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Abstract

BRCA1 and BRCA2 (BRCA1/2) germline variants disrupting the DNA protective role of these 

genes increase the risk of hereditary breast and ovarian cancers. Correct identification of these 

variants then becomes clinically relevant, because it may increase the survival rates of the carriers. 

Unfortunately, we are still unable to systematically predict the impact of BRCA1/2 variants. In this 

article, we present a family of in silico predictors that address this problem, using a gene-specific 

approach. For each protein, we have developed two tools, aimed at predicting the impact of a 

variant at two different levels: functional and clinical. Testing their performance in different 

datasets shows that specific information compensates the small number of predictive features and 

the reduced training sets employed to develop our models. When applied to the variants of the 

BRCA1/2 (ENIGMA) challenge in CAGI 5 we find that these methods, particularly those 

predicting the functional impact of variants, have a good performance, identifying the large 

compositional bias towards neutral variants in the CAGI sample. This performance is further 

improved when incorporating to our prediction protocol estimates of the impact on splicing of the 

target variant.

Keywords

breast cancer; ovarian cancer; homology-directed DNA repair (HDR); functional assays; protein-
specific predictor; gene-specific predictor; splicing predictions; pathogenicity predictions; 
molecular diagnosis; bioinformatics

*Corresponding authors: Xavier de la Cruz; Vall d’Hebron Institute of Research (VHIR); Passeig de la Vall d’Hebron, 119-129; 
08035 Barcelona; Spain. Telephone: +34 93 489 30 00 - Ext. 2687; xavier.delacruz@vhir.org. Sara Gutiérrez-Enríquez, Vall d’Hebron 
Institute of Oncology (VHIO); Cellex Center; C/Natzaret, 115-117; 08035 Barcelona; Spain. Telephone: +34 93 254 34 50 - Ext. 
8668; sgutierrez@vhio.net. 

HHS Public Access
Author manuscript
Hum Mutat. Author manuscript; available in PMC 2020 September 01.

Published in final edited form as:
Hum Mutat. 2019 September ; 40(9): 1593–1611. doi:10.1002/humu.23802.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

Germline variants disrupting the DNA protective role of BRCA1 and BRCA2 (BRCA1/2) 

result in an increased risk of developing hereditary breast and ovarian cancers (HBOC) (Roy, 

Chun, & Powell, 2012; Venkitaraman, 2014). Identification of the carriers of these variants 

is clinically relevant because it allows channeling these individuals to surveillance, 

prevention programs and targeted therapies (Paluch-Shimon et al., 2016). As a result, these 

patients increase their survival rates; however, not all of them will benefit equally, because 

we lack an exact knowledge of the functional impact of BRCA1/2 variants. In these cases, a 

straightforward decision can only be taken when the variant is overtly deleterious 

(insertions, deletions, and substitutions codifying truncated proteins). When the variant has 

an uncertain effect on protein function (e.g., missense, synonymous, intronic, and 5’UTR or 

3’UTR variants) the best course of action becomes unclear. Solving this problem is not easy 

because experimentally measuring the impact of these variants on the activity of BRCA1 

and BRCA2 (BRCA1/2), requires complex cell-based assays (reviewed in (Guidugli et al., 

2013; Millot et al., 2012)) that are technically challenging for a systematic application 

(Starita et al., 2015).

In these circumstances, in silico pathogenicity predictors of missense substitutions -Align-

GVGD (Tavtigian et al., 2006), PolyPhen-2 (Adzhubei et al., 2010), SIFT (Kumar, Henikoff, 

& Ng, 2009), PON-P2 (Niroula, Urolagin, & Vihinen, 2015) etc.- are employed as an 

inexpensive, easy-to-use alternative. The predictions obtained are applied for prioritizing 

variants for experimental evaluation and as a contribution to decision models that integrate 

different sources of evidence (Karbassi et al., 2016; Lindor et al., 2012; Moghadasi, Eccles, 

Devilee, Vreeswijk, & van Asperen, 2016; Vallée et al., 2016). However, the moderate 

success rate of these tools is an obstacle for their extended use in a clinical environment 

(Riera, Lois, & de la Cruz, 2014). In the specific case of BRCA1/2, Ernst et al. (Ernst et al., 

2018) suggest, after testing the performance of Align-GVGD, SIFT, PolyPhen-2, 

MutationTaster2 on a set of 236 BRCA1/2 variants of known effect, that in silico results 

cannot be used as stand-alone evidence for diagnosis. In terms of molecular effect, two 

independent, massive functional assays of BRCA1 variants (Findlay et al., 2018; Starita et 

al., 2015) show that in silico predictors provide only a limited view of the functional impact 

of these variants. In summary, we need to improve the predictive power of these tools, if we 

want to increase their usage in the clinical setting and augment their value for healthcare 

stakeholders.

The slow progression in performance displayed by pathogenicity predictors along time 

shows that ameliorating them is a difficult task (Riera et al., 2014). In this scenario, the use 

of rigorous performance estimates becomes an important factor, since improvements are 

expected to be small and hard to establish. Generally, these estimates are obtained using a 

standard N-fold cross-validation procedure (Baldi, Brunak, Chauvin, Andersen, & Nielsen, 

2000; Riera et al., 2014; Vihinen, 2012). However, given the increasing availability of 

variant data, independent testing of predictors is emerging as a valuable option to 

complement cross-validated performance estimates. Sometimes this testing is done in 

specific systems for which new variants with impact annotations become available, either at 

specific/general databases or through experimental testing of their function. For example, 
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Riera et al. (Riera et al., 2015) cross-validate their Fabry-specific predictor with a set of 332 

pathogenic and 48 neutral variants, and provide an independent validation, using a set of 65 

pathogenic variants obtained from an update of the Fabry-specific database. Wei et al. (Wei 

& Dunbrack, 2013) test five in silico predictors using an independent set of 204 variants (79 

deleterious, 125 neutral) of the human cystathionine beta-synthase whose impact they 

establish with an in vitro assay. Large variant sets, including data from different genes, are 

also frequently used to assess and compare the performance of several predictors 

simultaneously (reviewed in (Niroula & Vihinen, 2016)). While relevant, the value of these 

approaches to validation is limited by different factors, such as the fact that the standard of 

performance evaluation may vary between works, the manuscripts may not always be easy 

to find, etc. In this situation, CAGI (Critical Assessment of Genome Interpretation) (Hoskins 

et al., 2017), a community experiment where developers can assess the performance of their 

methods in specific challenges, offers an excellent opportunity to obtain an independent 

view on their work. For users, it allows having an idea on the state of the art for a protein or 

disease of their interest.

In this manuscript we present: (i) a novel family of pathogenicity predictors for scoring 

BRCA1 and BRCA2 missense variants; and (ii) their performance in the recently held CAGI 

5 community experiment.

The four tools described in this work (two for BRCA1 and two for BRCA2) are protein-

specific (Crockett et al., 2012; C. Ferrer-Costa, Orozco, & de la Cruz, 2004; Pons et al., 

2016; Riera, Padilla, & de la Cruz, 2016), that is, only variants for a given protein are used 

to train its two predictors. These two predictors differ on their objective: one is trained to 

estimate the molecular-level impact of variants and the other their clinical impact (neutral/

pathogenic). Technically, for the first predictor we employed a standard multiple linear 

regression approach and for the second, a neural network model with no hidden layers.

Once obtained, these predictors were applied to the variants constituting the BRCA1/2 
(ENIGMA) challenge in CAGI 5. This was done following a protocol that combined 

predictions of affected splicing and protein impact and was the same for both proteins 

(Figure 1). Evaluating these two effects of genetic variants (on splicing and protein function) 

is routine in general diagnostic procedures (Richards et al., 2015) and there are specific tools 

in the case of BRCA1/2 variants ((Vallée et al., 2016), http://priors.hci.utah.edu/PRIORS/). 

