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Artificial neural network analysis 
of the oxygen saturation signal 
enables accurate diagnostics of 
sleep apnea
Sami Nikkonen   1,2, Isaac O. Afara   1, Timo Leppänen1,2 & Juha Töyräs1,2,3

The severity of obstructive sleep apnea (OSA) is classified using apnea-hypopnea index (AHI). Accurate 
determination of AHI currently requires manual analysis and complicated registration setup making 
it expensive and labor intensive. Partially for these reasons, OSA is a heavily underdiagnosed disease 
as only 7% of women and 18% of men suffering from OSA have diagnosis. To resolve these issues, 
we introduce an artificial neural network (ANN) that estimates AHI and oxygen desaturation index 
(ODI) using only the blood oxygen saturation signal (SpO2), recorded during ambulatory polygraphy, 
as an input. Therefore, hypopneas associated only with an arousal were not considered in this study. 
SpO2 signals from 1692 patients were used for training and 99 for validation. Two test sets were 
used consisting of 198 and 1959 patients. In the primary test set, the median absolute errors of ANN 
estimated AHI and ODI were 0.78 events/hour and 0.68 events/hour respectively. Based on the ANN 
estimated AHI and ODI, 90.9% and 94.4% of the test patients were classified into the correct OSA 
severity category. In conclusion, AHI and ODI can be reliably determined using neural network analysis 
of SpO2 signal. The developed method may enable a more affordable screening of OSA.

Obstructive sleep apnea (OSA) is a breathing disorder in which the upper airways collapse repetitively during 
sleep, causing breathing cessation events1. The event is called an apnea if the airways are completely obstructed 
and a hypopnea if the obstruction is partial1. OSA is associated with several severe health consequences such as 
stroke and heart failure2. In addition, OSA causes sleep fragmentation and degrades the quality of sleep, which 
often leads to excessive daytime sleepiness, cognitive impairment, depression, and an increased risk of traffic 
accidents3–5. The prevalence of OSA has been estimated to be as high as 23.4% in females and 49.7% in males6.

The diagnostics of OSA is mainly based on the apnea-hypopnea-index (AHI), which is simply the number 
of apneas and hypopneas per hour of sleep7. Alternatively, the oxygen desaturation index (ODI), i.e. the number 
of oxygen desaturation events per hour, is sometimes used in OSA screening instead of AHI8,9. The severity of 
OSA is classified into one of four categories based on AHI: No OSA (AHI < 5), mild OSA (5 ≤ AHI < 15), mod-
erate OSA (15 ≤ AHI < 30) and severe OSA (AHI ≥ 30)7. Currently, accurate diagnostics of OSA requires manual 
scoring of apneas and hypopneas from ambulatory polygraphic or in-lab polysomnographic (PSG) recordings, 
which is time consuming and labor intesive making it an expensive process10,11. Most analysis software offer the 
possibility of automatic scoring of respiratory events, but the accuracy of these automatic scoring algorithms has 
been shown to be relatively poor. For example, the mean difference between manually and automatically scored 
AHIs (scored with the ApneaLink-system) was reported to be 5.8 events/hour, indicating underestimation of 
AHI by the automatic software12. Similar findings (the difference of 8.4 events/hour) have been reported with the 
Embletta-system13. In addition, current recording equipment requires multiple sensors that record several sig-
nals (e.g. breathing and electroencephalography) further increasing the cost and complexity of OSA diagnostics. 
Furthermore, due to the cost and the amount of manual work required for accurate scoring, OSA diagnosis is only 
based on a single recording night. However, several studies have shown that inter-night variations of AHI and 
ODI are relatively large and therefore even with perfect scoring, a single night’s recording may not be sufficient 
for accurate diagnosis14–17.
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Furthermore, the unnatural environment of the sleep laboratory, or even ambulatory diagnostic equipment, 
can cause discomfort to patients, reducing sleep efficiency and altering the diagnosis, especially on the first night 
of study14,18. Therefore, even with expensive in-lab PSG and careful manual scoring, many patients are misdiag-
nosed. In fact, it has been estimated that only 7% of women and 18% of men suffering from OSA have diagnosis19. 
There is also a considerable variation between scorers and thus the diagnosis is dependent on the person scoring 
the recording20. In some cases, the diagnosis for the same individual has varied from no OSA to severe OSA20. For 
these reasons, an accurate and automatic estimation of OSA severity could considerably improve its diagnostics.

