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Abstract

Quickly growing genetic variation data of unknown clinical significance demand computational 

methods that can reliably predict clinical phenotypes and deeply unravel molecular mechanisms. 

On the platform enabled by CAGI (Critical Assessment of Genome Interpretation), we develop a 

novel “weakly supervised” regression (WSR) model that not only predicts precise clinical 

significance (probability of pathogenicity) from inexact training annotations (class of 

pathogenicity) but also infers underlying molecular mechanisms in a variant-specific fashion. 

Compared to multi-class logistic regression, a representative multi-class classifier, our kernelized 

WSR improves the performance for the ENIGMA Challenge set from 0.72 to 0.97 in binary AUC 

(Area Under the receiver operating characteristic Curve) and from 0.64 to 0.80 in ordinal multi-

class AUC. WSR model interpretation and protein structural interpretation reach consensus in 

corroborating the most probable molecular mechanisms by which some pathogenic BRCA1 

variants confer clinical significance, namely metal-binding disruption for p.C44F and p.C47Y, 

protein-binding disruption for p.M18T, and structure destabilization for p.S1715N.
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1. INTRODUCTION

Quickly growing genomic data, largely attributed to next-generation sequencing and high-

throughput genotyping, hold great promise for precision medicine. However, a major 

challenge remains making the stride from genomic variation and other dsata to diagnostic 

and therapeutic decision-making. Therefore, there has been a critical need to develop 

computational methods to predict and understand phenotypic impacts of genetic variants at 

various biological scales (Cline and Karchin, 2011; Karchin and Nussinov, 2016).
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The method development has seen excellent opportunities created by the growing public 

databases (such as TCGA (Weinstein et al., 2013), dbSNP (Sherry et al., 2001), ClinVar 

(Landrum et al., 2016) and dbNSFP (Liu et al., 2016)), benchmark studies (Martelotto et al., 

2014; Guidugli et al., 2018), and community experiments (in particular, CAGI (Hoskins et 

al., 2017)). Indeed, some algorithms are widely and successfully applied for functional 

prediction of genetic variants, such as SIFT (Ng and Henikoff, 2003), PolyPhen2 (Adzhubei 

et al., 2013), MutationTaster2 (Adzhubei et al., 2013), SNAP (Bromberg and Rost, 2007; 

Hecht et al., 2015), MutPred (Li, et al., 2009; Pejaver et al., 2017a,b), and Evolutionary 

Action (Katsonis and Lichtarge, 2014, 2017). In addition, the data-driven approach for 

unraveling genotype-phenotype relationships will continue absorbing the artificial 

intelligence (AI) and machine learning technologies that have been quickly reshaping other 

fields (Krizhevsky et al., 2012; Silver et al., 2017).

In this paper, building on our participation in the ENIGMA Challenge in the 5th CAGI 

experiment, we introduce and assess our novel methods developed for predicting clinical 

significance and inferring molecular mechanisms for missense variants (single nucleotide 

variants or SNVs that change resulting amino acids). Specifically, our weakly-supervised 

machine learning models achieve probability prediction, multiclass classification, confidence 

(uncertainty) estimation, and mechanistic interpretation of cancer pathogenicity by 

addressing central questions and making novel contributions in the following two aspects.

First, in the aspect of precision medicine, our central question is how to construct clinical 

significance predictors that are generally interpretable for diagnosis and potentially 

actionable for therapeutics. In this study, we combine interpretable and actionable features 

that describe molecular impacts of SNVs (specifically, impacts on protein structure, 

dynamics, and function here) and expert-curated labels that accurately summarize clinical 

significance of SNVs (specifically, the posterior probability of pathogenicity, PoP, and 

corresponding 5-tier classification by the ENIGMA consortium (Cline et al., 2019)) in 

supervised machine learning. We examine to what extent molecular-level impacts of SNVs 

can predict organism- and population-level clinical significance to facilitate the often-

expensive clinical phenotyping. We also examine to what extent molecular mechanisms 

underlying clinically significant SNVs can be uncovered from important features of 

molecular impacts to help identify potentially actionable therapeutics, which is further 

probed by structural modeling for some variants.

Compared to some other features commonly used in the field (Martelotto et al., 2014), 

molecular impacts carry direct causal effects on clinical phenotypes (Pejaver et al., 2017b; 

Reeb et al., 2016), thus enabling model interpretability; they are available for many genes 

thanks to relatively inexpensive yet accurate bioinformatics tools (such as MutPred2 

(Pejaver et al., 2017b) and others used in this study), thus enabling broad applicability; and 

they apply to non-synonymous variants beyond SNVs studied here (such as in-frame or 

frame-shift indels), thus enabling model generalizability.

Second, in the aspect of machine learning, our central question is how to solve a new type of 

“weakly supervised” machine learning problems (Zhou, 2018) where the desired label (PoP 

here) has to be regressed from training data without the exact labels. Such inexact 

Cao et al. Page 2

Hum Mutat. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



supervision can be observed in many real world applications where only coarse- grained 

labels are available because exact labels are too hard or/and too expensive to generate (for 

instance, in computer vision, annotating bird breeds in images by crowd-sourcing or 

experts). Particularly in our case, whereas the desired label (PoP) is continuous, the only 

available labels in the publicly-accessible data are five ordered classes which are categorized 

based on pre-determined PoP ranges (see more details in Sec. 2.1). We develop weakly 

supervised regressors with tailored loss functions to directly predict PoP. Our first model, a 

linear one developed during CAGI, used parabola- shaped polynomials for loss functions to 

penalize predicted PoP values based on their supposed classes (equivalently, PoP ranges 

here). As the parabola-shaped polynomials as loss functions are too structured and rigid, we 

continue after CAGI to develop linear and nonlinear (kernelized) models with flexible flat-

bottomed loss functions directly learned from data.

Other methods participating in the challenge treat the problem as classification (Cline et al., 

2019) and assign PoP afterwards (a non-trivial challenge), among which multi-class logistic 

regression is compared as a representative in this study. From the perspective of machine 

learning, they do not consider the order among classes when making classifications (for 

which a representative of ordinal regression is compared in this study as well) and have to 

make strong assumptions about the distribution of PoP, albeit implicitly, when converting 

class category or probability into PoP.

The rest of the paper is organized as following. We first introduce in Materials and Methods 

the ENIGMA challenge, our training data and feature engineering. We then introduce three 

types of machine learning models, the first two for multi-class pathogenicity classification 

whereas the last – weakly supervised regression – newly developed by us for direct 

prediction of the probability of pathogenicity (PoP). In Results, we start with examining the 

value of gene type-specific rather than gene-specific data as well as variants data with less 

confident clinical annotations. We proceed to compare prediction performances among the 

machine learning models and integrate model interpretation and (protein) structural 

interpretation to infer molecular mechanisms by which some BRCA1 missense variants 

could confer pathogenicity.