In our protocol, given an unknown variant, it was first tested for its effect on the splicing 

pattern, using a recently developed approach (Moles-Fernández et al., 2018). If the variant 

had no detectable effect, it was subsequently tested for its impact on protein function, using 

the predictors here presented. Our results show that all our protein-specific predictors can 

discriminate (with different degrees of success) between neutral and pathogenic variants, 

both for BRCA1 and BRCA2. For this binary discrimination problem (neutral/pathogenic) 

their performances are comparable to, or better than, those of general predictors (CADD, 

PolyPhen-2, PON-P2, PMut, SIFT). When applied to the variants of the CAGI challenge, 

where the goal is to classify them in one of the IARC 5-tier classes (or a reduced version 

with three classes) we see the same trend. In spite of a decrease in performance, our methods 

are able to predict the biased composition of the dataset, mainly our predictors trained using 

data from the HDR assay. Most of the neutral variants are correctly identified by these 
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predictors and, for pathogenic variants, in silico prediction of affected splicing enhances the 

final success rate.

Note on terminology.

We have italized the gene symbols (BRCA1 and BRCA2) and not the protein symbols 

(BRCA1 and BRCA2). In general, because we are presenting protein-specific predictors, 

when referring to them, to the training variants, etc, we have utilized the non italized 

version. However, we are aware that at some points it is unclear which option is preferable 

and our decision may be arbitrary.

2. Materials and Methods

In this work, we present: (i) the development of a family of predictors for BRCA1/2 
missense variants, and (ii) the use of these tools to predict the pathogenicity of the ENIGMA 

variants in the CAGI challenge. We first describe the overall prediction protocol (Figure 1), 

which integrates predictors of splicing and protein impact, and then focus on the description 

of the specific predictors.

NOTE.When referring to a variant regarding its impact on protein function, we will speak of 

‘functional’, ‘intermediate’ or ‘non-functional’ variants, as those that result in a protein that 

preserves its function, has lost part of it or has lost all of it, respectively. We will preserve the 

terms ‘neutral’, ‘unknown’ (or ‘uncertain’) and ‘pathogenic’ to refer to the clinical 

phenotype of the variant.

2.1 Overall prediction protocol

In this section and in Figure 1, we describe the protocol followed in our contribution to the 

CAGI 5 experiment, an experiment that presents participants with different challenges 

revolving around a central theme (Hoskins et al., 2017): the prediction of variant 

pathogenicity and its applications. We focused our efforts on the set of BRCA1 and BRCA2 
variants provided by the ENIGMA consortium (Spurdle et al., 2012), and we submitted four 

sets of predictions per protein (Supp. Table S1). These four sets correspond to different 

combinations of our approaches for the prediction of variants leading to affected splicing 

(AS, one method) (Moles-Fernández et al., 2018) or affecting protein function/structure (two 

methods: multiple linear regression –MLR- and neural network –NN). They are the 

following:

1.- Set MLR+AS: AS impact + Protein impact with MLR

2.- Set NN+AS: AS impact + Protein impact with NN

3.- Set MLR+nAS: Predict protein impact with MLR, no AS predictions used

4.- Set NN+nAS: Predict protein impact with NN, no AS predictions used

The submission format was the same for each set and was provided by the organizers. It 

comprised the following information per variant: three fields for the identification (DNA 

variant; Gene; protein variant), three fields for the prediction (predicted IARC 5-tier class; 
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probability of the variant being pathogenic, which we call ‘p’; confidence of each prediction 

probability, which we call ‘sd’), and one field for ‘Comments’.

For the sets MLR+AS and NN+AS, any variant predicted as ‘pathogenic’ by the AS 

predictor was arbitrarily assigned values of p=1 and sd=0, and the ENIGMA class ‘5’. 

Otherwise, the variant was annotated using our protein impact predictors, which were 

obtained as explained below. That is, the protein impact was estimated only if the variant 

had no predicted effect on AS. One can distinguish these situations by the text in the 

‘Comments’ column: (i) ‘splicing’, which means that the variant is annotated with the AS 

predictor; (ii) ‘protein’, which means that the variant is annotated with the protein-based 

predictors (MLR or NN); (iii) ‘arbitrary’, which is only used for variants for which we have 

not a predictor (annotation is arbitrarily set to the following: ENIGMA class=5, p=0.5, and 

sd=0.5).

For the sets MLR+nAS and NN+nAS we did not use AS predictors. All the variants are 

annotated using our protein impact predictors (obtained as explained below). As before, 

these situations are distinguished in the ‘Comments’ field with the labels ‘protein’, if the 

variant is annotated with the protein-based predictors (MLR or NN).

NOTE. The five ENIGMA classes used correspond to the IARC 5-tier classification system 

(Goldgar et al., 2008; Plon et al., 2008) (1=‘Not pathogenic’, 2=‘Likely not pathogenic’, 

3=‘Uncertain’, 4=‘Likely pathogenic’, 5=‘Pathogenic’) and were taken from CAGI’s 

website for the BRCA1 and BRCA2 challenge (https://genomeinterpretation.org/content/

BRCA1_BRCA2).

2.2 Prediction of AS variants

To score the effect on splicing of the CAGI variants from the ENIGMA challenge, we have 

used the results of our recent work (Moles-Fernández et al., 2018) where we identified the 

best combination of in silico tools for predicting splice site alterations, among those 

predictors available in the package Alamut Visual v2.10. More precisely, we showed that the 

HSF+SSF-like combination (with Δ−2% and Δ−5% as thresholds, respectively) for donor 

sites and the SSF-like (Δ−5%) for acceptor sites, exhibited an optimal performance in a 

benchmark combining RNA in vitro testing and a dataset of variants retrieved from public 

databases and reported in the literature. For the CAGI challenge (Figure 1), a variant 

predicted to produce splice site alterations was arbitrarily assigned class 5, p=1 and sd=0; in 

the comments column it was identified as ‘splicing’. Variants giving no signal for splice site 

alterations were directly channeled to the protein predictors.

2.3. Protein-based predictors

We have developed two methods for predicting the impact of protein sequence variants of 

BRCA1 and BRCA2. One is based on a neural network (NN) and is trained to produce a 

binary output reflecting the pathogenic nature -cancer risk (high/low)- of a cancer variant. 

The other method is based on a multiple linear regression (MLR) and is trained to predict 

the values of the HDR assay for a variant. Both methods are protein-specific: there is a 

version of MLR for BRCA1 and another for BRCA2, and the same for NN. We describe 
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them below; we start with the NN because it employs more predictive features (6) than the 

MLR, which only uses a subset of these (3).

2.3.1 The NN method—We have followed our approach to produce protein-specific 

predictors (Riera et al., 2016), which comprises the three steps described below: (i) 

obtention of a variant dataset true to the prediction goal; (ii) labeling of variants with chosen 

features; and (iii) obtention of the NN model.

2.3.1.1 Obtention of BRCA1 and BRCA2 variants: Missense variants in this dataset 

were selected with clinical impact in mind. This was done by manually reviewing several 

gene-specific databases that collect BRCA1 and BRCA2 variants along with published 

literature: Leiden Open Variation Database describing functional studies of specific BRCA1 
and BRCA2 variants (LOVD; http://databases.lovd.nl/shared/genes/BRCA1;http://

databases.lovd.nl/shared/genes/BRCA2), LOVD-IARC dedicated to variants that have been 

clinically reclassified using an integrated evaluation (http://hci-exlovd.hci.utah.edu/

home.php?select_db=BRCA1), BRCA Share™ (formerly Universal Mutation Database 

UMD-BRCA mutations database http://www.umd.be/BRCA1/; http://www.umd.be/

BRCA2/), CLINVAR, that provides clinical relevance of genetic variants (https://

www.ncbi.nlm.nih.gov/clinvar/), and BRCA1 CIRCOS which compiles and displays 

functional data on all documented BRCA1 variants (https://research.nhgri.nih.gov/bic/

circos/). Finally, each variant was validated by combining different sources of evidence.

Variants for which the pathogenic role was attributable to splice site alterations (assessed 

using Alamut Visual biosoftware 2.6, from Interactive Biosoftware) were eliminated. This 

was done to ensure, as far as possible, that our model was trained using variants whose 

damaging/neutral nature was a consequence of their impact in protein function/structure 

only.