Blood oxygen saturation signals have been previously used to classify the severity of sleep apnea using various 
different methods including neural networks21–26. However, the number of test subjects in these previous studies 
has been relatively small23–25. Additionally, the methods presented in these studies have not estimated AHI, the 
accuracy of the classifier has been only modest or a non-standard OSA severity classification has been used, i.e. 
only a binary classification with arbitrary thresholds22–26. Therefore, in the present study, we aim to introduce an 
artificial neural network method that would directly estimates AHI and ODI exclusively from the blood oxygen 
saturation signal.

To the best of our knowledge, the present study is the first artificial neural network- based approach for auto-
matic and accurate estimation of AHI and ODI using only a blood oxygen saturation signal. By first estimating 
the numeric values of AHI and ODI and determining the severity category of OSA based on those values, a 
more accurate estimation of the OSA severity can be achieved beyond the severity classification. In addition, the 
determination of the numeric value of AHI enables the neural network-estimated OSA severity to be directly 
compared to OSA severity assessed by standard manual scoring.

Results
We trained two neural networks that utilize oxygen saturation signal as the input, one for the estimation of AHI 
and one for the estimation of ODI. The differences between manual and neural network estimated AHI and ODI 
were small in the primary test set. The median absolute error was 0.78 events/hour for AHI and 0.68 events/hour 
for ODI. All calculated errors between the AHI and ODI estimated by the neural networks and the AHI and ODI 
determined with the home sleep apnea test (HSAT) in the primary test set are presented in Table 1. The mean 
square error performance (events/10-minute epoch) of the training set was 1.53 for the AHI-network and 1.27 
for the ODI-network while the performance of the validation set was 1.60 for the AHI-network and 0.93 for the 
ODI-network.

In the primary test set, the AHI estimated by the neural network was close to the HSAT-AHI for all patients 
although the difference increased slightly with increasing AHI (Fig. 1a). The same was true for ODI albeit with 
smaller difference between estimated ODI and HSAT-ODI (Fig. 2a). The error distributions for the primary test 
set are presented as histograms in Fig. 3. Intraclass correlation coefficients were 0.960 (95% CI: 0.947–0.970) 
between HSAT-AHI and estimated AHI, and 0.975 (95% CI: 0.967–981) between HSAT-ODI and estimated ODI.

In the primary test set, 90.9% and 94.4% of the patients were classified to the correct OSA severity cate-
gory based on neural network -estimated AHI and ODI respectively. This amounts to 18 of the 198 primary test 
patients being misclassified when using AHI and to 11 being misclassified with ODI (Figs 1b and 2b). Confusion 
matrixes showing the patient classification by both networks are presented in Fig. 4c,d. HSAT-AHI vs. estimated 
AHI is presented in Fig. 4a and HSAT-ODI vs. estimated ODI is presented in Fig. 4b.

The neural network performed well also in the Embletta test set. The median absolute error was 1.35 events/
hour for AHI and 0.76 events/hour for ODI. The errors between the HSAT-AHI and HSAT-ODI, and the AHI 
and ODI estimated by the neural networks in the Embletta test set are also presented in Table 1. 86.0% of patients 
were correctly classified using AHI and 92.1% using ODI. Intraclass correlation coefficients in the Embletta test 
set were 0.939 (95% CI: 0.933–0.944) between HSAT-AHI and estimated AHI, and 0.964 (95% CI: 0.961–967) 
between HSAT-ODI and estimated ODI. HSAT-AHI vs. estimated AHI and HSAT-ODI vs. estimated ODI for 
the Embletta test set are presented in Fig. 5a,b. Confusion matrixes showing the patient classification by both 
networks in the Embletta test set are presented in Fig. 5c,d.

Error parameter

Primary test set 
(N = 198)

Embletta test set 
(N = 1959)

