizing, which is consistent with previous studies (Park et al., 2016). The 

balanced accuracy score, or the average recall for positive and negative examples, measures 

how well each method can distinguish between neutral and destabilizing mutations when 

using a threshold of 1 (Buitinck et al., 2013). Rosetta’s cartesian_ddg protocol achieves a 

balanced accuracy of 1, since all mutations with a Rosetta ΔΔG less than 1 are neutral, and 

all mutations with a Rosetta ΔΔG greater than 1 are destabilizing (Figure 1F). Provean and 

Amber TI have the worst balanced accuracies, since Provean assigns a score greater than 1 

to all mutations and Amber TI assigns a ΔΔG that is less than 1 to all but one mutation. In 

order to evaluate how well each method can distinguish between neutral and deleterious 

mutations using an adjusted threshold, we calculated the area under the receiver operator 

characteristic curve (AUC), which captures the relationship between the true positive rate 

and the false positive rate at different thresholds. Rosetta’s cartesian_ddg protocol achieves 

an AUC of 1, followed by ELASPIC with an AUC of 0.93.
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Discussion

As part of the CAGI5 competition, the frataxin challenge gave us an opportunity to do an 

unbiased assessment of Provean (G6–3), FoldX (G6–2), and ELASPIC (G6–1) in their 

ability to predict the effects of mutations on protein stability, albeit on a very limited dataset. 

After the challenge, we also evaluated predictions made by Amber TI, Rosetta’s 

ddg_monomer protocol, and Rosetta’s cartesian_ddg protocol, in order to have a reference 

for the accuracies that are achieved using other widely-used methods. There are two major 

applications for predicting the ΔΔG of mutations, and the implications of our findings differ 

for each.

First, in the context of predicting mutations that cause disease (or other phenotypes), the 

ultimate goal when evaluating the impact of mutations on the structure of proteins is to 

provide some mechanistic insight into how a given mutation produces its phenotypic effects. 

While existing methods can provide some insight, they still fall short of this goal. ELASPIC, 

the method that achieves the best accuracy in predicting the ΔΔG of individual mutations, 

still has a mean square error in its predictions that is close to 1 kcal / mol. This means that 

any explanation that is based on the predicted ΔΔG of a mutation will come with a relatively 

large degree of uncertainty. Furthermore, impacting the stability of a protein is only one of 

many ways by which a mutation can produce a phenotypic effect. Mutations can impair the 

activity of a protein without changing its stability (or with a minor change to it), for example 

by blocking the catalytic site of an enzyme, and they can alter the affinity of proteins to their 

interaction partners, disrupting the formation of macromolecular complexes and altering the 

signaling pathways of a cell. ELASPIC was aiming to address the latter challenge by 

constructing homology models of interacting proteins and predicting the effect of mutations 

on the stability of those interactions. However, the fraction of protein-protein interactions 

which are known and for which a homology model can be constructed is still limited 

(Mosca, Céol, & Aloy, 2013), and the predicted ΔΔG of binding is not likely to be more 

accurate than the predicted ΔΔG of folding. In fact, while FXN is known to interact with 

NFS1, ISD11, and ISCU proteins to form the SDUF complex (Bridwell-Rabb et al., 2011), 

structural templates required to model those interactions are not available. It is conceivable 

that, at some point in the future, we may be able to mutate a protein inside a computational 

model of a cell, including all interacting partners, and observe the resulting phenotype (Karr 

et al., 2012; Bordbar et al., 2015), but at the moment, the accuracy of the predictors remains 

too low, and the structural coverage of protein-protein interactions too limited, for this to be 

possible.

Second, in the context of protein optimization and design, the goal is usually to generate a 

list of candidate mutations which are likely to stabilize a protein, improve the function of a 

protein under inhospitable conditions, or increase the affinity or specificity of a protein to an 

interaction partner. For this goal, existing methods appear to produce more promising 

results. Predictions made using Rosetta’s cartesian_ddg protocol show a Spearman’s 

correlation coefficient of 0.88 with experimental measurements and are able to distinguish 

between the 3 neutral mutations and the 5 destabilizing mutations with perfect accuracy 

(Figure 3). However, it is important to note that FXN is a well-studied protein, with both 

changes in melting temperatures and the ΔΔG of mutations having been previously reported 
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in the literature (Adinolfi et al., 2004; Correia et al., 2008). Those measurements may have 

been included in the training and optimization of statistical potentials and machine learning 

algorithms, which would make the scoring of mutations in FXN more accurate than the 

scoring of mutations in less-studied proteins.