The final datasets (Supp. Table S1) were constituted by (Table 1):

.- BRCA1: 77 ‘pathogenic’ and 149 ‘neutral’ variants.

.- BRCA2: 36 ‘pathogenic’ and 105 ‘neutral’ variants.

2.3.1.2 Features: We used a total of six features to label the variants for the predictor 

training. We have previously used them for the development of protein-specific predictors 

(Riera et al., 2016). We describe them below for the benefit of the reader.

Two features are based on the use of multiple sequence alignments (MSA): Shannon’s 

entropy and position-specific scoring matrix element. Shannon’s entropy is equal to -

Σipi.log(pi), where the index i runs over all the amino acids at the variant’s MSA column. 

Position-specific scoring matrix element for the native amino acid (pssmnat) is equal to 

log(fnat,i/fnat,MSA), where fnat,i is the frequency of the native amino acid at the locus i of the 

variant and fnat,MSA is the frequency of the same amino acid in the whole MSA. We used 

two different MSA, psMSA and oMSA, which resulted in two versions of the NN predictor. 

psMSA were obtained using the same protocol utilized for the protein-specific predictors 

(Riera et al., 2015, 2016) which, briefly, consists of two steps: (i) recovery of BRCA1/2 
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homologs using a query search of UniRef100; (ii) elimination of remote homologs (<40% 

sequence identity); alignment of the remaining sequences with Muscle (Edgar, 2004). The 

resulting MSA are available on demand from the authors. The oMSA, available from the 

group of Sean Tavtigian (Tavtigian, Greenblatt, Lesueur, & Byrnes, 2008), comprise only 

orthologs of BRCA1 and BRCA2, and are publicly available at the web of the Huntsman 

Cancer Institute, University of Utah (http://agvgd.hci.utah.edu/alignments.php). The NN 

predictions submitted to CAGI were those obtained with the method developed using the 

psMSA, although results for the second predictor are mentioned below.

Three features, each measuring the difference between native and mutant amino acids for a 

single physicochemical property: Van der Waals volume (Bondi, 1964), hydrophobicity 

scale (estimated from water/octanol transfer free energy measurements) (Fauchere & Pliska, 

1983) and the element of the Blosum62 matrix (Henikoff & Henikoff, 1992) corresponding 

to the amino acid replacement.

Finally, a sixth feature that is binary (1/0) and summarizes the information available on the 

functional/structural role of the native residue at the UniProt database. It is set to “1” when 

the native residue has a functional annotation on that database, and “0” if this is not the case.

2.3.1.3 Neural network predictor: The NN predictor was built using WEKA (v3.6.8) 

(Hall et al., 2009). Following our experience in the development of protein-specific 

predictors with small datasets (Riera et al., 2016), we employed the simplest neural network 

model: a single-layer perceptron. Sample imbalances in the training set were corrected with 

SMOTE (Chawla, Bowyer, Hall, & Kegelmeyer, 2002).

The NN model gives two outputs: (i) a binary prediction for the variant, either pathogenic or 

neutral; (ii) a continuous score, comprised between 0 and 1, that reflects the probability of 

pathogenicity.

A Leave-one-out cross-validation (LOOCV) of the model was done also using the WEKA 

(v3.6.8) (Hall et al., 2009) package.

2.3.1.4 CAGI output: As mentioned above, the CAGI submission requires three pieces of 

information for each variant prediction: the predicted IARC 5-tier class, p (probability of 

pathogenicity) and sd (reliability). We took as ‘p’ the output from the NN: it varies between 

0 (minimal probability of pathogenicity) and 1 (maximal probability of pathogenicity). For 

the sd value, we used the following formula (C. Ferrer-Costa et al., 2004): sd= 0.5-|0.5-p|. It 

goes from 0 (maximal reliability) to 0.5 (minimal reliability). Finally, the predicted IARC 5-

tier class was obtained from the p, using the ENIGMA conversion table at the CAGI site 

(class 5: p>0.99; class 4: 0.95<p<0.99; class 3: 0.05<p<0.949; class 2: 0.001<p<0.049; class 

1: p<0.001).

2.3.2 The MLR method—This method aims to predict the values of the HDR 

(homology-directed DNA repair) assay for a given variant, which is a measure of the impact 

of this variant on BRCA1/2 molecular function. Since the output of the HDR assay is a 

continuous value, we opted for using a multiple linear regression as a modeling tool, as 
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implemented in the python package Scikit-learn (Pedregosa et al., 2011). The LOOCV of the 

model was done with the same package. For a given variant, the output of our model is 

HDRpred, the predicted value of the HDR assay.

To develop our method we used experimental HDR results available from the literature: 44 

variants for BRCA1 (Starita et al., 2015) and 185 variants for BRCA2 (Guidugli et al., 2013, 

2018) proteins. However, to reinforce the strength of the signal, relative to experimental 

noise, we did not employ the full data sets. The BRCA1 training dataset was constituted by 

those variants used to build the NN predictor (see the previous section) for which HDR 

values were available; for BRCA2 we followed the same approach. The final number of 

HDR values was 28 for BRCA1. For BRCA2, we worked with 92 HDR values that 

corresponded to 56 variants (some had been tested twice (Guidugli et al., 2013, 2018)).

Given the small size of these variant datasets, to try to minimize overfitting problems, we 

used only three of the previous features (see section 3.1.2, Shannon’s entropy, pssmnat, and 

Blosum62 element) as independent variables in the regression model. Like for NN methods, 

the MSA-based features were computed with the psMSA and the oMSA, thus leading to two 

versions of the MLR. Only the predictions for the oMSA-based MLR where submitted to 

CAGI; however, the results for the second predictor are also provided in this manuscript.

NOTE. When obtaining the HDR predicted values using this method, in a few cases the 

result was a slightly negative number. In these cases, the predicted value was set to 0, since 

the output of the HDR experiment is always a positive number.

2.3.2.1 CAGI output: To adapt the MLR predictions to the CAGI format, we used the 

following steps:

1.- Obtain HDRpred, the MLR predictions for the variants in the BRCA1 and BRCA2 

training datasets.

2.- Separately for BRCA1 and BRCA2, compute the mean and standard deviations of the 

HDR values of the known ‘pathogenic’ and ‘neutral’ variants. At this point, we have four 

values for each protein: mP, sdP, mN, sdN.

3.- After the ‘pathogenicity’ assignment, we computed CAGI’s ‘p’ as follows: N(x; mP, 

sdP)/(N(x; mP, sdP)+N(x; mN, sdN)), where N(x; m, sd) represents a normal probability 

distribution of mean m and standard deviation sd. The resulting value is comprised between 

0 (‘neutral’) and 1 (‘pathogenicity’) and reflects the probability of a variant being 

‘pathogenic’, according to our model.

4.- The sd value was obtained, as for the NN methods, using the following formula (C. 

Ferrer-Costa et al., 2004): sd= 0.5-|0.5-p|.

2.4 Performance Assessment

As mentioned before, during the development process predictor performance was estimated 

using a standard LOOCV procedure for each predictor (Riera et al., 2016), regardless of 

whether it was MLR or NN.
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The parameters used to measure the success rate of the predictors vary depending on the 

number of classes predicted. During the development process, the NN method predicted 

only two classes: pathogenic and neutral; in subsequent validations, including that of the 

CAGI submissions, three and five classes were considered. We describe below the 

performance parameters employed in each case.

2.4.1 Binary performance assessment—Here success rate was measured with four 

commonly employed parameters for binary predictions (Baldi et al., 2000; Vihinen, 2013): 

sensitivity, specificity, accuracy, and Matthews Correlation Coefficient (MCC). They are 

computed as follows:

.- Sensitivity:

TP
TP + FN

.- Specificity:

TN
TN + FP

.- Accuracy:

TP + TN
TP + FP + TN + FN

.- Matthews Correlation Coefficient:

TP ⋅ TN − FP ⋅ FN
(TP + FN) ⋅ (TN + FP) ⋅ (TP + FP) ⋅ (TN + FN)

where TP and FN are the numbers of correctly and incorrectly predicted pathological 

variants; TN and FP are the numbers of correctly and incorrectly predicted neutral variants, 

respectively.