AHI ODI AHI ODI

mean absolute error (events/hour)* 1.41 1.17 2.23 1.34

median absolute error (events/hour)* 0.78 0.68 1.35 0.76

min error (events/hour)* 0 0 0 0

max error (events/hour)* 9.45 8.36 40.1 34.5

median % error* 15.0 14.5 25.6 10.1

misclassified: mean absolute error (events/hour) 1.72 1.18 3.40 1.86

misclassified: median absolute error (events/hour) 1.10 0.67 1.83 0.95

misclassified: median % error 12.2 11.0 12.1 8.10

Table 1.  The differences between values of AHI and ODI determined with manual scoring of polygraphic 
recordings and automatic artificial neural network analyses in the primary test set and in the Embletta test 
set. Mean absolute error, median absolute error, and median % error were also calculated separately for those 
patients who were misclassified to a wrong OSA severity category when using the neural network- estimated 
AHI and ODI. *Denotes that the error was calculated for the whole test set.
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Discussion
The accuracy of our neural networks was high as 90.9% and 94.4% of the patients in the primary test set were 
classified to the correct OSA severity category based on AHI and ODI respectively. The median absolute errors 
were also low being just 0.78 events/hour for AHI and 0.68 events/hour for ODI. Only 18 patients were misclassi-
fied when using AHI and 11 when using ODI. Most of these misclassified patients had AHI and ODI close to the 
threshold values between the severity categories where even a small change in AHI or ODI can alter the diagnosis 
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Figure 1.  (a) Apnea-hypopnea index (AHI) determined with home sleep apnea test (HSAT) and the AHI 
estimated by the artificial neural network for each test patient in the primary test set (N = 198). (b) Obstructive 
sleep apnea severity classification based on HSAT-AHI values and the severity classification based on neural 
network estimated AHI.
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Figure 2.  (a) Oxygen desaturation index (ODI) determined with home sleep apnea test (HSAT) and the ODI 
estimated by the artificial neural network for each test patient in the primary test set (N = 198). (b) Obstructive 
sleep apnea severity classification based on HSAT-ODI values and the severity classification based on neural 
network estimated ODI.
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(Figs 1 and 2). However, this problem is encountered in all threshold-based diagnostics and is also an issue when 
using standard manual scoring. Therefore, the misclassified patients do not necessarily have a major error in their 
estimated AHI or ODI values. The maximum errors for AHI and ODI in the primary test set were 9.45 events/
hour and 8.36 events/hour respectively. These errors are still relatively small considering that the patients with 
the greatest errors had high AHI values (the patient with the greatest error had an AHI of 69.0 events/hour). As 
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Figure 3.  (a) Histogram of the absolute errors in AHI estimated by the neural network in the primary test set 
(N = 198). (b) Histogram of the absolute errors in ODI estimated by the neural network in the primary test set 
(N = 198).

0 25 50 75 100
Estimated AHI (events/hour)

0

25

50

75

100

H
S

A
T-

A
H

I (
ev

en
ts

/h
ou

r)

0 25 50 75 100
Estimated ODI (events/hour)

0

25

50

75

100

H
S

A
T-

O
D

I (
ev

en
ts

/h
ou

r)

No O
SA

Mild

Mod
era

te

Sev
ere

Estimated class

No OSA
Mild

Moderate
SevereTr

ue
 c

la
ss

4
4

46
5

3
19
1

1
26

89

No O
SA

Mild

Mod
era

te

Sev
ere

Estimated class

No OSA
Mild

Moderate
SevereTr

ue
 c

la
ss

2
3

49
4

2
17

26

95

a) b)

c) d)

Figure 4.  (a) Apnea-hypopnea index (AHI) determined with home sleep apnea test (HSAT) vs. the AHI 
estimated by the artificial neural network in the primary test set (N = 198). The line represents ideal estimation 
where HSAT-AHI = estimated AHI. (b) Oxygen desaturation index (ODI) determined with home sleep apnea 
test (HSAT) vs. the ODI estimated by the artificial neural in the primary test set (N = 198). (c) Confusion matrix 
for the AHI-network in the primary test set. (d) Confusion matrix for the ODI-network in the primary test set.
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the diagnostic threshold of severe OSA is 30 events/hour, this error would not alter the diagnosis. In addition, 
none of the test patients had their severity classification differ by more than one severity category i.e., no one 
changed from mild to severe or from moderate to no OSA for example, as is evident from the confusion matrixes 
(Fig. 4c,d). This suggests that the neural network was capable of estimating OSA severity at least reasonably well 
in all of the tested patients, which is also evident from Figs 1, 2 and 4a,b.

The neural networks performed very well also in the Embletta test set as 86.0% of patients were correctly clas-
sified using the neural network -estimated AHI and 92.1% using the neural network -estimated ODI. Although 
the network performed slightly worse in the Embletta dataset, the results are still impressive considering that the 
dataset was scored by different people and recorded with a different device. These results show that the network 
generalizes at least reasonably well and can also handle a totally new and unseen dataset.