2. MATERIALS AND METHODS

2.1 The ENIGMA Challenge

One of the 14 challenges in the 5th CAGI experiment, the ENIGMA Challenge presented 

430 BRCA1 and BRCA2 variants (326 exonic and 104 intronic ones) whose clinical 

significance was newly annotated or recently updated by the ENIGMA Consortium (Cline et 

al., 2019) and not available in the public domain during the challenge. Specifically, a 

posterior probability of pathogenicity (PoP) was produced for each variant by multifactorial 

likelihood analysis (Goldgar et al., 2008) that integrates clinically-calibrated bioinformatics 

information and clinical information in a Bayesian network. Based on calibrated ranges of 

PoP shown in Table 1, variants have been classified according to the IARC (International 

Agency for Research on Cancer) 5-tier classification scheme: Benign, Likely Benign, 

Uncertain, Likely Pathogenic, and Pathogenic (Classes 1–5).
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Participants were asked to predict for each variant PoP according to the ENIGMA 

classifications as well as confidence level (measured by standard deviation, SD). They were 

also told that the assessment would be against predicted classes based on PoP ranges (Table 

1) instead of PoP and predictions for classes 1 and 5 would be weighted more without the 

exact formula given. We only submitted predictions for all the 318 missense variants.

2.2. Data

To approach the task with supervised learning, we collected missense variants data similarly 

classified using the five-tier clinical significance system and publicly available in the 

ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/) (Landrum et al., 2016). In other 

words, no exact values but ranges of PoP (equivalently, classes) are publicly available, 

creating a weakly supervised learning scenario. The five terms of clinical significance used 

in ClinVar, following the guidelines from ACMG/AMP (the American College of Medical 

Genetics and Genomics and the Association for Molecular Pathology) (Richards et al., 

2015), are consistent with those used by ENIGMA, following the IARC guidelines. Some 

ClinVar entries are even submitted by ENIGMA. A slight inconsistency was disregarded, 

namely that the uncertain range in the ACMG/AMP guideline is 0.10~0.899 rather than 

0.05~0.949.

Consistent with the practice during the challenge, during our post-CAGI replication we 

retrieved missense variants from ClinVar with the last-interpreted date no later than June 29, 

2017, around 6 months before the challenge was released. We also set two cutoffs on the 

review status which ranges from zero to four stars suggesting increasingly reliable 

interpretation: at least three stars (reviewed by expert panel) or at least two stars (reviewed 

by multiple qualified submitters without conflict), thus generating two data sets denoted G2 
and G3 (a subset of G2), respectively. The exact query filters used for ClinVar can be found 

in Supp. Table S1.

Besides BRCA1/2 variants, we also collected missense variants of other tumor suppressor 

genes from ClinVar following the same procedure as described above. Even though the 

challenge was exclusive to BRCA genes, our rationale is to develop predictors that are not 

just gene-specific but gene type-specific. One benefit from the machine learning perspective 

is to access more training data and allow for more complex models for accuracy. We used 

the STRING database (https://string-db.org/) (Szklarczyk et al., 2017) to identify other genes 

whose protein products interact with BRCA1 and BRCA2 proteins and the OncoKB (https://

oncokb.org/) (Chakravarty et al., 2017) database to filter the resulting genes for tumor 

suppressor genes only. We ended up with 21 other tumor suppressor genes, 17 of which have 

variant interpretation in ClinVar and are referred to as non-BRCA in short. Details about 

data-collection procedures and resulting data statistics can be found in the Supp. Sec. 1 and 

2, respectively.

A stratified split considering the frequencies of the five classes was used to create a held-out 

ClinVar BRCA test set (one sixth) and a training set (five sixths) from G2. The same test set 

was used when testing G3-trained models, whereas the G3 training set is the subset of the 

G2 training set with three stars or more in review status. When other genes are considered, 

their variants would be added to corresponding training sets.
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When we finally generalize our study in Sec. 3.5, we similarly collected missense variants of 

325 more genes from ClinVar as described in Supp. Sec. 1.3 and Sec. 2.

2.3. Feature Engineering

When calculating features for each variant collected for training or validation, we restricted 

the choices to molecular impacts for interpretable and actionable models. These impacts are 

often predicted from sequence-level features, which is a great challenge itself. We used 

MutPred2 (Pejaver et al., 2017b) that predicts the posterior probabilities of loss or gain, 

whichever is greater, for a wide range of properties induced by amino acid substitutions. 

These properties, capturing mutational impacts on protein structure, dynamics, and function, 

are grouped hierarchically into a custom oncology based on their inherent relationships 

(Pejaver et al., 2017b). To help model interpretability, we only chose those numeric 

properties on the 3rd level of the ontology because, unlike their parent or child properties, 

they are not directly related in calculation and more or less “orthogonal” in molecular 

mechanism. Therefore, we used as features the posterior probabilities of alteration in 9 

properties summarized in Table 2. More features (conservation scores and pathogenicity 

predictions) are also used in a generalization study and summarized in Supp. Table S2.

2.4. Machine Learning

2.4.1. Mathematical Description—We consider n examples xi i = 1, …, n  each 

represented by q features, i.e., xi ∈ Rq ∀i . Although each xi has a continuous label [PoP 

(probability of pathogenicity), or pi here], the exact label pi is not available. Rather, a 

categorized class of pi is given according to a customized K-tier system: yi = k if 

bk − 1 ≤ pi < bk k = 1, …, K  where threshold parameters bk are increasing in k. Without loss 

of generalizability, b0 = 0 and bK = 1, echoing the range of pi. In our study, K = 5 and bk’s 

are set according to Table 1.

All vectors are column vectors unless stated otherwise and are denoted in bold-faced lower-

case italics. Matrices are denoted in bold-faced upper-case italics.

2.4.2. Models Overview—We describe three types of machine learning models. The 

first two do not predict PoP ( pi ) directly but classify pathogenicity ( yi ) instead: multi-class 

logistic regression (MLR), a representative multi-class classification method used by other 

participants in the challenge (Cline et al., 2019), disregard the order among the five classes; 

and cumulative logit model (CLM) (Agresti, 2003), a representative of ordinal regression, 

treat the classes as ordered albeit on an arbitrary scale. In contrast, the last, including three 

“weakly supervised” regressors (WSR) developed by us, directly predict PoP ( pi ) for 

variant i by training models on inexact labels (not PoP but PoP ranges encoded by 

pathogenicity class yi ) while utilizing both the order and the scale among the classes. A 

quick summary is provided in Table 3.
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2.4.3. Multi-class Logistic Regression (MLR)—MLR (Böhning, 1992), a multi-

class classification model, is an extension of binary logistic regression. We consider a linear 

model wk
T x with parameters wk for each class k k = 1, …, K . Let w denote the column vector 

stacking all K wk’s. The conditional probability that a sample xi belongs to class k is thus 

given by softmax: PMLR yi = k|xi, w =
exp −wk

T xi

∑ j = 1
K exp −w j

T xi
. The model parameters w ∈ RqK are 

trained by minimizing the following objective function:

f MLR w = LMLR w + R w

= − 1
n ∑

i = 1

n
cyi

log PMLR y = yi|xi, w + λ |w| 2
2,

(1)

where the loss function L ·  is negative weighted log-likelihood, the regularization term 

R ·  is L2 regularization for controlling model complexity, and λ is a hyper-parameter for 

balancing the two terms. Throughout this study, we set ck, the relative weight of training 

examples from Class k, at the reciprocal of their portion in the training set for the sake of 

class balance. One could also use other weighting schemes for class prioritization (for 

instance, penalizing more for pathogenic examples).