FXN is a highly conserved protein that is found in both prokaryotes and eukaryotes. This 

makes it possible to construct extensive and high-quality multiple sequence alignments, 

which, in turn, helps sequence-based tools such as Provean in making accurate predictions. 

It is likely that the Provean score would show a weaker correlation with experimental ΔΔG 

values for proteins that evolved more recently, thus having less extensive sequence 

alignments. Nevertheless, Provean provides a useful signal for predicting the ΔΔG of 

mutations and it is computationally inexpensive relative to structure-based methods. Most of 

the structural features that ELASPIC uses to make its predictions are generated by FoldX, 

and the fact that ELASPIC makes more accurate predictions can be attributed, at least in 

part, to the incorporation of sequence information, including the Provean score, into its 

model.

The primary strength of alchemical free energy calculations is that they can be applied to a 

wide range of problems, including those for which statistical potentials and training data are 

not available. Amber’s TI module produced the least accurate results, both in terms of raw 

accuracy and in its ability to capture the correct trend in the data. It seems likely that the 

particular protocol used did not sufficiently sample the conformational space and utilized an 

inaccurate approximation for the energy of the unfolded state. In addition, some alchemical 

free energy studies suggest that prediction performance is system dependent (Christ & Fox, 

2014; Homeyer, Stoll, Hillisch, & Gohlke, 2014). Consequently, any system evaluated with 

this approach should need additional work to identify the optimal parameters and sampling 

time. Furthermore, It is possible that alternative approaches, for example using Gromacs and 

the multistate Bennett Acceptance Ratio (Gapsys et al., 2016), would achieve better results.

One consistent finding regarding mutation ΔΔG prediction is that sequence-based methods, 

which evaluate the evolutionary conservation of residues, are surprisingly accurate in 

predicting the ΔΔG of mutations, while methods which use structural information alone, or 

in addition to sequential information, add relatively little additional information while being 

much more computationally expensive (Kroncke et al., 2016). This finding is also observed 

in methods which predict the deleteriousness of mutations, where tools which use sequential 

and structural information are only marginally better than methods which use sequential 

information alone (Baugh et al., 2016).

While ΔΔG prediction methods achieve promising results in some applications, there 

remains considerable room for improvement. One of the biggest factors limiting the 

performance of existing methods, as well as the application of modern machine learning 

techniques (such as deep learning), is the lack of large and high-quality training datasets of 

experimentally measured ΔΔG values. A number of high-throughput approaches for 

obtaining such measurements have been developed, but as of yet no consistent large-scale 

set has emerged (Findlay, Boyle, Hause, Klein, & Shendure, 2014; Fowler & Fields, 2014; 

Sahni et al., 2015; Weile et al., 2017).
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We believe that with continuous improvement of current methods, as well as with the 

generation of larger datasets and thus application of data-driven methods, much better 

accuracies will be achieved in the not too distant future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A-C) Correlation between predicted and experimental values for Provean, FoldX, and 

ELASPIC, which formed our three submissions to the CAGI5 frataxin challenge 

(submission identifiers G6–3, G6–2, and G6–1, respectively). (D-F) Correlations between 

predicted and experimental values for Amber TI, Rosetta’s ddg_monomer protocol, and 

Rosetta’s cartesian_ddg protocol. Those predictions were not submitted to the CAGI5 

frataxin challenge and did not undergo blind assessment. The ΔΔG values shown in the plots 

correspond to changes in the Gibbs free energy of protein folding.
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Figure 2. 
Residuals between actual and predicted values after predictions have been adjusted using 

lines of best fit displayed in Figure 1.
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Figure 3. 
Accuracy of predictions made by Provean, FoldX, ELASPIC, Amber TI, Rosetta 

ddb_monomer, and Rosetta cartesian_ddg characterised using 6 different metrics. The error 

bars correspond to the minimum and maximum scores that are obtained when the analysis is 

repeated removing one of the mutations in turn (see Supp. Figure S1). Predictions made by 

Provean, FoldX, and ELASPIC formed our three submissions to the CAGI5 frataxin 

challenge (submission identifiers G6–3, G6–2, and G6–1, respectively). Predictions made by 

Amber TI, Rosetta ddb_monomer, and Rosetta cartesian_ddg were not submitted to the 

CAGI5 frataxin challenge and did not undergo blind assessment. MAE: Mean absolute error. 

MAE4: Mean absolute error considering only those mutations that have an experimental 

ΔΔG less than 4 kcal / mol. Pearson’s r: Pearson’s correlation coefficient. Spearman’s ⍴: 

Spearman’s correlation coefficient. Balanced Accuracy: Average of the recall for neutral 

mutations and for destabilizing mutations. AUC: Area under the receiver Receiver Operating 

Characteristic Curve.
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