2.4.2 Multiclass performance assessment—In our case, we need to evaluate the 

performance of our methods when their score is transformed into a five or three class 

prediction; e.g., this happens when assessing the CAGI submission (we predict five classes) 

and the application of our MLR to the recently published exhaustive, functional assay of 

BRCA1 variants (Findlay et al., 2018), where we predict three classes. For multiclass 

problems, the number of options available is smaller than for binary problems (Baldi et al., 

2000; Vihinen, 2013). Here we have utilized the following: the confusion matrices, the 

accuracies per class, the overall accuracy, and the multiclass Matthews Correlation 

Coefficient (Gorodkin, 2004; Jurman, Riccadonna, & Furlanello, 2012).

For a multiclass problem with M classes the confusion matrix, C=(cij), is an (MxM) matrix 

where cij is the number of times a class i input is predicted as class j. The sum of the cij 
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corresponds to the sample size N, which in our case is the total number of variants predicted. 

This matrix provides the simplest description of the performance of a predictor; its diagonal 

and off-diagonal elements correspond to the predictor’s successes and failures, respectively. 

If we normalize each diagonal element by its row total (cii/ Σjcij, where j=1,M) we obtain the 

accuracy of the predictor for class i. If we add all the diagonal elements and divide the result 

by N (Σicii/N, where i=1,M), we obtain the overall accuracy.

The multiclass MCC (Gorodkin, 2004; Jurman et al., 2012) was obtained using the 

implementation in the python package Scikit-learn (Pedregosa et al., 2011).

3. Results

In this article, we describe the obtention of a novel family of pathogenicity predictors 

specific for BRCA1/2 proteins (MLR and NN) and their application to the variants in the 

CAGI challenge, within a protocol that also includes AS predictions (Figure 1). Sections 3.1 

to 3.5 correspond to the first part, and section 3.6 corresponds to the second part.

As we have seen in the Materials and Methods section, we have considered the use of 

different MSA (psMSA and oMSA) to develop our predictors. However, we center our 

descriptions on the versions employed for the CAGI challenge: MLR based on oMSA and 

NN based on psMSA. For completeness, we also provide the performance of our methods 

when developed using psMSA (for MLR) and oMSA (for NN).

3.1 The variant datasets

In Table 1A we give the size of the datasets employed in this work. In Table 1B, we report 

the overlap between the CAGI and the remaining datasets. Note that the CAGI class 

information on each variant was made public only after the challenge was closed.

Training datasets for NN and MLR.—The number of missense variants in the NN 

training sets (BRCA1: 226; BRCA2: 141) is comparable to that used for developing protein-

specific predictors with the same neural network model and variant features (Riera et al., 

2016). The situation is different for the MLR training sets, which were small (BRCA1: 28; 

BRCA2: 56), thus imposing a severe limitation in the number of features that can be used in 

the model (see Materials and Methods).

Validation dataset for BRCA1 MLR.—This set is obtained from the results of a recently 

published (Findlay et al., 2018) experiment for BRCA1. The authors functionally score a 

large number of single nucleotide variants (SNVs); we retrieved the 1837 cases 

corresponding to missense variants. We refer to this dataset as SGE (from ‘saturation 

genome editing’). We used SGE to further test the performance of our BRCA1 MLR 

because Findlay et al. find that there is a correspondence between their functional score and 

the score of the HDR assay (Findlay et al., 2018).

CAGI datasets.—Their size (BRCA1: 144; BRCA2: 174) is of the same magnitude as that 

of the NN training datasets. In Table 2 we provide two partitions of these datasets, 

corresponding to: (i) the original, 5-class ENIGMA partition; and (ii) a reduced, 3-class 
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partition. For the latter, the ‘Pathogenic’ and ‘Likely pathogenic’ classes have been unified 

into a single ‘Pathogenic’ class, and the ‘Likely not pathogenic’ and ‘Not pathogenic’ 

classes have been unified into a single ‘Neutral’ class. The ‘Uncertain class’ (or ‘Unknown’) 

has been left untouched. It must be noted the high compositional imbalance of the CAGI 

dataset, with the total of classes 1 and 2 being 10 and 25 times higher than that of the 

remaining classes, for BRCA1 and BRCA2, respectively. In particular, the absolute numbers 

of variants for classes 3, 4 and 5 are so low that they can hardly lead to reliable estimates for 

class-dependent parameters. For example, there are only two variants of class 3 for both 

BRCA1 and BRCA2; two and three variants for classes 4 and 5, respectively, in BRCA2; 

and four and seven variants for classes 4 and 5, respectively, in BRCA1.

3.2 Predicting the functional impact of BRCA1/2 variants: the MLR predictor

We have developed two MLR methods, one per protein. The goal of these methods is to 

predict the impact of a given variant on protein function, as measured by the HDR 

experiment. To this end, they were trained with a set of variants with known experimental 

values for the HDR assay and the features chosen are related to the effect variants can have 

on protein structure, protein-protein interactions, etc. (Carles Ferrer-Costa, Orozco, & de la 

Cruz, 2002; Riera et al., 2014). In Figure 2, we see that there is a statistically significant 

correlation between observed vs. predicted (LOOCV) HDR values (BRCA1: 0.72, p-

value=1.5×10−5; BRCA2: 0.73, p-value=3.3×10−17). Visual inspection reveals that the 

variants tend to group into two clusters, showing that MLR predictions approximately 

reproduce the bimodal pattern of HDR assays (Guidugli et al., 2013; Starita et al., 2015). We 

also show (grey color), the predictions for the variants which were left outside the training 

set, after applying the pathogenicity condition (see Materials and Methods); they are more 

scattered than those forming the training set, illustrating how the filtering worked.

We explored how good this level of accuracy is for a standard two-class (pathogenic/neutral) 

prediction of the variant’s pathogenicity. To this end we discretized the predictions applying 

a decision boundary: a variant was called pathogenic or neutral when its predicted HDR 

score was below or above a given threshold, respectively. These thresholds, taken from the 

experimental papers, where: 0.53 for BRCA1 (Starita et al., 2015) and 2.25 for BRCA2 

(Guidugli et al., 2013). In Table 3 we give the parameters measuring the success rate of the 

discretized MLR methods. Their accuracies, 0.75 for BRCA1 and 0.86 for BRCA2, fall 

within the 0.79–0.99 accuracy range for protein-specific predictors (Riera et al., 2016); the 

same happens for the MCC, 0.50 for BRCA1 and 0.71 for BRCA2. We detect that 

specificity (0.85) and sensitivity (0.86) are closer for BRCA2 than for BRCA1 (spec: 0.87; 

sens: 0.62). Actually, for BRCA1 sensitivity tends to be small when compared to that of 

protein-specific predictors (Riera et al., 2016). Overall, these results indicate that the 

continuous HDR predictions of our MLR model can be transformed into binary predictions 

preserving a non-random prediction power, comparable to that of predictors trained with 

binary encodings (pathogenic/neutral) of the variant impact.

3.3 Validation of the BRCA1 MLR predictor with functional data

The recent publication (Findlay et al., 2018) of a massive functional assay of BRCA1 
variants has given us the opportunity to check the performance of our MLR model on a set 
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of 1837 variants. The output of this experiment is a continuous value measuring the impact 

of sequence variants on BRCA1 function. When we represent these values against our HDR 

predictions (Figure 3A) we observe two clusters of points (below and above SGE=−1) that 

reflect the bimodal behavior of both assays, with a statistically significant rank correlation 

(Spearman’s ρ=0.47, p-value~0). This overall coincidence is limited by a substantial scatter. 