2.4.4. Cumulative Logit Model (CLM)—CLM (Agresti, 2003) is a multi-class 

classification model that, unlike MLR, considers the order among classes on an arbitrary 

scale. It is a representative for the type of classification problems called ordinal regression 

(Gutierrez et al., 2016). Specifically, CLM models the cumulative distribution function by a 

logistic function s t = 1/ 1 + exp −t  : PCLM yi ≤ k|xi, w = s θk − wT xi . Therefore, the 

conditional probability PCLM yi = k|xi, w  is now simply the difference between the 

cumulative distribution functions at two consecutive classes: 

PCLM yi = k|xi, w = s θk − wT xi − s θk − 1 − wT xi . Compared to qK parameters in MLR, a 

total of q + K parameters including w ∈ Rq and θ ∈ RK are trained here by minimizing a 

similar objective function (negative weighted log-likelihood with L2 regularization):

f CLM w, θ = LCLM w, θ + R w

= − 1
n ∑

i = 1

n
cyi

log PCLM y = yi|θ, w + λ w 2
2 .

(2)

Both baseline models above just calculate the conditional probability that a variant xi is 

classified as each of the K = 5 classes: P. yi = k|xi, ⋅ . To calculate the probability of 

pathogenicity pi, we assume that its probability density function is a constant over each class 
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range bk − 1, bk  as specified in Table 1. As such, we estimate pi by its expectation: 

pi = 1
2 ∑k = 1

K bk − 1 + bk P. yi = k|xi, ⋅ .

2.4.5. Weakly Supervised Regression (WSR)—In contrast to using multi-class 

classification followed by somewhat ad hoc assignment of the probability of pathogenicity 

or PoP ( pi for variant i), we developed weakly supervised regression that predicts PoP 

directly while training data only contains inexact version of PoP, i.e., the pathogenicity class 

y = 1, …, K. Specifically, we designed various loss functions 𝓁 pi, yi  that measure the 

inconsistency between predicted PoP pi = p xi, w  and its supposed class yi and trained 

models by minimizing the L2-regularized loss function:

f WSR w = LWSR w + R w

= 1
n ∑

i = 1

n
cyi

𝓁 p xi, w , yi + λ w 2
2 .

(3)

Whereas the regularization term R w  is to prevent overfitting, the loss function is a weighted 

sum of individual loss 𝓁 pi, yi . The design rationales for the loss include the following. First, 

it should (only) penalize a prediction pi when it is outside the supposed range of class yi. 

Second, it should incur more penalty when pi is further away from the range (for instance, it 

is worse to predict a pathogenic variant to be benign than uncertain). Last, besides the 

concerns in the application domain, a good loss function should correspond to optimization 

problems easy to solve.

Based on aforementioned rationales, we introduce three versions of weakly supervised 

regressors of various loss functions. We summarize them in Table 4 before we describe each 

in details.

● WSR1: Fixed, parabola-shaped polynomial loss function: We introduced this model 

during the challenge and submitted its predictions. Here the PoP predictor is a logistic 

function s ⋅ : p x, w = s z x, w = s wT x  whose decision score z ⋅  is linear in x. And the 

loss function 𝓁 pi, yi  is a pre-determined parabola-shaped polynomial centered around the 

midpoint of its supposed range byi − 1, byi
 :

𝓁 pi, yi =
pi −

byi − 1 + byi
2

byi
− byi − 1

2

6

(4)
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As illustrated in Figure 1A, the shape of the loss function in Eq. 4 is very particular, which 

can be both unnecessary and biased thus prevents better accuracy. Although the WSR1 loss 

function being convex and smooth is easy to optimize, it also has clear drawbacks. 

Specifically, it pushes each prediction pi to the center of its supposed range and increases the 

penalty with a peculiar slope (that depends on the range) as the prediction is further away 

from the range. We thus proceeded to develop much-improved models after the challenge, as 

elaborated next.

● WSR2: Parameterized ε-insensitive loss function: Considering the aforementioned 

drawbacks of the WSR1 loss function used during the Challenge, we further developed two 

more weakly supervised regressors (WSR2 and WSR3) afterwards. As illustrated in Figure 

1B, we allow the class-specific loss function to be flat bottomed (rather than parabola-

shaped) in a corresponding parameterized scale (rather than the original, fixed scale) and the 

label p to be transformed (rather than staying in the original space). In other words, these 

new loss functions do not penalize a prediction pi when it resides anywhere in the supposed 

range (no longer pushed to the center); and they give a parameterized penalty otherwise.

Specifically, we first transformed the original scale of fixed thresholds b over [0, 1] (Table 1) 

into a new scale of parameterized thresholds exp(τ) (including τ1 < τ2 < ... < τK − 1 ≤ 0 ) to 

be learned from training data. Note that the use of exp(τ) rather than its logarithm form was 

designed for the numerical optimization reason (Antal and Csendes, 2016). Correspondingly 

we had the following transformation between the desired, original label pi for instance i and 

the transformed label pi to be predicted:

pi = byi − 1 + byi
− byi − 1 ⋅

pi − exp τyi − 1

exp τyi
− exp τyi − 1

(5)

We then used in the transformed p -space flat-bottomed ε-insensitive loss functions (Vapnik, 

2013) that can be regarded as the sum of two hinge loss functions h(·). We used class-

specific hyperparameters α to control the slope of a hinge function hα x = max 0, − αx . The 

higher the α, the higher the penalty a prediction would receive if it is outside its supposed 

range; and no penalty would a prediction receive otherwise. Therefore, for an example xi of 

class yi with predicted probability pi = p x, xi , we define its loss as:

𝓁α pi, yi = hαyi
pi − exp τyi − 1 + hαyi

exp τyi
− pi . (6)

The above expression applies to all classes including the two borders when yi = 1 or yi = K

by introducing constants τ0 = − ∞ and τK = 0.
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As we did for WSR1, we use logistic functions s ⋅  for the predictor of the transformed 

label p ⋅ : p w, x = s z w, x = s wT x , with a linear decision score z ⋅ . With the loss for 

each example redefined in Eq. 6, following the general formula for our weakly supervised 

regression in Eq. 3, our WSR2 models can be learned by solving the following optimization 

problem:

min
w, τ

f WSR2 w, τ = 1
n ∑

i = 1

n
cyi

⋅ 𝓁α p xi, w , τ, yi + λ w 2
2

s . t . τ1 < τ2 < … < τK − 1 ≤ 0

(7)

Note that class-specific α for penalizing out-of-the-range predictions are treated as 

hyperparameters to be optimized on grid search (see more details in Sec. 2.4.6).

● WSR3: Kernelized WSR2: The decision score function z ⋅ , based on which we used 

a logistic function to predict transformed label p, was linear in x (features) for both WSR1 

and WSR2, i.e., z w, x = wT x. Therefore, we further introduce nonlinearity of the decision 

score function to WSR2 following a “kernel trick” (Aizerman et al., 1964; Theodoridis and 

Koutroumbas, 2008) that maps the original feature space to a high-dimensional implicit one 

and finds linear decision boundary there. Noticing that parameters w enter the WSR2 

formulation (Eq. 7) in the form of the inner-product with the feature vector x, but parameter 

τ do not, and we have constraints on τ. We build on the Representer Theorem (Wahba, 1990) 

(Supp. Lemma 1) and prove a theorem (Supp. Theorem 1) before we apply a kernel trick. A 

short proof can be found in Supp. Sec. 3.

Based on Theorem 1, we can kernelize the objective function in the WSR2 formulation (Eq. 