The values of AHI and ODI can vary significantly (by as much as 1600%) between scorers, especially if they 
are from different hospitals or sleep laboratories20. Considering this large uncertainty in manual scoring, the 
accuracies of the neural networks developed in this study can be considered excellent. It is also important to note 
that the HSAT-AHI and HSAT-ODI in this study were determined manually by individual scorers and that other 
scorers would have come up with different values for the HSAT-AHI and HSAT-ODI.

It is well known that the inter-night variation of AHI and ODI can be large and thus, even with perfect scoring, 
the severity of OSA cannot be accurately determined from only a single recording night14–17. However, due to 
the high costs of registration and scoring, one recording night is the currently used standard in clinical practice. 
By using the neural network solution presented in this paper, the diagnostic accuracy could be improved as the 
patient could be monitored for as many nights as is needed without any extra scoring workload. In addition, since 
the present neural network only requires a blood oxygen saturation signal, the patients’ sleep efficiency could be 
improved as it is likely that the oximeter alone does not cause as much discomfort to the patient as the standard 
polygraphy equipment. It would also allow screening of larger number of patients for OSA since the cost and 
labor required for diagnosis would decrease significantly.

The neural network models developed in the present study are computationally light and do not require sig-
nificant resources. For example, analyzing both of the test sets using the neural network models running on a 
basic personal computer takes less than five seconds, while manual scoring could easily take weeks. The near 
instantaneous nature of the neural network approach could enable real-time applications for monitoring or as 
a preliminary estimate for OSA severity before manual scoring. A possible future direction of this study could 
involve further clinical validation of the presented neural network. The neural network could be used alongside 
standard manual scoring and the results could be compared to validate the performance of the network also in 
clinical practice. Furthermore, the neural network could be validated to accurately estimate AHI in different 
sleeping positions.
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Figure 5.  (a) Apnea-hypopnea index (AHI) determined with home sleep apnea test (HSAT) vs. the AHI 
estimated by the artificial neural network in the Embletta test set (N = 1959). The line represents ideal 
estimation where HSAT-AHI = estimated AHI. (b) Oxygen desaturation index (ODI) determined with home 
sleep apnea test (HSAT) vs. the ODI estimated by the artificial neural in the Embletta test set (N = 1959). (c) 
Confusion matrix for the AHI-network in the Embletta test set. (d) Confusion matrix for the ODI-network in 
the Embletta test set.
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Limitations
The main limitation of this study is that the polygraphic recordings were conducted with ambulatory devices not 
including the recording of EEG. Therefore, hypopneas associated with an arousal are not included in either the 
HSAT-AHI or the neural network estimated AHI. In addition, the ambulatory recordings used to train the neural 
networks are less accurate than full in-lab PSG-recordings. The consequence is that the present neural networks 
are likely to underestimate the severity of OSA when compared to a full PSG-study. This is especially true for 
patients who experience only mild desaturations. Therefore, the presented neural network method cannot be 
used to replace full in-lab PSG studies. It should only be used in cases where ambulatory recording without EEG 
is enough, such as screening for OSA, where HSAT devices lacking EEG are widely used and accepted27,28.

In addition, the data was re-scored according to the 2007 AASM scoring rules, which subsequently have 
changed slightly. According to the 2007 rules, a desaturation-linked hypopnea is scored if the airflow signal drops 
≥30% from the reference level causing at least 4% desaturation while in the current rules (AASM 2012) only a 
3% desaturation is required10,11. The consequence is that the neural network models were optimized according to 
the 2007 AASM rules; thus if compared with manual scoring done by the current rules, the networks are likely to 
slightly underestimate AHI and ODI. This is not a critical issue however, as it could be addressed by re-scoring the 
whole training set based on the new rules and then re-training the networks. However, with the present dataset, 
this would require enormous amount of manual labor. Nevertheless, this does not alter the underlying concept 
of the neural network approach proposed in this study and no significant difference in results is expected if 3% 
hypopneas were to be included. Another limitation is that the neural network is not able to differentiate between 
OSA and central sleep apnea (CSA) as this would require information about the breathing effort, which is not 
present in the SpO2-signal. Additionally, it is possible that the neural network could give a false positive result for 
a patient who has desaturations not related to sleep apnea. Finally, the neural network is not able to discriminate 
between patients having REM-dominant sleep apnea and patients having NREM-dominant sleep apnea. In order 
to achieve this kind of discrimination, the neural network would need to be retrained to estimate AHI during 
REM and NREM sleep using full PSG recordings allowing an accurate determination of sleep stages. As this 
cannot be done using the present dataset, further studies are warranted to increase the clinical usefulness of the 
present neural network.