Part of it may be due to technical/biological (inter-exon normalization procedures, impact of 

RNA levels, etc.) differences between the SGE and HDR experiments that introduce some 

dispersion in the comparison between both experiments (see Figure 9m from Extended Data 

Section in (Findlay et al., 2018)). Another part of the scatter is due to limitations of our 

model. To better understand these, we divided the SGE-HDR plane into 9 regions, 

corresponding to the 3×3 combinations of SGE (‘functional’, ‘intermediate’ and ‘non-

functional’) (Findlay et al., 2018) and HDR (‘High’, ‘Int’, ‘Low’) (Starita et al., 2015) 

equivalent, functional classes. The main blocks of outliers correspond to the two top-left and 

the two bottom-right regions. We separately used the variants inside each block for a 

principal component analysis (PCA), using as variables the three features in our model 

(Shannon’s entropy, pssmnat, and Blosum62 element). As a reference, for each PCA we also 

included the variants from the upper (‘functional’) and lower (‘non-functional’) diagonal 

regions. In the plane of the first two principal components (PC1 and PC2 in Figures 3C and 

3D) the chosen variants adopt a three-layered disposition, where we successively find the 

‘functional’, the outliers and the ‘non-functional’ ones. This disposition reflects the contrast 

between the bimodal nature of the SGE experiment and the smoother nature of our model.

In fact, in Supp. Figure S1 we can see that those outlier variants indeed tend to have 

intermediate values (comprised between those of the ‘functional’ and ‘non-functional’ 

populations’) for the features in our model. This suggests that for these variants we need to 

improve our representation of protein impact with new properties, to reproduce more 

accurately the results of the SGE experiment. However, it may also indicate the need to 

consider the effect of variants on other aspects of gene function, like RNA levels (Findlay et 

al., 2018).

3.4 Predicting the clinical impact of BRCA1/2 variants: the NN predictors

We have developed two NN methods, one per protein. These methods were trained with the 

idea of predicting the clinical impact of a given variant. To this end, during the training 

process, each variant was labeled with a binary version of this clinical impact: pathogenic/

neutral. Here, the larger amount of data (Table 1A) allowed us to work with three additional 

features, fully adhering to our protocol for the obtention of protein-specific predictors (Riera 

et al., 2016). As for the MLR predictors, the results obtained (Table 3) are comparable to 

those of other protein-specific predictors. Their accuracies, 0.77 for both BRCA1 and 

BRCA2, are almost within the 0.79–0.99 accuracy range for protein-specific predictors; the 

same happens for the MCC, 0.55 for BRCA1 and 0.47 for BRCA2. The sensitivities and 

specificities are more balanced for both BRCA1 (spec: 0.72; sens: 0.86) and BRCA2 (spec: 

0.77; sens: 0.75) when compared with what happened for the MLR predictors.

Padilla et al. Page 12

Hum Mutat. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Overall, as in the case of MLR, the results indicate that the more clinically flavored NN 

predictors have a prediction power comparable to that of other protein-specific predictors 

(Riera et al., 2016).

3.5 Comparison with general pathogenicity predictors

To put in context the results of our protein-specific predictors, we give the performance, on 

our training datasets, of a representative set of general predictors: CADD (Kircher et al., 

2014), PolyPhen-2 (Adzhubei et al., 2010), SIFT (Kumar et al., 2009), PON-P2 (Niroula et 

al., 2015) and PMut (López-Ferrando, Gazzo, de la Cruz, Orozco, & Gelpí, 2017). Care 

must be exercised when considering the results of this comparison, since the variants in our 

datasets can be found in databases, like UniProt (Bateman et al., 2017), commonly used to 

develop pathogenicity predictors (Riera et al., 2014). Therefore, it is likely that some of 

these variants have been used in the training of the general methods, thus leading to 

optimistic estimates of their performance. An additional limitation of the comparison is the 

small sample size involved, e.g., training of BRCA1 MLR was done using only 28 variants.

In general, we observe (Figure 4) that our specific methods have success rates comparable to 

those of general methods. For MCC, our methods are only surpassed by PMut. For BRCA2, 

our NN is slightly surpassed by PON-P2 (MCC of 0.47 vs. 0.49), but our MLR surpasses 

PON-P2 (MCC of 0.71 vs. 0). The sensitivities and specificities of our methods are 

generally smaller and larger, respectively, than those of other methods. However, our 

methods have an equilibrated performance for pathogenic and neutral variants (Figures 4E, 

4F), since they display the smallest differences between sensitivity and specificity, 0.14 

(BRCA1) and 0.021 (BRCA2) for NN, respectively, and 0.25 (BRCA1) and 0.01 (BRCA2) 

for MLR. Only PMut has closer values for the MLR training set of BRCA1, 0.06.

3.6 Results of the predictors in the CAGI experiment

In this section, we present the results of applying our prediction protocol (Figure 1) to the 

CAGI variants. For each protein, we submitted to the CAGI challenge the results of four 

versions of this protocol (Figure 1): MLR+AS, NN+AS, MLR, and NN. For simplicity, we 

will restrict our analysis to the complete protocols (MLR+AS, NN+AS), mentioning protein 

predictions (MLR, NN) only for discussing the contribution of the AS predictors. 

Performance was assessed using the class assignments provided by the CAGI organizers 

after the challenge was closed. More precisely, we computed the ability of our protocols to 

correctly assign a variant to its class in two different classification schemes. One is the IARC 

5-tier classification system (Goldgar et al., 2008; Plon et al., 2008), which was the one 

requested by the organizers; the other is a 3-class version of this system (see Materials and 

Methods).

The fact that we must consider the performance for more than two classes makes the 

evaluation problem more difficult: in multiclass problems confusion matrices retain their 

explanatory power, but summary measures are not easy to generalize, nor to interpret (Baldi 

et al., 2000; Vihinen, 2012). In our case, the severity of this problem is augmented by the 

compositional imbalance in the CAGI dataset (Table 2). For these reasons, we focus our 

analysis mainly on the confusion matrices (represented as heatmaps) because they provide 
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the basal information in any prediction process and allow a direct interpretation. More 

concretely, we consider: (i) the diagonal elements to see how good our predictions are; and 

(ii) the off-diagonal elements to see how incorrect predictions distribute among classes. We 

treat separately BRCA1 and BRCA2 cases because the performance of specific and general 

pathogenicity predictors is gene-dependent (Riera et al., 2016).

3.6.1 BRCA1 variants—Looking at the diagonals of their confusion matrices (Figure 

5), we observe that MLR+AS and NN+AS can recognize, with varying accuracies, members 

from three (1,2,5) and two classes (2,5), respectively. This overall trend is reflected in the 

class accuracies, which are higher for MLR-based protocols than for NN-based ones (Table 

4). If AS predictions are not included, the two methods also fail to recognize class 5 variants 

(Table 4). In fact, for MLR+AS and NN+AS protocols AS predictions are responsible for the 

accuracy of class 5, which is 0.43 (3 out of 7 correctly predicted variants) in both cases; AS 

predictions lead to a single failure, for a class 2 variant.

To understand the distribution of incorrect predictions among classes, we consider the off-

diagonal elements of the confusion matrices (Figure 5). For MLR+AS, incorrect predictions 

mostly group at positions adjacent to the diagonal, with only 9 out of 144 variants breaking 

this trend. For NN+AS this number grows to 31 and predictions (both correct and incorrect) 

seem to cluster around class 3 column.

If we analyze the predictions within the unified 3-class framework, we find that the class 

accuracies increase for MLR+AS: 0.82 and 0.56 for ‘Neutral’ and ‘Pathogenic’, respectively. 

For NN+AS, this is not the case, due to the previously mentioned clustering of predictions 

around class 3. Accuracy for the ‘Unknown’ class is the same as that for IARC 5-tier class 3, 

because the classes are the same.