7) to reach the following formulation for WSR3:

min
β, τ

f WSR3 β, τ = 1
n ∑

i = 1

n
cyi

⋅ 𝓁α p xi, β , τ, yi + λβTKβ

s . t . τ1 < τ2 < … < τK − 1 ≤ 0

(8)

where p xi, β  is now logistic in the kernel space, i.e., 

p xi, β = 1 + exp −∑ j = 1
n β jκ x j, xi

−1
.

As such, the kernel trick maps the original feature space x into an infinite-dimensional space 

without the need of calculating the exact mapping between them. This trick will enable our 

model to deal with the non-linear situation, which could significantly increase our model 

accuracy. In this paper, we use radial basis function (RBF) kernels with bandwidth γ. The 

hyperparameter γ is optimized by cross-validation with more details given next.
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2.4.6. Model Training and Uncertainty Estimation—In order to obtain the 

uncertainty measure we randomly split the training set into 5 folds and trained 5 models on 5 

combinations of 4 folds. This random split was fixed across all types of machine learning 

models in the study. The predictions of the five models on the test set are used to calculate 

the mean and the standard deviation of both the label and the assessment metrics. We then 

trained on all the 5 folds of the training set to obtain the final model for interpretation.

The hyperparameters are optimized using grid search through 4-fold and 5-fold cross 

validation respectively for uncertainty estimation and final PoP prediction. Specifically, the 

grid for regularization coefficient λ consists of 25 points, for which the log2 of them are 

uniformly distributed on −3, 4 . We use this grid for the regularization constant in all 

models mentioned before. For WSR2 and WSR3, class-specific slope of the ε-insensitive 

loss function, αi, is sampled on the grid of 4 points: 2−0.5, 20, 20.5, 21 . For WSR3, the 

bandwidth of the RBF kernel, γ, is sampled on a grid of 25 points, for which their log2 

values are evenly distributed between −3 and 2.

For each combination of hyperparameter values, we find model parameters by solving the 

corresponding optimization problem. Except that MLR (multiclass logistic regression) is 

already implemented in Python-sklearn (Pedregosa et al., 2011), we implemented all other 

models in Python 2.7 with optimizers provided in SciPy (Jones et al., 2001-). CLM 
(cumulative logit model) involves a convex optimization problem and was solved by the 

optimizer ‘BFGS’.

WSR1 (weakly supervised regressor 1) involves a nonconvex, unconstrained optimization 

problem and was solved by BFGS with multi-start. Similarly, WSR2 and WSR3 involve 

nonconvex, constrained optimization problems and were solved by the optimizer ‘L-BFGS-

B’ with multi-start. Specifically, we sampled 100 initial coordinates for w and τ, where wi’s 

are uniformly sampled from −5, 5 , and τ1, τ2, τ3, τ4 are uniformly sampled from −10, 0

with the constraint of τ1 < τ2 < τ3 < τ4. The rationales for these ranges are the following. 

First, the standard logistic function s wT x  saturates quickly when |wT x| becomes large and, 

since our features x are all MutPred2 property probabilities between 0 and 1, large wi would 

push transformed PoP values ( p ) close to 0 or 1. Second, since exp τi  is a threshold in the 

scale of p, the exponential function exp τk  saturates quickly when τk becomes far negative, 

which pushes all exp τk ’s to become numerically close. We analyze the detailed 

optimization results in Supp. Sec. 4.

2.4.7. Model Interpretation—We further ask how our model makes a certain 

pathogenicity prediction for each pathogenic or likely pathogenic variants (Class 4&5) in the 

ENIGMA Challenge (denoted the set of S1). In other words, for each variant i ∈ S1, we 

would like to find the most contributing features (and their underlying molecular 

mechanisms) that place the predicted PoP for the variant above those for the set of benign 
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and likely benign examples (Class 1&2; denoted the set of S0 ). We chose model WSR2 for 

its balance of accuracy and interpretability.

From Eq. 5 and the expression of a logistic function, we know that the PoP is monotonically 

increasing with respect to the decision score z = wT x : the higher the decision score the 

variant has, the more pathogenic it is. Therefore, given all benign or likely benign variants’ 

decision scores z j = wT x j 1 ≤ j ≤ S0 , for each variant i ∈ S1 with decision 

zi = wT xi ∀i = 1, ..., S1 , we calculate the following differences for the r-th feature: 

wrxi
r − wrx j

r (where i is given in S1 and ∀ j ∈ S0) . ). With the differences defined above, we 

perform the one-tailed one-sample t-test for each variant i’s feature r and calculate 

corresponding P-values, where the null hypothesis is that the expected value of the 

differences, treated as a random variable, is bigger than 0. Finally, for each variant i ∈ S1, we 

rank all its features based on their P-values in an increasing order, where the smallest P-

value corresponds to the most important feature.

Our model interpretability is enabled by both the MutPred2 features that are interpretable 

and our decision scores that are linear in feature values. As we rank features for each variant 

i based on the absolute differences between wrxi
r and wrx j

r, the data-learned weight wr, in a 

variant i -specific way, determines the direction (positive or negative) and the magnitude 

(large or small) of feature r’s contribution toward predicted probability of pathogenicity.

2.5. Assessment Metrics

Due to the unavailability of ground-truth PoP values, we use two metrics to assess multi-

class classification performances. The first is the multi-class area under the curve (AUC) of 

receiver operating characteristic (ROC) curve (Hand and Till, 2001), which is simply the 

unweighted average of binary AUC between all pairs among K classes:

mAUC = 2
K K − 1 ∑

i = 1

K
∑

j = i + 1

K
AUC i, j , (9)

where AUC i, j  denotes the binary AUC between class i and j.

As the metric disregards orders among classes, we adopted a second metric, ordinal mAUC,
which estimates the joint probability that randomly picked instances, one from each class, 

are scored in the supposed order (Waegeman et al., 2008).

ordinal mAUC = 1
K − 1 ∑

k = 1

K − 1
AUC i ≤ k, j > k , (10)
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where AUC i ≤ k, j > k  denotes the binary AUC between two partitions of all classes: the first 

k and the rest.

As the official assessment did (Cline et al., 2019), we also assess performances on binary 

classification when classes 1 and 2 are merged to a negative class and classes 4 and 5 are 

merged to a positive. We use binary AUC as well as RMSD (root mean squared deviation) in 

PoP. Since ground-truth PoP values are not available, they are approximated to be 0.025 and 

0.975 in the assessment.

2.6. Protein Modeling for Structural Interpretation

We investigate the impact of pathogenic missense mutations on BRCA1/2 proteins through 

structural modeling. There are only ten pathogenic BRCA variants (class 5) in the ENIGMA 

Challenge (also referred to as the CAGI test set) including seven for BRCA1 and three for 

BRCA2. Furthermore, among these pathogenic variants, only five BRCA1 variations occur 

in available 3D structures (Bateman et al., 2017), including four in the RING (Really 

Interesting New Gene) domain [NP_009225.1:p.Met18Thr (p.M18T), 

NP_009225.1:p.Cys44Phe (p.C44F), NP_009225.1:p.Cys47Tyr (p.C47Y), 

NP_009225.1:p.Arg71Gly (R71G)] and one [NP_009225.1:p.Ser1715Asn (p.S1715N)] in 

the BRCT (The BRCA1 C-terminal) domains.