Conclusions
In conclusion, it is possible to use neural networks to automatically and accurately estimate AHI and ODI using 
only the oxygen saturation signal. This automatic approach could allow more patients to be screened for a fraction 
of the current cost and thus enable treatment for many who are suffering from OSA but are not diagnosed.

Methods
A dataset consisting of 1989 polygraphic recordings of patients with suspected OSA was used to train and vali-
date the neural networks. The data was collected using an ambulatory Unisalkku-device (Neurotech, Kortejoki, 
Finland) recording four channels (airflow, respiratory effort, body position, blood oxygen saturation) between 
1992 and 2003 in Kuopio University Hospital29. An example of the recorded signals is presented in Fig. 6. All 
recordings were manually reanalyzed during 2012–2015 using the American Academy of Sleep Medicine (AASM 
2007) scoring rules10. As defined by these rules, hypopnea was scored, if the airflow signal dropped ≥30% from 
reference level causing at least 4% desaturation in the SpO2-signal (AASM 2007 rule 4A)10. The research was 
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Figure 6.  Example of a four channel Unisalkku recording used in the study.
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performed in accordance with relevant guidelines and informed consent was obtained from all participants. 
Ethics Committee of the Hospital District of Northern Savo, Kuopio, Finland approved the study (127/2004, 
24/2013).

The Unisalkku recordings were divided into a training set of 1791 recordings (≈90%) and to a primary test 
set of 198 recordings (≈10%). The division was done by first sorting all patients based on their AHI and assign-
ing every 20th patient into the test set. This division method resulted in a test set that included patients from all 
OSA severity categories with close to the full range of AHI. 99 patients from the training set were also randomly 
selected to a separate validation set leaving a total of 1692 patients for the training set. Patients’ characteristics in 
the whole Unisalkku dataset, training set, validation set and primary test set are presented in Tables 2, 3 and 4.

To test how the neural networks perform in a completely different dataset, we also formed an additional test 
set consisting of recordings of 1959 suspected sleep apnea patients conducted in the Diagnostic Imaging Center, 
Kuopio University Hospital during 2004–2015. The recordings were conducted with an Embletta device (Natus 
Medical Inc., CA, USA) recording seven channels (nasal pressure airflow, thermistor airflow, blood oxygen sat-
uration, thorax respiratory effort, abdomen respiratory effort, audio, body position) and equipped with a Nonin 
XPOD 3012 pulse oximeter (Nonin Medical Inc., MN, USA). The recordings were scored with the same AASM 
2007 scoring rules10 as the Unisalkku dataset. This Embletta dataset was utilized only as a test set and was not used 
for training the network. Patients’ characteristics in the Embletta dataset are also presented in Tables 2, 3 and 4.

The blood oxygen saturation signals from patients belonging to the training and validation sets were divided 
into 10-minute epochs with 98% overlap and downsampled from a sampling frequency of 4 Hz to 0.5 Hz. We 
calculated AHI and ODI for each epoch based on the manually reanalyzed recordings. These 10-minute epochs 
were pooled into one large training dataset (total of 3 480 024 epochs) which was used to train the neural net-
works. Two separate networks were trained with different targets: one for AHI and one for ODI. The networks 
consisted of three feedforward layers of sizes 60, 15 and 5. Sigmoid symmetric transfer function was used before 
each layer. A scaled conjugate gradient backpropagation algorithm was used as the training function30. The output 
variables of the networks were continuous values representing AHI and ODI for the corresponding input epoch. 
Mean squared error was used as a performance function for the networks. The networks were trained until the 

Whole Unisalkku 
dataset (N = 1989)

Training set 
(N = 1692)

Validation set 
(N = 99)

Primary test set 
(N = 198)

Embletta test set 
(N = 1959)

Median Range Median Range Median Range Median Range Median Range

Age (years) 48.1 18.3–81.1 48.2 18.3–80.3 46.4 22.4–70.0 48.3 20.9–81.1 49.6 18.1–87.7

AHI (events/hour) 5.3 0.0–148.7 5.3 0.0–148.7 4.8 0.0–101.6 6.0 0.0–99.1 5.9 0.0–123.0