Finally, we compare the performance of our predictors with that for the general predictors 

for which the output directly corresponded to a probability of pathogenicity (we only 

excluded CADD, because the score has another scale) (Figure 5). For the chosen predictors 

(PMut, PolyPhen-2, PON-P2, and SIFT) their score is a probability of pathogenicity that can 

be transformed into an equivalent of the IARC 5-tier classes, using the ENIGMA conversion 

table (see Materials and Methods). Focusing on the most frequent CAGI variants (31 from 

class 1; 100 from class 2), we see that MLR+AS performs better than general methods; for 

class 5, all general methods, except SIFT, identify fewer correct variants. The case of SIFT 

is of interest since some of the class 5 variants appear to be splicing variants according to 

our AS predictions: at this point, and without further evidence, it is unclear which is the 

correct view, the amino acid view provided by SIFT or the nucleotide view provided by AS 

predictions. For classes 3 and 4, the size of the sample, two and four variants, respectively, 

limits the value of the results, which are: for the two variants of class 3, MLR+AS performs 

worse than general methods; for the four variants of class 4, only PolyPhen-2 correctly 

identifies two of them. A remarkable feature of MLR+AS, relative to general methods, is 

that its predictions form a band around the diagonal, while general methods either scatter 

their predictions (PolyPhen-2, SIFT) or cluster them around class 3 (PON-P2 and PMut). 

Comparison of NN+AS with general methods (Figure 5) shows similarities with PON-P2 

and PMut, and a failure to identify members of class 1 that is shared with all general 
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methods, except PolyPhen-2; again, AS predictions favor our method for class 5, except in 

the case of SIFT.

The comparison within the three-class framework (Supp. Figure S2) confirms the previous 

trends, with MLR+AS having the largest class accuracy for ‘Neutral’, 0.82, well over that of 

general methods (0.33 for PolyPhen-2; 0.04 for SIFT, 0.02 for PMut and 0 for PON-P2). 

MLR+AS displays the second best accuracy for ‘Pathogenic’, together with PolyPhen-2 and 

behind SIFT. NN+AS again shows a performance below that of these two general methods, 

but above that of PON-P2 and PMut.

3.6.2 BRCA2 variants—For BRCA2, the situation is somewhat different. The diagonal 

elements of the confusion matrix (Figure 5) show that NN+AS can recognize variants from 

the five classes, with varying accuracies (Table 4), while MLR+AS recognizes only variants 

from classes 1, 2 and 5. Additionally, for the most frequent classes (1, 2) NN+AS is more 

balanced than MLR+AS (Figure 5, Table 4): 0.19 (1) and 0.38 (2) vs. 0.87 (1) and 0.01 (2), 

respectively. Inspection of the off-diagonal elements shows that wrong predictions are more 

spread for NN+AS than for MLR+AR. For example, for MLR+AS, essentially all (97%) the 

incorrect predictions of class 2 go to class 1, while this figure drops to 55% for NN+AS. As 

before, the tiny number of variants in the remaining classes reveals no clear trends. The AS 

predictions result in one correctly identified member of class 5 for the two versions of our 

protocol; AS predictions lead to a single failure, for a class 2 variant.

As for BRCA1, reduction of the five IARC 5-tier classes to a 3-class system reveals a 

reversion in the previous trend, with a high class accuracy for ‘Neutral’, higher for MLR+AS 

(0.96) than for NN+AS (0.70). Accuracy for the ‘Unknown’ class is the same as that for 

IARC 5-tier class 3, because the classes are the same. For the ‘Pathogenic’ class, NN+AS 

still performs better than MLR+AS (Figure 5, Table 4).

Finally, we compare the performance of our predictors with that for the general predictors 

for which the output directly corresponded to a probability of pathogenicity (we only 

excluded CADD, because the score has another scale) (Figure 5). Focusing on the most 

frequent CAGI variants (31 from class 1; 136 from class 2), we see that NN+AS performs 

better than general methods; MLR+AS is only better for class 1; for class 2 its accuracy is 

low, the same as SIFT, and below that of PolyPhen-2 and PMut. For classes 3, 4 and 5, the 

sample size is smaller than that of BRCA1 (2, 4, 7 vs. 2, 2, 3 variants for BRCA1 and 

BRCA2, respectively); for this reason, we believe that for these variants it is preferable to 

wait for next rounds of the CAGI challenge to assess the performance of the different in 

silico tools, including ours.

The comparison within the three-class framework (Supp. Figure S2) confirms the previous 

trends, showing that for the ‘Neutral’ class (167 out of 174 CAGI variants) both MLR+AS 

and NN+AS surpass general methods (Supp. Figure S2). For the ‘Pathogenic’ class (5 

variants), PolyPhen-2 and SIFT have the best performances, while our methods rank third 

(MLR+AS) and fourth (MLR+AS).
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4. Discussion

Obtaining good estimates of the functional impact and cancer risk of BRCA1 and BRCA2 
sequence variants plays a vital role in the diagnosis and management of inherited breast and 

ovarian cancers (Eccles et al., 2015; Findlay et al., 2018; Guidugli et al., 2018; Moreno et 

al., 2016; Paluch-Shimon et al., 2016). A priori, in silico tools can be used to obtain these 

estimates; however, their moderate success rate restricts their applicability (Ernst et al., 

2018). In this work, we have addressed this issue focusing on the problem of predicting the 

pathogenicity of BRCA1/2 missense variants using protein-specific information (Riera et al., 

2014). This approach has been validated in different proteins (Crockett et al., 2012; Riera et 

al., 2016); recent results (Hart et al., 2019) show that it can improve the identification 

BRCA1/2 pathogenic variants. Here, we present a new family of BRCA1- and BRCA2-

specific tools that we validate in two different ways: (i) in isolation, using manually curated 

sets of functionally and clinically annotated variants; and (ii) in combination with predictors 

of splicing impact (Figure 1), to interpret the variants from the ENIGMA challenge of the 

CAGI 5 experiment.

4.1 The performance of BRCA1- and BRCA2-specific predictors in isolation

When tested in isolation, we find that our two methods (MLR and NN) are competitive 

when compared with general methods (Section 3.5, Table 3 and Figure 4), for both BRCA1 

and BRCA2. In particular, their specificities are among the best, a property desirable from 

the point of view of HBOC diagnosis requirements (Ernst et al., 2018); they also have the 

best balances between specificity and sensitivity, with the only exception of PMut in 

BRCA1, which has slightly better figures for the MLR training set. General methods also 

show good success rates in our training sets (Figure 4), in contrast with the usually lower 

performance estimates cited in the literature. For example, the last version of PMut displays 

an MCC of 0.31 for both BRCA1 (63 variants) and BRCA2 (104 variants) (López-Ferrando, 

Gazzo, De La Cruz, Orozco, & Gelpí, 2017). In the same work, we find MCC values for 

other tools, computed on the same dataset: for BRCA1 they vary between 0.17 (PROVEAN) 

and 0.38 (LRT); for BRCA2 they vary between 0.01 (PROVEAN) and 0.19 (Mutation 

Assessor). In a previous study, using a small dataset of BRCA2 variants, Karchin et al. 

(Karchin, Agarwal, Sali, Couch, & Beattie, 2008) find that general tools display good 

sensitivities but low specificities. A similar trend has been recently reported by Ernst et al. 

(Ernst et al., 2018), after testing PolyPhen-2, SIFT, AlignGVGD and MutationTaster2 in a 

set of 236 BRCA1/2 variants. These authors express concern about the moderate 

performance observed, particularly about the low specificities observed relative to HBOC 

diagnosis requirements (e.g., PolyPhen-2: 0.67 and 0.72 for BRCA1 and BRCA2, 

respectively). We believe that our higher estimates for general predictors (Table 3 and Figure 

4), relative to those in the literature, may partly result from the overlap between their 

training sets and our manually curated dataset.

Presently, stand-alone use of in silico methods for HBOC diagnosis is discouraged (Ernst et 

al., 2018). Nonetheless, it is considered that these methods can be fruitfully combined with 

the results of functional assays, to provide an alternative to multifactorial models in the 

absence of family information (Guidugli et al., 2018). The tools presented in this work are 
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amenable to this type of approach because of their extreme simplicity and interpretability. 