Following various mechanistic hypotheses (such as mutational impacts on folding stability 

and binding affinity), these five variants are structurally modeled by re-designing wild-type 

structures using multi-state protein design method iCFN (Karimi and Shen, 2018). Residues 

within 5 Å from the mutation site were allowed to be flexible (as discrete rotamers) in all 

designs except that they were extended to those within 8Å when modeling the mutational 

effect of p.S1715N on BRCT-protein binding as the mutation site is at the second layer of 

the binding interface.

For modeling the effect of four RING-domain mutations (p.M18T, p.C44F, p.C47Y, 

p.R71G) on folding stability, we used the single state design (positive only) with substate 

ensembles where substates were defined as the BRCA1 RING domain in 14 NMR structures 

in complex with BARD1 (PDB ID: 1JM7). Substate energies were folding energies of the 

RING domain only that include Coulomb electrostatics, van der Waals, internal energies 

(Geo term), and a nonpolar contribution to the hydration free energy based on solvent 

accessible surface area (SASA) (Shen et al., 2015, 2013; Shen, 2013). A positive-substate 

stability cutoff and positive-versus-negative substate specificity were essentially not 

mandated with a cutoff of 1,000 kcal/mol.

For modeling the effect of the four RING-domain mutations on interactions with BARD1 

(RING domain as well), we used multi-state design (positive and negative) with protein-

complex substate ensembles defined in the same PDB entry 1JM7. Positive-substate energies 

were the total folding energies of the RING domain and BARD1 separately and negative-

substate energies were folding energies of the complex of RING domains of BRCA1 and 

BARD1. A positive-substate stability cutoff was set at 10 kcal/mol and positive-versus-

negative substate specificity was essentially not mandated with a cutoff of 1,000 kcal/mol.
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Similarly, for modeling the effect of one BRCT-domain mutation (p.S1715N) on the stability 

and protein interaction of BRCT, we did the same as described above except that there was 

only a single substate available in the crystal structure. For modeling protein interaction, we 

used BRCT interacting with Bach1 Helicase (PDB ID: 1T29) and for modeling the stability, 

we used the unbound structure of BRCT domain (PDB ID: 1JNX).

For either folding stability or binding affinity, top conformations of each designed sequence 

in each substate (backbone conformation here) generated from iCFN for either state were 

geometrically grouped into representatives. Later, folding stabilities (G) and binding 

affinities (ΔG) of the top sequence-conformation ensembles were re-evaluated and re-

ordered with a higher-resolution energy model where continuum electrostatics replaced 

Coulombic electrostatics (Karimi and Shen, 2018). Lastly, the representative conformation at 

either state was chosen based on the best binding affinity or folding stability (lowest ΔG or 

G) for modeling the binding or folding respectively. Each calculated relative binding energy 

to wild type (WT), ΔΔG, and relative folding energy to WT, ΔG, was further decomposed 

into contributions of van der Waals (vdW), continuum electrostatics (elec), SASA-dependent 

nonpolar solvation interactions (SASA), and internal energy (Geo).

3. RESULTS

3.1. The Value of Gene Non-specific Data and Less Confident Clinical Annotations

We first assess the value of more abundant albeit less confident variant annotations. When 

restricted to those at least reviewed by panel (‘review status’ being at least 3 stars, or G3), 

the number of BRCA1/2 variants accessible from ClinVar was 201, which increased to 699 

when the review status was relaxed to at least 2 stars, or G2 (at least reviewed by multiple 

qualified submitters without conflict). Detailed gene list and class distribution for the G2 
and G3 dataset are provided in Supp. Table S3 and S4, respectively. The larger G2 training 

set, even though their annotations are less confident, actually led to no worse multi-class 

logistic regressor (MLR). As shown in Table 5, mAUC (ordinal mAUC) was improved by 

6% (4%) for the ClinVar test set and even more 8% (9%) for the CAGI test set in the 

posterior analysis, respectively.

We also examine to what extent a gene non-specific predictor can rival a gene specific one 

for pathogenicity prediction. We desire a predictor specific to the same type of genes whose 

encoded proteins function similarly with possibly similar structural bases. As such structural 

and functional knowledge is not always easily accessible, we simply restrict the 

consideration to 17 other tumor suppressor genes interacting with BRCA1/2. There were 

895 G2 non-BRCA variants much more heavily skewed toward Class 3 (uncertain 

significance) compared to BRCA variants in the ClinVar set (Supp. Table S3). The BRCA 
variants in the CAGI set turned out to be heavily skewed toward Class 2 (likely benign) 

instead (Supp. Table S5). Compared to that trained on the BRCA-only data, the MLR model 

trained on the non-BRCA data had slightly worse performance (8%∼11%), whereas that 

trained on both data (nearly 60% are non-BRCA variants) performed equally.

We extend the aforementioned comparisons using cumulative logit model and a version of 

our weakly supervised regressor (WSR1). And we have observed the same trend as seen in 
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Supp. Table S8. Taken together, these results indicate the value of less confident albeit more 

abundant variant data for pathogenicity prediction. They also show the promise of gene type-

specific pathogenicity predictors that can access more variant data of more genes and allow 

for more complex machine learning models with more parameters. We thus use the G2 

dataset with the 19 pooled tumor suppressors thereinafter except when we generalize the 

study to more genes in Sec. 3.5.

3.2. Comparing Machine Learning Models

We next compare three types of machine learning models, as previously summarized in 

Table 3, for the task of pathogenicity prediction: multi-class logistic regression (MLR), a 

representative of multi-class classification used by other participants in the Challenge (Cline 

et al., 2019); cumulative logit model (CLM), a representative of multi-class classification 

that considers the order among classes (ordinal regression); and our three weakly supervised 

regression (WSR) models that directly predict the probability of pathogenicity from training 

pathogenicity classes using designed loss functions, summarized and compared in Table 4. 

Due to the lack of ground-truth PoP values, we were only able to assess classification 

performances. The comparison using multi-classification metrics (mAUC and ordinal 

mAUC) is given in Table 6 whereas that using binary classification metrics (binary AUC and 

RMSD) can be found in Table 7.

By comparing MLR, CLM, and WSR1, we found that they had very similar performances 

for both the ClinVar and the CAGI sets in mAUC that disregards orders among classes; and 

CLM and WSR1, both respecting class order in their models, improved for both sets ordinal 

mAUC that addresses class order. WSR1 did not improve against CLM, a representative 

ordinal regression model, because WSR1 suffers from its very peculiar loss function that is 

fixed to penalize predicted PoP on the fixed, original scale (thresholds b).

Building upon WSR1, we used in WSR2 flat-bottomed ε-insensitive loss functions and b-

transformed thresholds τ that are flexibly parameterized and jointly learned along with other 

parameters from data. Furthermore, in WSR3 we replaced the linear decision score function 

z .  with an RBF-kernelized one. Accordingly WSR2 and WSR3 drastically improved the 

performance compared to WSR1 for both mAUC and ordinal mAUC as well as for both test 

sets. In particular, compared to WSR1, WSR3 improved for the ClinVar test set by 0.14 

(0.14) and did so for the CAGI set by 0.16 (0.14) in mAUC (ordinal mAUC). Compared to 

the baseline MLR widely used in the Challenge, WSR3 improved for the ClinVar test set by 

0.15 (0.19) and did so for the CAGI set by 0.17 (0.17) in mAUC (ordinal mAUC).