ODI (events/hour) 4.5 0.0–149.0 4.4 0.0–149.0 4.5 0–99.7 5.0 0–98.8 5.0 0.0–120.5

BMI (kg/m2) 28.4 17.5–74.0 28.4 17.5–74.0 28.8 18.8–60.4 28.7 17.6–54.2 28.4 17.5–74.0

Minimum SpO2 (%) 80 1–97 81 1–97 81 1–93 79 1–97 86 1–96

Apnea proportion (%) 15.4 0.0–100.0 15.6 0.0–100.0 14.5 0.0–100.0 15.1 0.0–100.0 34.6 0.0–100.0

Time with <90% 
SpO2 (%) 0.9 0.0–100.0 0.9 0.0–100.0 0.8 0.0–100.0 1.0 0.0–76.7 1.1 0.0–100.0

Supine time (%) 38.5 0.0–99.3 38.5 0.0–98.1 38.6 0.0.–97.6 38.8 0.0–99.1 37.4 0.0–97.3

Table 2.  The patient demographic data: median and range for continuous variables in the whole Unisalkku 
dataset, training set, validation set, primary test set and the Embletta test set. AHI = apnea-hypopnea index, 
ODI = oxygen desaturation index, BMI = body mass index, apnea proportion is the proportion of apnea events 
out of all obstructive (apneas and hypopneas) events, supine time is the proportion of recording time spent in 
supine position.

Whole Unisalkku dataset 
(N = 1989) Training set (N = 1692) Validation set (N = 99) Primary test set (N = 198) Embletta test set (N = 1959)

Number Proportion Number Proportion Number Proportion Number Proportion Number Proportion

OSA severity

No OSA 967 48.6% 827 48.9% 50 48.5% 90 45.5% 905 46.2%

Mild 505 25.4% 430 25.4% 23 25.8% 52 26.3% 507 24.9%

Moderate 257 12.9% 218 12.9% 12 12.6% 27 13.6% 268 13.7%

Severe 260 13.1% 217 12.8% 14 13.1% 29 14.6% 279 14.2%

Hypertension 951 47.8% 799 47.2% 48 48.5% 104 52.5% — —

Diabetes 399 20.1% 330 19.5% 20 20.2% 49 24.7% — —

Coronary artery 
disease 247 12.4% 204 12.1% 13 13.1% 30 15.1% — —

Table 3.  The patient demographic data: number and proportion of OSA severity and known preexisting 
medical conditions in the whole Unisalkku dataset, training set, validation set, primary test set and the Embletta 
test set. A ‘—’ denotes that this data was not collected for the Embletta dataset.
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validation set performance started decreasing, i.e. the value of mean squared error started to increase for 100 
continuous iterations at which point the training was stopped and the network with the best validation set per-
formance was selected. This approach also helps to avoid overfitting the network to the training set. MATLAB 
(2017b, MathWorks, Natick, MA) with custom functions and MATLAB’s neural network toolbox was used to 
train the networks.

Since the neural networks were trained to estimate AHI or ODI for a 10-minute epoch, the oxygen saturation 
signals of patients belonging to both independent tests set were also split into similar 10-minute epochs, down-
sampled to 0.5 Hz, and used to estimate AHI and ODI of each epoch. The estimated full-night AHI and ODI for 
each test patient were calculated as an average of the values obtained from the 10-minute epochs.

The mean absolute error, median absolute error, maximum error and median percentage error of the esti-
mated AHI and ODI for all patients in both test sets were calculated to assess the accuracy of the networks. In 
addition, the estimated values of AHI and ODI were used to classify the test patients into the standard OSA 
severity categories (no OSA, mild OSA, moderate OSA, severe OSA) and the number and percentage of correctly 
classified patients were calculated. Classification accuracy was calculated by dividing the number of correctly clas-
sified patients by the total number of patients. To quantify the magnitude of errors that lead to misclassification, 
we also calculated the mean absolute error, median absolute error, and median percentage error separately for 
patients that were misclassified into a wrong OSA severity category using the neural networks.

Additionally, the intraclass correlation coefficients (ICC) between the HSAT-AHI and estimated AHI and 
between the HSAT-ODI and estimated ODI were calculated. ICC can be used to assess the consistency of meas-
urements made by different observers, i.e., in this case the scorers and the neural network31,32.
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