This is a consequence of the small number of features utilized (3 and 6 for MLR and NN, 

respectively) and of the low complexity of our models (Riera et al., 2014). Additionally, our 

MLR models allow a direct interpretation of a variant’s impact at the molecular level, 

because they produce estimates of the HDR assay for the target variant. In this sense, the 

MLR approach resembles that of Starita et al. (Starita et al., 2015) who estimate HDR values 

using the results of other functional assays (E3 ligase scores and BARD1-binding scores). In 

our case, we use instead a few sequence-based features, with two conservation measures 

(Shannon’s entropy and psssmnat) standing among them given their recognized predictive 

power (C. Ferrer-Costa et al., 2004). Conceptually, this makes MLR methods an 

implementation of the idea of addressing pathogenicity prediction problems focusing on 

endophenotypes, rather than on clinical phenotypes. Endophenotypes are quantitative 

measures of intermediate phenotypes with clinical relevance (Masica & Karchin, 2016); they 

are closer to the genotype and, for this reason, may result in predictors with high success 

rates, given the small contribution of genetic background and environmental effects to the 

outcome of the variant. In general, this is the case when looking at clinical performance 

(Table 3, Figure 4). However, for BRCA1, the sensitivity (0.62) is low compared to 

specificity (0.87); while this may be a consequence of the discretization of the HDR 

prediction, it may also be a consequence of the extreme simplicity of our model. When 

testing the MLR model with SGE data we observe a significant correlation (Spearman’s 

ρ=0.47, p-value~0), comparable to that of Align-GVGD (ρ=0.46) and better than that of 

CADD (ρ=0.40), PhyloP (ρ=0.36), SIFT (ρ=0.36) and PolyPhen-2 (ρ=0.28) (values 

obtained from (Findlay et al., 2018), Extended Data Figure 9). However, visual inspection 

shows the presence of substantial deviations from a monotonic relationship (Figures 3A, 

3B). If we analyze the population of outliers using PCA and value distributions of the 

features in our model (Supp. Figure S1) we see that, generally, they have an intermediate 

behavior between ‘functional’ and ‘non-functional’ variants for all features. This points to an 

aspect of the variant’s impact that is poorly represented by our present set of features, like 

the effect of the mutation in RNA levels.

Finally, it is worth mentioning that our MLR predictors have been trained with small sets of 

variants that are concentrated in a reduced region of BRCA1 and BRCA2 (Figure 6). This is 

in contrast with the broader range of positions covered by the NN and the CAGI datasets. 

The fact that, in spite of this situation, the MLR tools are competitive suggests that they 

capture some general effect of variants on protein function/structure, like impact on stability 

(Yue, Li, & Moult, 2005).

4.2 The performance of BRCA1- and BRCA2-specific predictors in the CAGI 5 experiment

The ENIGMA challenge within the CAGI experiment provides a good opportunity to 

independently validate the performance of pathogenicity predictors for BRCA1/2. Two 

aspects are specific of the ENIGMA challenge. First, if some of the target variants are 

pathogenic, the participants do not know what molecular effect originates their 

pathogenicity: it can be the impact on protein function, but it can also be the impact on 

splicing (Eccles et al., 2015). For this reason, we decided to combine predictions for these 

two effects in our protocol (Figure 1). A second, distinctive aspect of the challenge is that 

Padilla et al. Page 17

Hum Mutat. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the submissions had to provide the predicted IARC 5-tier class for each variant (see Section 

2.1). This is relevant since this classification is strongly related to the clinical actions 

associated to each class (Goldgar et al., 2008; Moghadasi et al., 2016; Plon et al., 2008) 

which are in turn related to factors such as impact on the counselee or cost to the healthcare 

system. Collective consideration of these factors crystallizes into five decision regions (Plon 

et al., 2008) that are applied to the posterior probability of pathogenicity, a probability 

obtained after integrating different sources of clinical/biomedical evidence. In our case, this 

probability was estimated using only molecular information; nonetheless, to adapt our 

output to the CAGI requirements we directly applied the ENIGMA boundaries (Section 

2.3.1.4 and 2.3.2.1). We computed our performances on the basis of this assignment; 

however, we also obtained the performances for a simplified version of the ENIGMA 

classification, separately collapsing its neutral and pathogenic classes (Table 2).

Assessment of the results obtained (Figure 5, Supp. Figure S2, Tables 4 and 5) shows some 

clear trends. For the 5-class problem, all the methods (both ours and the general methods) 

have poor per class performances; however, our methods are more successful at reproducing 

the compositional bias of the sample and outperform general methods for the most abundant 

classes (1 and 2) in BRCA1/2, with only one exception, for class 2 in BRCA2, both 

PolyPhen-2 and PMut surpass MLR+AS; our methods also have a better distribution of 

wrong predictions among classes, because they tend to cluster nearby the correct class. 

These trends are reinforced when reducing the number of classes from five to three. Overall, 

the results for the CAGI challenge show that our methods can identify low-risk variants with 

an accuracy higher than that of general methods, a desirable property for HBOC diagnosis 

(Ernst et al., 2018). Part of this improved performance could be attributed to an unequal 

effect of applying the ENIGMA decision boundaries to the posterior probability generated 

by general methods. We believe that this mapping procedure may play a role, but not a 

determining one since comparison of the original, binary predictions of the general methods 

with those of the binary versions of our tools (MLR scores binarized as explained in Section 

3.2) gives a similar result (Table 6) again. MLR+AS has the top specificities for BRCA1/2 

and high sensitivities; NN+AS has the same sensitivities but lower specificities, nonetheless 

these are only surpassed by PMut.

In summary, we have applied the protein-specific approach to building a pathogenicity 

predictor for BRCA1/2 variants, using either clinical phenotypes or endophenotypes. The 

results obtained from our methods indicate that this approach can contribute to improve our 

ability to discriminate between high- and low-risk variants for BRCA1/2. Of particular 

interest is the MLR+AS tool, because it gives an estimate of the molecular impact of a 

sequence replacement that is easy to interpret since it corresponds to an in silico version of 

the HDR assay. Participation in the CAGI experiment has allowed us to obtain independent 

estimates of the performance of our predictors, to compare them with other predictors and to 

help us clarify the classification level at which in silico tools could be useful for HBOC 

diagnosis. This participation has also underlined the role that splicing predictions can play in 

the correct annotation of BRCA1/2 variants, particularly when integrated in protocols that 

combine different views of a variant’s impact.
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Figure 1. Prediction protocol.
In this article, we present a protocol for the prediction of missense variants that includes 

assessment of the impact of this variant on splicing and protein function. This protocol has 

been used to interpret the variants of the ENIGMA challenge in the CAGI 5 community 

experiment. MLR and NN refer to our two protein-specific predictors, based on a Multiple 

Linear Regression model and a neural network model, respectively. AS refers to the 

procedure to predict variants resulting in Affected Splicing (Moles-Fernández et al., 2018).
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Figure 2. Observed vs. predicted HDR values for (A) BRCA1 and (B) BRCA2.
In blue, we show the variants used for the training/testing of our MLR method (the version 

trained with oMSA, used to generate CAGI predictions). The HDR predicted values are 

cross-validated (LOOCV, see Materials and Methods). For completeness, we show in grey 

the points from the original HDR experiments that were excluded from the training process 

after applying our filtering procedure (see Materials and Methods).
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Figure 3. Prediction of the ‘saturation genome editing’ (SGE) experiment in BRCA1.
We use our impact prediction to check the correspondence between our HDR predictions 

and the results of the SGE experiment (Findlay et al., 2018). (A) Scatterplot representing 

SGE values vs. HDR predictions for the 1837 missense variants from (Findlay et al., 2018) 

(Spearman’s ρ=0.47, p-value~0). (B) Violin plot showing the distribution of variants for the 

different combinations of SGE and HDR functional categories: ‘functional’ (FUNC), 

‘intermediate’ (INT) and ‘non-functional’ (NOF). Points in the off-diagonal quadrants 

correspond to outliers: points whose SGE (observed) and HDR (predicted) functional classes 

do not coincide. (C) Principal component analysis of three variant populations (HDR-SGE 

classes): FUNC-FUNC (dark blue), NOF-NOF (red) and the outliers NOF-FUNC plus INT-

FUNC (light blue). (D) Principal component analysis of three variant populations (HDR-