We found similar trends in the case of merged two-class evaluations (Class 1&2 vs. Class 

4&5). Compared to MLR for the CAGI set, WSR3 increased binary AUC from 0.72 to 0.97 

and reduced RMSD from 0.28 to 0.16. Speaking of binary AUC, WSR3, using only 9 

features, did on a par with the best performer for the Challenge, LEAP (Lai et al., 2018) 

even though LEAP used many more features and patient information (Cline et al., 2019).

We also provide the confusion matrices of all 5 models for the two test sets in Supp. Table 

S9 and S10. Obviously WSR3 outperformed the other 4 models in such analyses as well. 

Specifically, among a total of 36 likely pathogenic or pathogenic cases (classes 4 and 5), 
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WSR3 only mis-classified 3 cases to be non-pathogenic (classes 1 through 3), whereas 

MLR, CLM, WSR1, and WSR2 did so for 19, 20, 19, and 14 cases, respectively. Compared 

to WSR2 and CLM that mis-classified nearly all such failed cases only to be uncertain 

(class 3), MLR and WSR1 had 14/19 and 9/19 mis-classified respectively to be benign or 

likely benign (classes 1 and 2).

3.3. Mutation-Specific Interpretation of Machine Learning Models

We went on to interpret our weakly supervised regressors, in particular WSR2 whose 

decision score function z ·  is linear in x and model is easily interpretable. As variants can 

impact disease severity through different molecular and cellular mechanisms, we ranked for 

each pathogenic or likely pathogenic variant their individual important features (P-value 

below 0.01) by P-values found by our model-interpretation procedure in Sec. 2.4.7.

As shown in Table 8, the more interpretable WSR2 correctly predicted 9 of 16 pathogenic or 

likely pathogenic to be so compared to WSR3 that correctly did so for 14 of those 16, which 

shows the trade-off between interpretability and accuracy. Detailed confusion matrices are 

provided in Supp. Table S10. We focused on the 6 correctly predicted pathogenic variants 

and found that the most important features (and likely most probable molecular 

mechanisms) are related to 2 - allosteric site [NP_009225.1:p.Met18Thr (BRCA1 p.M18T)], 

8 - metal binding [NP_009225.1:p.Cys44Phe and NP_009225.1:p.Cys47Tyr (BRCA1 

p.C44F and p.C47Y)], 5 - stability and conformational flexibility 

[NP_009225.1:p.Ser1715Asn (BRCA1 p.S1715N)], and 3 - catalytic site 

[NP_000050.2:p.Arg2659Gly and NP_000050.2:p.Asn3124Ile (BRCA2 p.R2659G and 

p.N3124I)]. More detailed results on mutation-specific mechanistic interpretation can be 

found in Supp. Sec. 7.

As will be shown next, four of these six variants with predicted mechanisms reside in 

available 3D protein structures and can be structurally modeled. The predicted molecular 

mechanisms by which mutations might confer clinical significance were thus verified to be 

metal binding for p.C44F and p.C47Y, stability for p.S1715N, and protein binding (feature 

7, a top but not the first-ranked feature) for p.M18T.

3.4. Protein Structural Interpretation of Some BRCA1 Pathogenic Variants

BRCA1 is known to be required in several cellular processes including transcription, cell-

cycle check point control, DNA damage repair and control of centrosome number (Kais et 

al., 2012). Five pathogenic variants of BRCA1 occur at sites with available protein structure 

data (p.M18T, p.C44F, p.C47Y, and p.R71G in the RING domain and p.S1715N in the 

BRCT domain). In addition biological experiments have shown that p.M18T, p.C44F and 

p.C47Y are deleterious for both homologous recombination process and centrosome 

number, but p.R71G, being similar to the wild type, is deleterious for neither (Kais et al., 

2012).

We performed structural modeling and energetic analysis for these variants to assess their 

impacts on protein folding stability and binding affinity, features found in the WSR2 model 

to be the most important features for correctly predicting pathogenicity of these variants.
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3.4.1. Structural modeling reproduces destabilization effects of p.M1775R—
To validate our structural modeling protocol first, we first tried to replicate the known 

structure (PDB ID: 1N5O) of a pathogenic BRCA1 mutant, p.M1775R, by re-designing a 

wild-type (WT) structure (PDB ID: 1JNX). The results in Supp. Fig.S1 displayed an 

accurate replication of mutant’s ground-truth structure. Moreover, our structural modeling 

provided the agreement that p.M1775R leads to conformational instability, a causal 

mechanism for its pathogenicity (Williams and Glover, 2003).

3.4.2. Disrupted metal binding: p.C44F and p.C47Y—Highly conserved C44 and 

C47 interact with zinc ions that coordinate the stability of the RING domain (Ransburgh et 

al., 2010). Mutating the cystine residues would disrupt the strongly favorable sulfur-zinc 

interaction, which has been shown in our structural modeling as well. For both of these 

mutation zinc-coordinated stability has been disrupted and electrostatics is a main, disrupted 

molecular force based on energy decomposition (Supp. Fig. S2). Consistently shown in 

Table 8, feature 8 (Metal Binding) was deemed significant and ranked the first for both 

p.C44F and p.C47Y, which echoes our structural interpretation.

3.4.3. Disrupted protein binding: p.M18T—Heterodimerization of the RING 

domains of BRCA1 and BARD1 comprise an E3 ubiquitin ligase. The stability of the 

heterodimer is crucial for the stability of the full-length BRCA1. Mutants that do not 

dimerize result in defects in HDR and loss-of-tumor suppression (Starita et al., 2015). 

Residue M18 is at BRCA1’s interface with BARD1 and the mutation p.M18T is very likely 

to disrupt the binding with BARD1 (Morris et al., 2002). Based on structural modeling, we 

found that M18 of BRCA1 WT and M104 of BARD1 WT form a intermolecular sulfur-

oxygen interaction which is known to be important for protein-protein binding (Zhang et al., 

2015). We also found from structural modeling that this interaction is disrupted upon 

mutation p.M18T, which is shown in Figure 2. From binding energy decomposition (Supp. 

Fig. S2), electrostatics is the main reason for the binding disruption. Consistently shown in 

Table 8, feature 7 (Macromolecular Binding) was deemed significant (although not ranked 

the first) for p.M18T, which agrees with our structural interpretation.

3.4.4. Aberrant splicing: p.R71G—The mutation p.R71G was found to affect the 

splicing process rather than homologous recombination process and the centrosome number 

(Vega et al., 2001; Kais et al., 2012). The aberrant splicing of BRCA1 mRNA would result 

in premature translation and truncated proteins, which is beyond the capability of structural 

modeling. Indeed, the mutation was not found to destabilize BRCA1 (Supp. Fig. S2). 

Interestingly, the top-performing LEAP team found that splicing information, such as the 

distance to the nearest splice site, was also important for correctly annotating the clinical 

significance of some variants (Cline et al., 2019).

3.4.5. Decreased stability: p.S1715N—The BRCT domain of BRCA1 displays an 

intrinsic transactivation activity. S1715 is an evolutionarily conserved residue and 

pathogenic mutations in the BRCA domain including p.S1715N have shown the loss of such 

activity in yeast and mammalian cells (Vallon-Christersson et al., 2001). p.S1715N has been 

shown unable to complement BRCA1 deficiency for homologous recombination and leading 
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to high instability (Petitalot et al., 2019). Our structural modeling confirms that p.S1715N is 

structurally destabilizing (Supp. Fig. S2). Specifically, van der Waals clashes was found the 

main reason for the destabilization effect, as shown in Supp. Fig. S2. Of course, the extent of 

such clashes could be alleviated by improving the modeling of structure flexibility. 

Consistently show in Table 8, feature 5 (Stability and Conformational Flexibility) was 

ranked the most important for p.S1715N, echoing our structural interpretation.

To summarize, we have found for these pathogenic BRCA1 variants the consensus of our 

machine learning-based and structure modeling-based mechanistic interpretations. Although 

we do not have structure data to start with for some mutation sites, our machine learning-

based interpretations could generate actionable hypotheses of the causal mechanisms that 

can be tested experimentally, potentially suggesting therapeutic candidates accordingly.

3.5. Generalization of Weakly Supervised Regressors for More Genes

With the 9 MutPred2 features we also test the WSR2 and WSR3 models on 325 more genes 

as described in the Supp. Sec. 1.3. 4,834 missense variants annotated in ClinVar were 

collected and their class distributions are detailed in a supplemental Excel sheet 

(SI_new_genes_stat.xlsx at https://github.com/Shen-Lab/WSR-PredictPofPathogenicity/). 

We use two schemes to split the data into training (five sixths) and test sets (one sixth). The 

first scheme allows for overlapping genes between the two sets whereas the second does not, 

thus testing within- and across-gene predictions, respectively. From Table 9, we conclude 

that these models achieved similar performances for the 325 additional genes as they did for 

the BRCA test sets (ClinVar and CAGI in Sec. 3.1). Impressively, WSR3 achieved an 

ordinal mAUC value over 0.75 even when training and test sets do not overlap in genes. 

Note that hyper-parameters were not optimized particularly and kept the same as for the 

BRCA set.

4. CONCLUSION

Starting with interpretable and actionable features that capture molecular impacts of genetic 

variants and expert-curated albeit inexact labels that only annotate variants using their ranges 

in the probability of pathogenicity (PoP), we have developed novel weakly-supervised 

regression models that can directly predict the probability of pathogenicity. By considering 

the order among pathogenicity classes, penalizing PoP prediction with novel loss functions, 

and embedding the original feature space into a kernel space, our weakly supervised 

regressor 3 – WSR3 – has significantly improved the predictive performance for a CAGI 

challenge set compared to a representative multi-class classification model: binary AUC 

increased from 0.72 to 0.97 and ordinal multi-class AUC increased from 0.64 to 0.80. 

WSR3 even improved the predictive performances compared to a representative ordinal 

regression model CLM (again, a multi-class classifier) that respects class order. Note that 

our pathogenicity predictors generalize well to additional genes, which could access more 

variant data and employ more advanced machine learning models.

We further developed methods to interpret our weakly-supervised regressor by assessing the 

statistical significance of feature importance in supporting individual model predictions. We 

identified and ranked important features (each corresponding to a mechanism of molecular 

Cao et al. Page 17

Hum Mutat. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://SI_new_genes_stat.xlsx
https://github.com/Shen-Lab/WSR-PredictPofPathogenicity/


impacts upon amino-acid substitution) for newly annotated or updated, pathogenic or likely 

pathogenic BRCA1/2 variants. Our structural modeling of mutational effects on protein 

folding stability and binding affinity has corroborated the machine learning-predicted 

molecular mechanisms by which genetic variants lead to diseases. Namely, validated in 

structural modeling, metal binding for BRCA1 p.C44F and p.C47Y was predicted by our 

machine learning model interpretation as the most important feature for the pathogenic 

calling of the variants. So was stability for p.S1715N. And protein binding was predicted to 

be a statistically significant but not the first-ranked feature for p.M18T. These promising 

results indicate that these models could generate experimentally-testable mechanistic 

hypotheses and lead to therapeutic candidates accordingly.

Throughout the study, we only used nine features out of over 50 property probabilities from 

MutPred2. The main reason was that other highly dependent or not directly causal features 

could hurt model interpretability. Nevertheless, when 14 more features were used, including 

8 conservation scores and 6 pathogenicity predictions (see Supp. Table S2), the predictive 

power of our weakly supervised regressors was strengthened (see Supp. Table S11). In 

particular, the ordinal multi-class AUC of WSR3 improved from around 0.80 to 0.85 for the 

CAGI test set.

One limitation about the current feature set though is the entire focus on molecular impacts 

of genetic variation without the consideration of cellular contexts or systems-level impacts. 

On one hand, some variants significantly impacting protein functions may not lead to 

clinical significance. On the other hand, splicing information for some missense variants is 

found important for their pathogenicity prediction (Cline et al., 2019). Therefore, it would be 

of great value to include endophenotypes (Masica and Karchin, 2016) encoding causal 

mechanisms across hierarchical subsystems (Yu et al., 2016) at various biological scales. 

Although endophenotype predictors are not adequate for the purpose yet, increasingly 

available big data and empowering artificial intelligence methods (Ma et al., 2018) are 

stimulating their development and making the goal of precision medicine more attainable 

than ever.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ENIGMA Evidence-based Network for the Interpretation of Germline Mutant 

Alleles

PoP Probability of Pathogenicity

WSR Weekly Supervised Regression

MLR Multi-class Logistic Regression

CLM Cumulative Logit Model

AUC Area Under the Curve
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Figure 1: 
Illustration of loss functions used in weakly supervised regressors (WSR). A. Parabola-

shaped loss functions for WSR1 and B. ε-insensitive loss functions for WSR2 and WSR3.
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Figure 2: 
Structural interpretation of pathogenicity mechanisms for several BRCA1 variations at 

structurallyavailable RING and BRCT domains. Pathogenic (Class 5) and benign (Class 1) 

variation sites are shown in red and pale cyan spheres. Zoomed-in illustrations of molecular 

mechanisms have been shown for individual variants in smaller side boxes, where crystal 

wild-type residues are in gray sticks and modeled mutant residues are in cyan sticks. A. 

RING domain complex of BRCA1-BARD1 in PDB structure 1JM7 where RING domain of 

BRCA1 is shown in gray cartoon, BARD1 wheat cartoon, and Zn2+ ions small blue sphere. 

B. BRCT domain of BRCA1 interacting with Bach1 helicase in PDB structure 1T29 PDB 

where BRCT is shown in grey cartoon and Bach1 helicase in pink sticks.
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Table 1.

The 5-tier ENIGMA classification of variants based on the ranges in the probability of pathogenicity (PoP).

Class 1. Benign 2. Likely
Benign 3. Uncertain 4. Likely

Pathogenic 5. Pathogenic

PoP range <0.001 0.001–0.049 0.05–0.949 0.95–0.99 >0.99
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Table 2.

The list of properties whose MutPred2-predicted alteration probabilities are used as features.

Feature Index Property/Molecular Impact

1 Relative solvent accessibility

2 Allosteric site

3 Catalytic site

4 Secondary structure

5 Stability and conformation flexibility

6 Special structural signatures

7 Macromolecular binding

8 Metal binding

9 PTM site
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Table 3.

Overview of two types of baseline machine learning models compared in this study as well as our model 

weakly supervised model.