SGE classes): FUNC-FUNC (dark blue), NOF-NOF (red) and the outliers INT-NOF plus 

FUNC-NOF (yellow). PC1 and PC2 refer to the first two principal components (those which 

accumulate the highest variance).
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Figure 4. Binary, cross-validated performance of the predictors.
We represent the performance of our MLR and NN methods, as well as that of general 

predictors (CADD, PolyPhen-2, PMut, PON-P2 and SIFT), using four parameters: accuracy 

and MCC (radar plots (A), (B), (C) and (D)) and sensitivity and specificity (scatterplots, (E) 

and (F)). The methods labeled MLR-CAGI and NN-CAGI are those used to generate our 

CAGI predictions; for completeness, we give the performance of the other versions: MLR-

psMSA (entropy and pssmnat values were obtained from psMSA-based parameters) and NN-

oMSA (entropy and pssmnat values were obtained from oMSA-based parameters). In (E) and 

(F) points are colored according to the set in which sensitivity and specificity were 

estimated: blue and orange for the MLR and NN sets, respectively.
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Figure 5. Heatmap of the predictor performances on the CAGI datasets.
Each heatmap represents the confusion matrix of a predictor. We provide six heatmaps per 

protein, two for our predictors (MLR+AS and NN+AS) and four for the general predictors 

(PolyPhen-2, PON-P2, PMut, and SIFT). In all the plots, the vertical and horizontal axes 

correspond to the observed (provided by CAGI organizers) and predicted IARC 5-tier 

classes, respectively. Diagonal and off-diagonal elements correspond to successful and failed 

predictions, respectively. NOTE: given the range differences in the predictions, each plot has 

its color scale.
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Figure 6. Distribution of the variants along the BRCA1 and BRCA2 sequences.
Each variant dataset used in this work is represented with a set of pins (indicating the 

location of each variant) and a colored surface that provides a general, smoothed view of the 

distribution. The different functional domains in each structure are represented with boxes; 

for representation purposes, BRCA1 (1863 aa) and BRCA2 (3418 aa) are displayed with the 

same length. The color codes for the different sets are: CAGI (lilac), SGE (green), MLR 

training (blue) and NN training (orange).
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Table 1A.

Size of the datasets used in this work (CAGI: missense + AS)

NN MLR CAGI SGE
†

BRCA1
226

(P=77/N=149)
‡ 28 144 1837

BRCA2
141

(P=36/N=105)
‡ 56 174 -

†
Dataset extracted from Findlay et al., 2018. SGE: saturation genome editing.

‡
P: pathogenic; N: neutral
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Table 1B.

Overlap between datasets (CAGI: missense + AS)

NN-CAGI MLR-CAGI MLR-SGE
†

BRCA1
18

(P=7/N=11)
‡ 2 28

BRCA2
5

(P=2/N=3)
‡ 4 -

†
Dataset extracted from Findlay et al., 2018. SGE: saturation genome editing.

‡
P: pathogenic; N: neutral
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Table 2.

Composition of the ENIGMA dataset in the CAGI 5 challenge

 (A) BRCA1

IARC 5-tier
class

1
(<0.001)

2
(0.001–0.049)

3
(0.05–0.949)

4
(0.95–0.99)

5
(>0.99)

CAGI 31 100 2 4 7

Three Class
† Neutral Unknown Pathogenic

CAGI 131 2 11

(B) BRCA2

IARC 5-tier
class

1
(<0.001)

2
(0.001–0.049)

3
(0.05–0.949)

4
(0.95–0.99)

5
(>0.99)

CAGI 31 136 2 2 3

Three Class
† Neutral Unknown Pathogenic

CAGI 167 2 5

†
This classification is a simplified version of the IARC 5-tier scheme (see manuscript) where the Neutral class corresponds to IARC classes 1 and 

2, the Pathogenic class corresponds to IARC classes 4 and 5, and Unknown corresponds to IARC class 3.
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Table 3.

Two-class (binary) performance of our predictors. ‘CAGI’ identifies the predictors used for this challenge

Protein Method SN SP ACC MCC

BRCA1

MLR
(psMSA) 0.692 0.933 0.821 0.651

MLR-CAGI
(oMSA) 0.615 0.867 0.75 0.502

NN
(oMSA) 0.922 0.852 0.876 0.746

NN-CAGI
(psMSA) 0.857 0.718 0.765 0.546

BRCA2

MLR
(psMSA) 0.828 0.741 0.786 0.571

MLR-CAGI
(oMSA) 0.862 0.852 0.857 0.714

NN
(oMSA) 0.75 0.867 0.837 0.592

NN-CAGI
(psMSA) 0.75 0.771 0.766 0.473
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Table 4.

Class accuracies for the CAGI variants (IARC 5-tier and 3-class unified classes). The color shading reflects 

the correspondence between the two class systems.

(A) BRCA1

IARC 5-tier 1
(<0.001)

2
(0.001–0.049)

3
(0.05–0.949)

4
(0.95–0.99)

5
(>0.99)

MLR 0.323 0.37 0 0 0

MLR +AS 0.323 0.37 0 0 0.429

NN 0 0.29 0 0 0

NN + AS 0 0.29 0 0 0.429

Three Class Neutral Unknown Pathogenic

MLR 0.817 0 0.273

MLR +AS 0.817 0 0.545

NN 0.275 0 0

NN + AS 0.275 0 0.273

(B) BRCA2

IARC 5-tier 1
(<0.001)

2
(0.001–0.049)

3
(0.05–0.949)

4
(0.95–0.99)

5
(>0.99)

MLR 0.871 0.007 0 0 0

MLR +AS 0.871 0.007 0 0 0.333

NN 0.194 0.382 0.5 0.5 0

NN + AS 0.194 0.382 0.5 0.5 0.333

Three Class Neutral Unknown Pathogenic

MLR 0.97 0 0

MLR +AS 0.964 0 0.2

NN 0.701 0.5 0.4

NN + AS 0.701 0.5 0.6
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Table 5.

Overall accuracies (ACC) and MCC for our two methods (MLR and NN, with and without splicing) and the 

general methods (PMut, PolyPhen-2, PON-P2, and SIFT) in the CAGI dataset.

(A) BRCA1

IARC 5-tier MLR MLR+AS NN NN+AS PMut PolyPhen-2 PON-P2 SIFT

ACC 0.326 0.347 0.201 0.222 0.028 0.208 0.014 0.049

MCC −0.041 0.006 0.015 0.056 −0.002 0.031 0 0.021

Three Class MLR MLR+AS NN NN+AS PMut PolyPhen-2 PON-P2 SIFT

ACC 0.764 0.785 0.25 0.271 0.035 0.354 0.014 0.118

MCC −0.237 0.354 −0.012 0.055 0.026 0.136 0 0.123

(B) BRCA2

IARC 5-tier MLR MLR+AS NN NN+AS PMut PolyPhen-2 PON-P2 SIFT

ACC 0.161 0.167 0.345 0.351 0.144 0.305 0.011 0.034

MCC −0.109 −0.068 −0.017 −0.006 −0.029 0.078 0 0.017

Three Class MLR MLR+AS NN NN+AS PMut PolyPhen-2 PON-P2 SIFT

ACC 0.931 0.931 0.69 0.695 0.184 0.431 0.011 0.086

MCC 0.18 0.277 0.185 0.213 −0.013 0.125 0 0.022
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Table 6.

Binary performances (sensitivities and specificities) for our predictors and the general predictors (PMut, 

PolyPhen-2, PON-P2, SIFT).

(A) BRCA1

MLR+AS NN+AS CADD PMut PolyPhen-2 PON-P2 SIFT

Sensitivity

(P = 11)†
0.909 0.909 1 0.818 0.727 1 1

Specificity

(N = 131)‡
0.977 0.718 0.456 0.817 0.557 0.188 0.435

(B) BRCA2

MLR+AS NN+AS CADD PMut PolyPhen-2 PON-P2 SIFT

Sensitivity

(P = 5)†
0.8 0.8 1 0.6 1 1 0.8

Specificity

(N = 167)‡
0.97 0.886 0.533 0.958 0.653 0.625 0.731

†
P: pathogenic;

‡
N: neutral
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