Model Target Label Learning Type Ordered Classes Scaled Classes

Multi-class Logistic Regression Pathogenicity Class Classification ✘ ✘

Cumulative Logit Model Pathogenicity Class Classification ✔ ✘

Weakly Supervised Regression Pathogenicity Probability Regression ✔ ✔
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Table 4.

Comparing the three versions of weakly supervised regression (WSR) models on their loss functions, 

thresholds, label transformation, and feature embedding.

Model Loss function 𝓁 pi, yi Threshold Label Transformation Feature Embedding

WSR1 Fixed polynomial Constant b ✘ Linear

WSR2 Parameterized ε–insensitive Parameter τ ✔ Linear

WSR3 Parameterized ε–insensitive Parameter τ ✔ Nonlinear (Kernelized)
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Table 5.

The classification performance of multi-class logistic regression trained on various datasets.

Dataset for training ClinVar Test Set CAGI Test Set

mAUC Ordinal mAUC mAUC Ordinal mAUC

G3 with BRCA only 0.572 ± 0.025 0.588 ± 0.017 0.532 ± 0.034 0.512 ± 0.015

G2 with BRCA only 0.639 ± 0.009 0.623 ± 0.005 0.610 ± 0.004 0.603 ± 0.011

G2 with non-BRCA genes 0.542 ± 0.010 0.535 ± 0.008 0.503 ± 0.014 0.521 ± 0.008

G2 with all genes 0.640 ± 0.012 0.632 ± 0.008 0.611 ± 0.010 0.636 ± 0.006
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Table 6.

Pathogenicity-prediction performance comparison (5-class evaluations) among MLR (multi-class logistic 

regression), CLM (cumulative logit model), and our WSR (weakly supervised regression) variants.

ClinVar Test Set CAGI Test Set

Model mAUC Ordinal mAUC mAUC Ordinal mAUC

MLR 0.640 ± 0.012 0.632 ± 0.008 0.611 ± 0.010 0.636 ± 0.006

CLM 0.673 ± 0.016 0.691 ± 0.005 0.635 ± 0.009 0.684 ± 0.026

WSR1 0.646 ± 0.016 0.682 ± 0.012 0.623 ± 0.011 0.666 ± 0.008

WSR2 0.754 ± 0.015 0.782 ± 0.011 0.763 ± 0.010 0.778 ± 0.023

WSR3 (Kernelized WSR2) 0.791 ± 0.008 0.826 ± 0.014 0.781 ± 0.010 0.802 ± 0.017
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Table 7.

Pathogenicity-prediction performance comparison (2-class evaluations) among MLR (multi-class logistic 

regression), CLM (cumulative logit model), and our WSR (weakly supervised regression) variants.

ClinVar Test Set CAGI Test Set

Model Binary AUC RMSD Binary AUC RMSD

MLR 0.751 ± 0.004 0.251 ± 0.005 0.720 ± 0.011 0.277 ± 0.003

CLM 0.853 ± 0.006 0.220 ± 0.004 0.854 ± 0.008 0.213 ± 0.005

WSR1 0.801 ± 0.010 0.212 ± 0.012 0.780 ± 0.005 0.234 ± 0.010

WSR2 0.971 ± 0.001 0.201 ± 0.004 0.961 ± 0.003 0.198 ± 0.004

WSR3 (Kernelized WSR2) 0.982 ± 0.003 0.131 ± 0.004 0.968 ± 0.002 0.161 ± 0.003
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Table 8.

Summarized results of WSR2 model interpretation for 16 pathogenic and likely pathogenic BRCA variants. 

Important features are retained with a P-value cutoff of 1E-02 and ranked from left to right in increasing P-

values. PoP predictions of WSR3, more accurate yet less interpretable, are also reported. Bold-faced are 

correctly predicted (likely) pathogenic.

Variants
WSR2 WSR3

Predicted PoP Indices of important features Predicted PoP

Class 5

BRCA1 (NP_009225.1)

p.M18T 0.988 ± 0.003 2 5 6 9 8 7 0.953 ± 0.004

p.C44F 0.981 ± 0.002 8 7 2 6 5 9 1 0.957 ± 0.010

p.C47Y 0.953 ± 0.015 8 2 7 6 5 0.956 ± 0.004

p.R71G 0.803 ± 0.002 7 4 2 5 9 0.050 ± 0.002

p.R1495T 0.501 ± 0.020 1 5 2 0.990 ± 0.008

p.E1559K 0.501 ± 0.016 5 7 1 0.990 ± 0.009

p.S1715N 0.959 ± 0.003 5 2 6 9 7 4 0.953 ± 0.007

BRCA2 (NP_000050.2)

p.R2659G 0.981 ± 0.004 3 2 4 5 8 9 0.960 ± 0.005

p.Q2829R 0.697 ± 0.009 6 5 2 7 9 0.953 ± 0.009

p.N3124I 0.964 ± 0.005 3 2 6 9 4 5 7 0.953 ± 0.004

Class 4

BRCA1 (NP_009225.1)

p.V1736G 0.565 ± 0.002 2 8 3 7 6 0.953 ± 0.009

p.G1738E 0.991 ± 0.001 2 8 3 7 6 5 0.952 ± 0.007

p.D1739V 0.996 ± 0.001 3 2 8 6 4 0.963 ± 0.008

p.G1748D 0.996 ± 0.004 3 2 8 7 6 4 0.952 ± 0.001

BRCA2 (NP_000050.2)

p.T2607P 0.681 ± 0.006 6 5 9 2 4 0.820 ± 0.010

p.S2670L 0.501 ± 0.004 2 7 0.954 ± 0.009
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Table 9:

The performance of WSR2 and WSR3 on 325 more genes with different data split frameworks (within/across 

genes).

Data Split Within Genes Across Genes

Model mAUC Ordinal mAUC mAUC Ordinal mAUC

WSR2 0.713 ± 0.004 0.734 ± 0.005 0.678 ± 0.004 0.683 ± 0.013

WSR3 (Kernelized WSR2) 0.781 ± 0.011 0.801 ± 0.003 0.735 ± 0.011 0.754 ± 0.004

Hum Mutat. Author manuscript; available in PMC 2020 September 01.


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	The ENIGMA Challenge
	Data
	Feature Engineering
	Machine Learning
	Mathematical Description
	Models Overview
	Multi-class Logistic Regression (MLR)
	Cumulative Logit Model (CLM)
	Weakly Supervised Regression (WSR)
	WSR1: Fixed, parabola-shaped polynomial loss function
	WSR2: Parameterized ε-insensitive loss function
	WSR3: Kernelized WSR2

	Model Training and Uncertainty Estimation
	Model Interpretation

	Assessment Metrics
	Protein Modeling for Structural Interpretation

	RESULTS
	The Value of Gene Non-specific Data and Less Confident Clinical Annotations
	Comparing Machine Learning Models
	Mutation-Specific Interpretation of Machine Learning Models
	Protein Structural Interpretation of Some BRCA1 Pathogenic Variants
	Structural modeling reproduces destabilization effects of p.M1775R
	Disrupted metal binding: p.C44F and p.C47Y
	Disrupted protein binding: p.M18T
	Aberrant splicing: p.R71G
	Decreased stability: p.S1715N

	Generalization of Weakly Supervised Regressors for More Genes

	CONCLUSION
	References
	Figure 1:
	Figure 2:
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Table 6.
	Table 7.
	Table 8.
	Table 9:

