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Excessive self-reactive and inadequate affinity-matured antigen-
specific antibody responses have been reported to coexist in lupus,
with elusive cellular and molecular mechanisms. Here, we report
that the antigen-specific germinal center (GC) response―a process
critical for antibody affinity maturation―is compromised in murine
lupus models. Importantly, this defect can be triggered by exces-
sive autoimmunity-relevant CD11c+Tbet+ age-associated B cells
(ABCs). In B cell-intrinsic Ship-deficient (ShipΔB) lupus mice, exces-
sive CD11c+Tbet+ ABCs induce deregulated follicular T-helper (TFH)
cell differentiation through their potent antigen-presenting func-
tion and consequently compromise affinity-based GC selection.
Excessive CD11c+Tbet+ ABCs and deregulated TFH cell are also pre-
sent in other lupus models and patients. Further, over-activated
Toll-like receptor signaling in Ship-deficient B cells is critical for
CD11c+Tbet+ ABC differentiation, and blocking CD11c+Tbet+ ABC
differentiation in ShipΔB mice by ablating MyD88 normalizes TFH
cell differentiation and rescues antigen-specific GC responses, as
well as prevents autoantibody production. Our study suggests
that excessive CD11c+Tbet+ ABCs not only contribute significantly
to autoantibody production but also compromise antigen-specific
GC B-cell responses and antibody-affinity maturation, providing a
cellular link between the coexisting autoantibodies and inade-
quate affinity-matured antigen-specific antibodies in lupus models
and a potential target for treating lupus.
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The humoral immune system can efficiently select, from a
large repertoire of B cells, for those of no/low affinity to self-

antigens and high affinity to foreign antigens to produce anti-
bodies, so that invading pathogens can be eliminated without
self-harming (1, 2). Failure in these selections can lead to 2
distinct types of humoral immune defects featured by excessive
self-reactive and inadequate affinity-matured antigen-specific
antibody responses, respectively (3). Interestingly, several mu-
rine lupus models produce excessive autoantibodies and inade-
quate affinity-matured antigen-specific antibodies at the same time,
including pristane (tetramethylpentadecane [TMPD])-induced
lupus mice (4), mice with lupus-like chronic graft-versus-host dis-
ease (cGVHD) (5), and B cell-intrinsic Ship-deficient (ShipΔB)
mice with spontaneous lupus phenotypes (6). Lupus and lupus-like
cGVHD patients have also been reported to respond less effi-
ciently to vaccinations (7–9) and are more susceptible to infections
(10–13). These observations raise the possibility that, in addition
to impaired selection against self-reactive B cells, the selection for
affinity-matured antigen-specific B cells is also impaired in lupus
and lupus-like diseases.

The selection for affinity-matured antigen-specific B cells oc-
curs in germinal centers (GCs), where B-cell receptors (BCRs)
are rapidly diversified by somatic hypermutation (SHM) and
selected by follicular T helper (TFH) cells based on specificity
and affinity, a process referred to as antibody affinity maturation
(AAM) (14–16). Efficient AAM is critical for the development
of protective antibodies against life-threating infectious patho-
gens, such as HIV and influenza viruses (17, 18). A prevailing
model of this process involves BCR affinity-based uptake of
antigens, which determine the amount of major histocompati-
bility complex (MHC) II antigen–peptide complexes presented
by germinal center B (GCB) cells to cognate TFH cells, and
therefore the levels of survival signals TFH cells provide to GCB
cells (14–16). GCB cells with impaired SHM machinery or
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negative selection signals, such as those with mutations in AID
(19, 20) or Fas (21), have impaired AAM. The impaired AAM
observed in ShipΔB mice is counterintuitive as Ship deficiency
enhances not only AID expression but also negative selection (6,
22), raising the possibility of non-GCB cell-intrinsic mechanisms.
The number of TFH cells has been proposed to set the

threshold for GCB cell selection, and either inadequate or ex-
cessive TFH cells may cause impaired GC selection and AAM
(23, 24). Notably, excessive TFH cells are also associated with
autoantibody production and have been proposed to drive
autoimmunity-associated spontaneous GC formation and extra-
follicular B-cell responses (24, 25). Both mutations in T cells and
myeloid antigen-presenting cells (APCs) have been shown to
modulate TFH differentiation (25–28). However, while T-B
cognate interaction is critical for B-cell differentiation and sev-
eral B cell-intrinsic factors (I-Ab, ICOSL, e.g.) have been shown

to promote TFH differentiation (29–31), the specific B-cell sub-
sets responsible for such effect is not fully understood.
Age-associated B cell (ABC) is a B-cell subset recently iden-

tified independently by Hao et al. (32) and Rubtsov et al. (33),
with a B220+CD19+CD43−CD93−CD23−CD21−CD11c+Tbet+

phenotype (34). The number of these cells increases when mice
age, respond to intracellular infections or are under pathogenic
conditions (34). ABCs have been implicated in autoimmunity in
both mice and human (34). Several studies have shown that
ABCs produce autoantibodies upon stimulation, and that inhi-
bition of ABC differentiation by ablating Tbet prevents auto-
antibody production in mice (33–37), including our study in a
lupus-like cGVHD model (35). In human, CD11c+Tbet+ B cells
are linked to autoantibody-producing plasma cells (38). Toll-like
receptor (TLR) agonists and BCR crosslinking, in addition to IFN-
γ and IL-21 signalings, have been suggested to synergize to pro-
mote ABC differentiation (39, 40). Interestingly, B cell-intrinsic
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TLR signaling adaptor MyD88 also regulates autoantibody pro-
duction (41). But it is not clear whether ABCs mediate such reg-
ulation. Furthermore, ABCs can function as APCs (42), and its
impact is not fully understood.
In this study, we investigated the cellular and molecular basis

of the coexisting excessive autoantibodies and inadequate
affinity-matured antigen-specific antibodies in lupus models and
patients. We found that excessive CD11c+Tbet+ ABCs not only
contribute to autoantibody production but also compromise
antigen-specific GCB-cell responses and AAM in lupus models,
and that blocking CD11c+Tbet+ ABC differentiation by ablating
MyD88 rescues both these humoral immune defects.

Results
Antigen-Specific GCB-Cell Responses Are Impaired in Murine Lupus
Models. To investigate AAM in lupus, we selected 3 established
murine lupus models (SI Appendix, Fig. S1A): TMPD-induced
model (43–45), Bm12 cGVHD model (35, 46, 47), and ShipΔB

spontaneous lupus model (48–50) (all referred to “lupus models”
in this study), which were all confirmed to produce anti–double-
stranded DNA (dsDNA) autoantibodies (SI Appendix, Fig. S1B).
Our investigation of AAM focused on antigen-specific GCB-cell

differentiation and selection, given the reports of active SHM in
these models and autoantibodies (6, 21, 51–53). The (4-hydroxy-3-
nitrophenyl)acetyl (NP)-specific B1-8 B-cell system (54, 55) was
exploited to evaluate the efficiency of GC selection for high-affinity
antigen-specific B cells in a host (Fig. 1A). When NP-specific high-
affinity B1-8hi, alone or together with low-affinity B1-8low cells,
were adoptively transferred into wild-type (WT) mice, B1-8hi cells
dominated in GCB cells following NP immunization, but not in
non-GCB cells (Fig. 1 B and C), as expected for efficient GC se-
lection for high-affinity antigen-specific B cells based on the pre-
vious studies (54). In contrast, we observed a large decrease in the
proportion of B1-8hi cells among GCB cells in TMPD-treated WT
mice (treated with TMPD for 2 wk, representing the early stage of
TMPD-induced lupus mice) (Fig. 1 B and C), suggesting impaired
antigen-specific GC responses in these mice. In Bm12 cGVHD
mice, more severe impairment was observed, with a complete loss
of positive selection for B1-8hi cells in GC following NP immuni-
zation (Fig. 1 D and E), although more GCB cells were observed
(SI Appendix, Fig. S1C).
We further investigated antigen-specific GC responses in ShipΔB

(Shipfl/flCD19-Cre+) mice (SI Appendix, Fig. S1A), where impaired
AAM has been reported and attributed to Ship deficiency in GCB

13

44

24

C
D

4+
C

D
8+

C
D

44

CD62L

24

6.8

Shipfl/fl ShipΔB

0
20
40
60
80

T E
M
/C

D
4+ (

%
)

**

0
10
20
30
40

T E
M
/C

D
8+ (

%
) **

1.3 9.6

PD
-1

CXCR5

F

G

T F
H

4
D

C ni
+

)
%(

0

5

10

15 *

0

1

2

C
el

l c
ou

nt
(x

10
6 ) *

H

ShipΔB

ShipΔGCB

Shipfl/fl

0

1

2

C
el

l c
ou

nt
 (x

10
8 ) ****

B
Shipfl/fl ShipΔB

DC E

0.2

no
n-

G
C

B

47

G
C

B

0.2

24

0.2 
B1-8hi

Shipfl/fl-T ShipΔB-T ShipΔB

Myd88ΔB-T

C
D

45
.1

CD45.2

P
Shipfl/fl-T
ShipΔB-T
ShipΔBMyd88ΔB-T

0

40

80

non-GCB GCB

B
1-

8hi
in

 
no

n-
G

C
B

/G
C

B
 (%

)

**
**

ns ns
ns

ns

Q

68

0.8

N

0

40

80

T E
M
/C

D
4+ (

%
)

0

20

40

T E
M

8
D

C/
+

)
%(

****

****

T F
H

in
 C

D
4+

(%
)

0
5

10

20
15

****

L

M O

T E
M
/C

D
4+ (

%
)

0

10

20
***

UT TMPD

PD
-1

CXCR5

W
T�

W
T

B
m

12
�

W
T

KI

**

0
1
2
3
4
5

*

G
C

B
/B

22
0+

(%
)JShipΔBShipfl/fl

250 μm250 μm

A

Fig. 2. Aberrant T-cell profile is responsible for impaired GC selection in lupus mice. (A and B) Representative image (A) and cell counts (B) of spleens from
Shipfl/fl, ShipΔB, and ShipΔGCB mice. (C–E) Representative FACS profile (C) and bar graph (D and E) showing the percentage of CD44+CD62L− effector/memory
cells (TEM) among CD4+ (D) and CD8+ (E) T cells in the spleen of Shipfl/fl and ShipΔB mice. (F–H) Representative FACS profile (F) and bar graph (G and H) showing the
percentage (F and G) and absolute number (H) of TFH cells in the spleen of Shipfl/fl and ShipΔB mice analyzed 2 wk after NP-CGG immunization. (I) Immunofluo-
rescence image of frozen sections of spleens from Shipfl/fl mice and ShipΔB mice analyzed 2 wk after NP-CGG immunization. (J) Percentage of GCB cells (PNA+CD95+)
in total spleen B cells of Shipfl/fl or ShipΔB mice. (K–M) Percentage of TEM cells among CD4+ (K and L) or CD8+ (M) T cells in the spleen of TMPD-induced mice (K) and
Bm12 cGVHD mice (L and M). (N and O) Representative FACS profile (N) and bar graph (O) showing the percentage of TFH cells in the spleen of Bm12 cGVHD mice
2 wk after NP-CGG immunization. (P andQ) Representative FACS profile (P) and bar graph (Q) showing the percentage of B1-8hi cells among non-GC or GC B cells in
T cell-deficient mice (TCRβ−/−TCRδ−/−) transplanted with T cells isolated from Shipfl/fl, ShipΔB, or ShipΔBMyd88ΔB mice and then treated and analyzed as in Fig. 1A.
Each symbol in the bar graphs represents an individual mouse. Bars represent means ± SD. ns, not significant; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001
(1-way ANOVA with Sidak’s multiple comparisons test [B]; unpaired 2-tailed t test [D, G, H, J–M, and O], 2-way ANOVA with Sidak’s multiple comparisons test [Q]).
A representative of 2 (L–O) or 3 (A–K) independent experiments is shown. Q is summarized from 2 independent experiments with similar results.

18552 | www.pnas.org/cgi/doi/10.1073/pnas.1901340116 Zhang et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901340116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901340116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901340116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901340116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1901340116


cells (6). ShipΔB mice were confirmed to have impaired GC se-
lection for endogenous Ship-deficient NP-specific cells upon NP
immunization (SI Appendix, Fig. S1 D and E), as well as impaired
AAM, as shown by the reduced high-affinity V186.2-W33L mu-
tation frequency (56) (SI Appendix, Fig. S1F). Interestingly, when
evaluated in the B1-8hi cell transfer model, as illustrated in Fig.
1A, ShipΔB mice displayed a severe defect in positively selecting
Ship-sufficient B1-8hi cells for GC responses (Fig. 1 F and G),
suggesting that regardless of whether GCB cells have Ship de-
ficiency, their selection in ShipΔB mice is impaired. Together, our
data demonstrate that GC selection is profoundly impaired in
both induced and spontaneous murine lupus models.

Ship Deficiency in GCB Cells Is Not Responsible for Impaired GC
Selection in ShipΔB Mice. Given the impact of Ship on B-cell acti-
vation and survival (22), we further investigated whether Ship
deficiency in GCB cells is responsible for the compromised GC
selection in ShipΔB mice. Ship-deficient B1-8hi and B1-8lo B cells
(ShipΔBB1-8hi and ShipΔBB1-8lo, respectively) were generated and
used to test whether Ship deficiency can overwrite BCR affinity-
based GCB-cell selection. As shown in Fig. 1 H and I, ShipΔB

B1-8hi cells outcompete ShipΔBB1-8lo cells in GC responses,
similarly as B1-8hi cells outcompete B1-8lo cells, suggesting that
BCR affinity-based GC selection is not compromised in Ship-
deficient GCB cells.
This notion was further tested in GCB-specific Ship-

conditional knockout mice driven by Cγ1-Cre (57) (Shipfl/flCg1-
Cre+, or ShipΔGCB), which have comparably efficient Ship deletion
as ShipΔB mice in GCB cells, but not in other B cells or non-B cells
(SI Appendix, Fig. S2 A–C). In contrast to ShipΔB mice, ShipΔGCB

mice have a largely normal percentage of endogenous NP-specific
GCB cells (Fig. 1 J and K) and a normal frequency of high-affinity
NP-specific V186.2-W33L mutations in NP-specific GC re-
sponses (Fig. 1L), suggesting that Ship-deficient, endogenous
NP-specific GCB cells have no defect in participating GC re-
sponses and undergoing proper AAM. In the B1-8hi cell transfer
model, ShipΔGCB mice also displayed normal NP-specific GC

responses (Fig. 1 F and G). Together, these results suggest that
the observed GC selection defect in ShipΔB mice is not due to
the direct impact of Ship deficiency on GCB cells, but rather to
its impact on other B-lineage cells that may regulate GC re-
sponses indirectly.

Aberrant T-Cell Profile Is Responsible for Impaired GC Selection in
Lupus Mice. To characterize the factors responsible for the im-
paired GC selection in ShipΔB mice, we analyzed their T-cell
profiles, given that TFH cells have been demonstrated to regulate
GCB-cell selection directly (24, 58, 59). ShipΔB mice have large
spleens with increased numbers of splenocytes (Fig. 2 A and B)
and an aberrantly activated T-cell profile with increased per-
centages of CD44+CD62L− effector/memory T (TEM) cells among
both CD4+ and CD8+ T cells (Fig. 2 C–E). Notably, we observed a
large increase in TFH cells by flow cytometry (Fig. 2 F–H). Con-
sistently, there appear to be more T cells colocalizing with GC
(Fig. 2I and SI Appendix, Fig. S3A) and more spontaneous GCs in
ShipΔB mice (Fig. 2J and SI Appendix, Fig. S3B). We also observed
increased TEM cells in TMPD-treated mice (Fig. 2K and SI Ap-
pendix, Fig. S3C) and Bm12 cGVHD mice (Fig. 2 L andM and SI
Appendix, Fig. S3D) and excessive TFH cells in Bm12 cGVHD
mice (Fig. 2 N and O), suggesting that aberrant T-cell activation
and TFH-cell accumulation are common features of these models.
To test whether the aberrant T-cell profile (with increased

T-cell activation and TFH-cell accumulation) is responsible for the
impaired GC selection in these models, we adoptively transferred
pan-T cells isolated from ShipΔB mice into T cell-deficient mice
(TCRβ−/− TCRδ−/−) and evaluated GC-selection efficiency in
these recipients using the B1-8hi cell transfer model. As shown in
Fig. 2 P and Q, T cells isolated from ShipΔB mice are significantly
less efficient, as compared with those from WT mice, in sup-
porting the selection of B1-8hi cells for NP-specific GC responses.
These data suggest that the aberrant T-cell profile featuring in-
creased activation and TFH-cell accumulation is responsible for
the observed GC selection defect in our lupus models.

A B

F G H I J

C D E

Fig. 3. Excessive CD11c+Tbet+ ABCs precede aberrant T-cell activation. (A) Volcano plot showing genes expressed differentially (change in expression of over
2-fold) in B-lineage cells (sorted as B220+ and B220lowCD138hi) from Shipfl/fl mice relative to those from ShipΔB mice. (B–D) Frequency of CD11c+Tbet+ABCs
among B220+CD19+CD43−CD93−CD23−CD21− cells (B), B220+CD19+ cells (C), and absolute cell number of CD11c+Tbet+ABC per spleen (D) of Shipfl/fl and
ShipΔB mice (3 to ∼4 mo old). (E–G) Representative FACS profile (E) and bar graph (F and G) showing the percentage of CD44+CD62L− effector/memory cells
(TEM) among CD4+ (E and F) and CD8+ (E and G) T cells in the spleen of 1-mo-old Shipfl/fl and ShipΔB mice. (H) Anti-dsDNA IgG autoantibody levels in the serum
of Shipfl/fl and ShipΔB mice at the age of 1 or 3 mo. (I and J) Percentage of CD11c+ ABCs among B cells in the spleen (I) or mesenteric lymph node (mLN) (J) of
1-mo-old Shipfl/fl and ShipΔB mice. Each symbol in the bar graphs represents an individual mouse. Bars represent means ± SD. ns, not significant; *P ≤ 0.05;
**P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001 (unpaired 2-tailed t test [C, D, F, G, I, and J], 1-way ANOVA with Sidak’s multiple comparisons test [H]). A repre-
sentative of 3 independent experiments is shown (B–J).
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Excessive CD11c+Tbet+ Age-Associated B Cells Precede Aberrant T-
Cell Activation and Autoantibody Production in ShipΔB Mice. To
study how B cell-intrinsic Ship deficiency causes impaired GC
selection, we investigated the responsible B-lineage cell subsets.
Since ShipΔGCB mice have efficient Ship deletion in GCB cells
(SI Appendix, Fig. S2 A–C) and normal GC selection (Fig. 1 F,
G, J, and K), we reasoned that the responsible B-lineage cells
are not likely GC or post-GC B cells. ShipΔB mice have been
reported and confirmed to have normal B-cell development in
the bone marrow (6). In the periphery, despite of increased
number of splenic B cells in ShipΔB mice (SI Appendix, Fig.
S4A), most B-cell subsets have either no or only minor changes
in their proportions among B-lineage cells, including transitional
B cells (CD93+), follicular B (FOB) cells, marginal zone (MZ) B
cells, B1-a, B1-b, and regulatory B (Breg) cells (SI Appendix, Fig.
S4B). In transcriptome analysis, ShipΔB B splenic B-lineage cells
(B220+ and B220lowCD138hi cells) displayed significantly in-
creased expression of immunoglobulin (Ig) genes (SI Appendix, Fig.
S4C) and hallmarks related to immune activation (SI Appendix, Fig.
S4D). Interestingly, among genes with the most significantly
increased expression in ShipΔB B cells (Fig. 3A), both Itgax
(encoding CD11c) and Tbx21(encoding Tbet) are markers of

the recently described CD11c+Tbet+ ABCs (34), suggesting in-
creased CD11c+Tbet+ ABCs in ShipΔB mice. ABCs were identified
as B220+CD19+CD93−CD43−CD21−CD23− cells, among which
CD11c+Tbet+ cells were further gated as CD11c+Tbet+ ABCs (SI
Appendix, Fig. S4E) or CD11c+ ABCs since Tbet is specifically
expressed in the majority of CD11c+ ABCs (Fig. 3B and SI Appendix,
Fig. S4 E and F). In adult ShipΔB mice, we observed ∼5-fold more
CD11c+ABCs among B-lineage cells (Fig. 3 B–D). Notably, in 1-mo-
old ShipΔB mice, we observed neither aberrant T-cell activation (Fig.
3 E–G) nor significant autoantibody production (Fig. 3H), but sig-
nificantly more CD11c+ ABCs in both spleen and lymph nodes
(Fig. 3 I and J). These results suggest that the observed excessive
CD11c+ ABCs are not secondary to either aberrant T-cell acti-
vation or autoantibody production in ShipΔB mice.

Excessive CD11c+Tbet+ ABCs Promote Deregulated T-Cell Differentiation
with TFH Phenotypes through Their Potent Antigen-Presenting Function.
Since CD11c+Tbet+ ABCs have APC function (42), we hypothe-
sized that excessive CD11c+Tbet+ ABCs promote aberrant T-cell
activation and TFH differentiation in lupus mice through their APC
function. Pan-B cells can efficiently prime OVA-specific OT-II T
cells in the presence of OVA peptide antigen, as indicated by the
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significantly increased percentage of CD44+CD62L− cells (Fig. 4
A and B) and proliferation (Fig. 4C). When compared with
WT cells, ShipΔB pan-B cells are significantly more potent in
inducing OT-II T-cell activation in an antigen-dependent man-
ner (Fig. 4 A–C). However, this increased potency is not due to
Ship deficiency in FOB cells, as purified ShipΔB and WT FOB
cells have the same potencies in inducing OT-II T-cell activa-
tion (Fig. 4 A–C). In contrast, depleting CD11c+ cells from pan-B
cells removed the extra potency of ShipΔB pan-B cells over
WT cells and resulted in comparable potencies similar to those of
FOB cells (Fig. 4 A–C). CD11c+ ABCs purified from ShipΔB mice
were also directly analyzed and confirmed to be more potent than
FOB cells in priming OT-II T cells in an antigen-dependent
manner (Fig. 4 D and E). These data suggest that CD11c+ B
cells are responsible for the increased T-cell activation induced by
ShipΔB pan-B cells.
Notably, increased PD-1 and CXCR5 expression, phenotypes

of TFH cells, was observed in ShipΔB CD11c+ ABC-primed T
cells (Fig. 4 D and E). WT CD11c+ ABCs purified from Bm12
cGVHD lupus mice also displayed superior activity over FOB
cells in inducing OT-II cell activation, proliferation (Fig. 4 F–H),
and differentiation into activated T cells with increased PD-1 and
CXCR5 expression (Fig. 4 D and E). These data suggest that

excessive CD11c+Tbet+ ABCs can promote deregulated T-cell
differentiation with TFH phenotypes through their potent antigen-
presenting function in lupus mice. It is further confirmed that
CD11c+ ABCs express higher levels of MHC II (SI Appendix, Fig.
S5A) and present more antigen (SI Appendix, Fig. S5 B and C).

Deregulated TLR and BCR Signalings Accelerate Ship-Deficient
CD11c+ ABC Differentiation. To investigate how Ship deficiency
leads to excessive CD11c+Tbet+ ABCs in ShipΔB mice, we ana-
lyzed proliferation and apoptosis of Ship-deficient and sufficient
CD11c+Tbet+ ABCs and observed no significant differences
(Fig. 5 A and B), suggesting that excessive CD11c+Tbet+ ABCs
are results of increased differentiation. Previous studies have
shown that FOB cells can differentiate into CD11c+ B cells in
vitro upon TLR7 ligand and IL-21 stimulation (39). In this in
vitro system, we found that Ship-deficient FOB cells can differ-
entiate into CD11c+ cells much more efficiently than WT FOB
cells (Fig. 5 C and D).
Given the negative impact of Ship on TLR signaling in mye-

loid cells (60–62), we tested whether Ship inhibits CD11c+ B-cell
differentiation by inhibiting TLR signaling. As shown in Fig. 5E,
CL097 induced stronger IκBα phosphorylation in ShipΔB B cells
than in WT B cells, suggesting that TLR7 signal (63) is enhanced
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in Ship-deficient B cells. Since BCR signaling also promotes
CD11c+ B-cell differentiation, we confirmed previous reports
that Ship negatively regulates BCR signals, as shown by in-
creased ERK phosphorylation in anti-IgM–treated ShipΔB FOB
cells (Fig. 5 F and G). These data suggest that Ship can inhibit
TLR and BCR signalings and therefore restrict CD11c+ ABC
differentiation.
We further investigated the impact of ablating TLR-signaling

adaptor MyD88 (64) on CD11c+ ABC differentiation and found
that ablating MyD88 almost completely blocked Ship-deficient
FOB cells to differentiate into CD11c+ B cells in vitro (Fig. 5 C
andD). Furthermore, deletion of B cell-intrinsic MyD88 in ShipΔB

mice restored CD11c+ ABCs levels (Fig. 5 H and I), further
supporting a critical role of TLR signals, mediated by MyD88 and
inhibited by Ship, in CD11c+ ABC differentiation.

Inhibition of CD11c+Tbet+ ABC Differentiation by Ablating MyD88
Prevents Aberrant TFH Differentiation and Restores Antigen-Specific
GC Responses in ShipΔB Mice. We further investigated whether in-
hibition of CD11c+Tbet+ ABC differentiation by ablating MyD88
can rescue the GC selection defect in ShipΔB mice. As shown in

Fig. 6 A and B, the T-cell activation profile is normalized in ShipΔB

Myd88ΔB mice, as well as TFH differentiation (Fig. 6 C–E). Pan-T
cells isolated from ShipΔBMyd88ΔB mice, when transferred into
T cell-deficient mice, support the efficient selection of B1-8hi cells
in NP-specific GC responses (Fig. 2 P and Q). In the B1-8hi

transfer model, ShipΔBMyd88ΔB mice are equally efficient as WT
mice in selecting B1-8hi cells for NP-specific GC responses (Fig. 6
F and G). Furthermore, unlike in ShipΔB mice, endogenous NP-
specific B cells were also efficiently selected into the GCB-cell
compartment in ShipΔBMyd88ΔB mice upon NP immunizations
(Fig. 6 H and I), and the frequency of the high-affinity V186.2-
W33L mutation was restored to normal levels in ShipΔBMyd88ΔB

mice (Fig. 6J), suggesting normal GC selection and AAM in these
mice. Notably, normal NP-specific GC responses and AAM were
observed in Myd88ΔB mice (Fig. 6 H–J), suggesting that ablating
MyD88 in GCB cells does not significantly change the NP-specific
GC responses in our model. Together, these data suggest that
inhibiting CD11c+ B-cell differentiation in ShipΔB mice by ablat-
ing B cell-intrinsic TLR-MyD88 signaling not only prevents ab-
errant T-cell activation and TFH differentiation but also rescues
GC selection and AAM.
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CD11c+Tbet+ ABCs Contribute Significantly to Autoantibody Production
in ShipΔB Mice. To investigate whether CD11c+Tbet+ ABCs cells
contribute to autoantibody production, their ability to produce
anti-dsDNA autoantibody was analyzed. We found that depleting
CD11c+ cells from ShipΔB pan-B cells also depleted anti-dsDNA
autoantibody-producing B cells (Fig. 6 K–M), suggesting that
CD11c+ B cells are primarily responsible for anti-dsDNA au-
toantibody production in ShipΔB mice. Notably, no significant
autoantibody production was observed in ShipΔBMyd88ΔB

mice (Fig. 6N), suggesting that inhibiting CD11c+Tbet+ ABC dif-
ferentiation in ShipΔB mice also prevents autoantibody production.
Together, these data suggest that CD11c+Tbet+ ABCs are critical
for the observed autoantibody production in ShipΔB lupus mice.

The Maintenance of TFH Responses Requires CD11c+ Cells. We also
analyzed the levels of CD11c+Tbet+ ABCs in TMPD-induced
and Bm12 cGVHD models and found significantly increased
CD11c+Tbet+ ABCs in both models, but at different levels (Fig.
7 A and B). These data suggest that excessive CD11c+ B cells are
a common feature in murine lupus models.
It has been shown that dendritic cells are critical for the initial

priming and commitment of TFH cells (i.e., the formation of
CXCR5+PD-1int pre-TFH cells) but not sufficient for the differ-
entiation of CXCR5+PD-1hi TFH cells (29, 65), and B cells are
required for the differentiation and maintenance of CXCR5+PD-
1hi TFH cells (66, 67). We used the CD11c-DTR mice, as an in-
ducible depletion model for CD11c+ cells, to study the impact of
depleting CD11c+ cells on established TFH responses at day 10 in
the Bm12 cGVHD model (68) (Fig. 7C). Diphtheria toxin (DT)
treatment led to a significant reduction of CD11c+ ABCs in
CD11c-DTRmice (Fig. 7 D and E). Importantly, we also observed
a significant reduction in CXCR5+PD-1hi TFH levels (Fig. 7 F and
G), as well as TEM levels (Fig. 7 H and I), suggesting that CD11c+

ABCs contribute to the maintenance of TFH responses.

CD11c+Tbet+ ABCs Correlate with TFH Cells in Lupus Patients. To
further investigate whether CD11c+Tbet+ ABCs correlate with
TFH cells in lupus patients, we analyzed CD11c+ ABCs in human
systemic lupus erythematosus (SLE) patients (SI Appendix, Table
S1). CD11c+ ABCs were identified using previously described
surface markers as CD19+IgD−CD21−CD11c+ cells (Fig. 8A)
and confirmed to express Tbet (Fig. 8B). Significantly more

CD11c+ ABCs were observed in SLE patients as compared to
healthy controls (Fig. 8 A and C), consistent with previous re-
ports (35, 69). At the same time, we observed significantly in-
creased CD4+CXCR5+ICOS+PD-1hi cells, a TFH subset referred
to as recently activated memory TFH cells (70, 71), in SLE pa-
tients (Fig. 8 D and E). Notably, the levels of these cells and
CD11c+ ABCs correlate in SLE patients (Fig. 8F), suggesting
that the cross-talk between CD11c+ ABC and TFH cells we ob-
serve in lupus mice may also operate in lupus patients.

Discussion
Our study shows that antigen-specific GC responses are com-
promised in all tested lupus models, with significantly reduced
differentiation of antigen-specific GCB cells and impaired AAM,
highlighting a humoral immunodeficiency that has not been
sufficiently appreciated. Our data suggest that this defect is not
due to the reduced formation of GC or GCB cells, but rather due
to the lack of efficient affinity-based positive selection for antigen-
specific GCB cells, the basis of the production of pathogen-
specific affinity-matured antibodies.
Strikingly, our data support that this defect can be triggered

by excessive CD11c+Tbet+ ABCs, a non-GCB cell subset. In
ShipΔB mice, a B cell-intrinsic lupus model, excessive CD11c+Tbet+

ABCs emerge before deregulated T-cell activation and TFH
differentiation, as well as autoantibody production. Our study
shows that excessive CD11c+Tbet+ ABC differentiation in ShipΔB

mice promotes deregulated T-cell activation and TFH differ-
entiation through their potent antigen-presenting function and
consequently compromises GCB-cell selection and AAM. Consis-
tently, it has been shown that B cells are required for TFH dif-
ferentiation and maintenance (66, 67). Our observation that
depleting CD11c+ cells attenuates established TFH responses in
Bm12 cGVHD mice suggests that CD11c+ ABCs contribute to
TFH maintenance. Notably, it has been reported that selectively
depleting CD11c+ B cells leads to ∼80% reduction in TFH cells
(72), which was interpreted as the impact of depleting GCB cells
based on the observation that a small fraction (∼20%) of GC B
cells express CD11c (72). In the context of our study, these data
can be alternatively interpreted as the impact of depleting
CD11c+ ABCs, which constitute the majority of CD11c+ B cells
(50 to ∼80%, as compared to ∼10% for GC B cells).
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Our model is further supported by the observation that
inhibiting CD11c+ ABC differentiation in ShipΔB mice by ab-
lating B cell-intrinsic MyD88 not only normalizes TFH differen-
tiation but also rescues GC selection and AAM. B cell-intrinsic
MyD88 has also been reported to be critical for GCB-cell and
antibody responses to TLR ligand-containing vaccines/immuni-
zations (73, 74), as well as for Breg differentiation (75). How-
ever, it seems that neither GCB cells nor Breg cells are likely to
mediate the rescue effect of ablating B cell-intrinsic MyD88 in
ShipΔB mice as ablating MyD88 in GCB cells (MyD88ΔB mice)
does not significantly change NP-specific GC responses and ab-
lating B cell-intrinsic MyD88 has been shown to inhibit Breg
differentiation and exacerbate autoimmunity (75–77). Also con-
sistent with our model, impaired AAM has also been reported in
aged mice (78), where increased ABCs were originally described
(32, 33). To the best of our knowledge, non-GCB cell-intrinsic
mechanisms that regulate GCB-cell selection have barely been
described, nor has their impact on TFH differentiation.
A striking finding in our study is that excessive CD11c+Tbet+

ABCs not only compromise GCB-cell selection and AAM but
also promote autoantibody production, which leads to the pro-
duction of “poor” low-affinity antigen-specific antibodies and
“bad” autoantibodies in lupus mice at the same time. It suggests
that excessive autoantibodies and inadequate affinity-matured
antigen-specific antibodies observed in these models—2 seemly
paradoxical humoral immune defects—is mechanistically linked
by excessive CD11c+Tbet+ ABCs. The impact of CD11c+Tbet+

ABCs on GC selection and AAM observed in our study is dis-
tinct from that on autoimmunity described previously (33–36, 38)
and confirmed in this study. Nevertheless, it appears that their
ability to promote T-cell activation and TFH differentiation may
explain these distinct impacts, as excessive TFH cells have also
been proposed to drive the development of spontaneous GCs
associated with autoimmunity (23, 24).
While increased CD11c+Tbet+ ABCs have been described in

aged and autoimmune murine models, as well as in autoimmune
patients (34), the initial triggers for their differentiation are
not fully understood. Their superior potency over FOB cells in

priming T cells suggests that CD11c+Tbet+ ABCs are antigen-
experienced cells. Consistently, CD11c+Tbet+ ABCs were shown
to have selected BCR repertoire (79), with more somatic hyper-
mutations than FOB cells but less than GCB cells (80). Our study
also provided in vivo data supporting that CD11c+Tbet+ ABC
differentiation depends on TLR signaling adaptor MyD88, con-
sistent with the previous finding that IL-21 and TLR7 stimulation
cooperate to drive Tbet expression (38, 39) and that CD11c+Tbet+

ABCs are highly responsive to TLR7 stimulation (34, 38).
Many studies of humoral immune responses in lupus focus on

immune tolerance, rather than the quality of the antibodies that
are meant to provide immunity. Given the compromised GC
selection and AAM in lupus mice, and the increased CD11c+Tbet+

ABCs and correlated TFH cells in lupus patients, we speculate
that a similar GC selection and AAM defect also exists in
lupus and lupus-like cGVHD patients. The contribution of
CD11c+Tbet+ ABCs to “poor” low-affinity antibodies and “bad”
autoantibodies in our murine models suggests that these cells
and their dependent signalings (TLR signaling, e.g.) may be po-
tential targets for treating these diseases. Further study will help us
to better understand humoral immune responses in lupus and
cGVHD patients (7–13), as well as to develop new therapies.

Materials and Methods
Human Subjects. Eleven SLE patients and 19 healthy controls were enrolled in
this study. Patients fulfilled the American College of Rheumatology 1997
revised criteria for SLE. Healthy controls were recruited from the medical
center matched to SLE patients with age and sex. Ethical approval was
obtained from the Ethics Committee of Shanghai Changzheng Hospital.
Informed consent was obtained from all study subjects. Clinical and de-
mographic data were collected from their medical records. Additional clinical
information about the subjects is listed in SI Appendix, Table S1.

Mouse Models. WT mice were injected with 500 μL of TMPD (P7820; Sigma-
Aldrich) or 1 × 107 Bm12 splenocytes per mouse through intraperitoneal
injection to induce TMPD or Bm12 cGVHD lupus models. Both TMPD-induced
and Bm12 cGVHD mice were used after 2 wk of induction. For CD11c+ cell
deletion study, CD11c-DTR mice were transferred with Bm12 splenocytes on
day 0 to induce Bm12 cGVHD models and intraperitoneally (i.p.) injected

A

E F

B

D

C

Fig. 8. CD11c+Tbet+ ABCs correlate with TFH cells in lupus patients. (A) Gating strategy of CD11c+ ABCs in peripheral blood of SLE patients and healthy
donors. (B) Representative FACS profile showing Tbet expression in naïve B cells (CD19+IgD+CD27−CD21+) and ABCs (CD19+IgD+CD27−CD21−) in SLE patients. (C) The
percentage of CD11c+ ABCs among B cells in healthy donors and SLE patients. (D) Gating strategy of recently activated memory TFH cells in peripheral blood of SLE
patients and healthy donors. (E) The percentage of recently activated memory TFH cells among CD4+ T cells in healthy donors and SLE patients. (F) Correlation
between the percentage of CD11c+ ABCs among B cells and recently activated memory TFH cell percentage among CD4+ T cells in SLE patients. Each symbol in the bar
graphs represents an individual mouse or human. Bars represent means ± SEM. *P ≤ 0.05 (unpaired 2-tailed t test [C and E]; r and P values, linear regression [F]). A
representative of 3 (A, B, and D) independent experiments is shown. C, E, and F are summarized from multiple experiments.
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with DT (322326; Sigma) on day 10 and day 13 at a dosage of 80 ng per
mouse and analyzed on day14. All mice were maintained in the specific
pathogen-free animal facility at Shanghai Jiao Tong University School of
Medicine (SJTUSM). All animal experiments were performed in compliance
with institutional guidelines and had been approved by the SJTUSM In-
stitutional Animal Care and Use Committee.

NP-Specific Responses. Ten- to ∼12-wk-old mice immunized i.p. with NP45-CGG
(100 μg/mouse [N-5055E; Biosearch Technologies]) in alum (77161; Pierce) 2 wk
earlier were analyzed by fluorescence-assisted cell sorting (FACS). V186.2-
Cγ1 fragments were amplified from total splenic mRNA and subjected to next-
generation sequencing and MiXCR analysis (81) for W33L mutation rates. For
B1-8hi cell transfer experiments, 5 × 106 B1-8hi or ShipΔB -B1-8hi splenocytes
alone or mixed 1:1 with B1-8lo splenocytes were transferred intravenously (i.v.).
For T–B cell cotransfer, mice were transferred i.v. with 1 × 107 magnetic-
activated cell-sorting-purified splenic pan-T and 2 × 106 B1-8hi B cells (130-
095-130 and 130-090-862; Miltenyi Biotec) and immunized with NP45-CGG/
alum the day after and analyzed 10 d after immunization.

Additional methods are listed in SI Appendix, Methods. This includes a
detailed description of mice, FACS (flow cytometry), B-cell purification, CD11c+

ABC differentiation and T-cell activation, autoantibodies, RNA sequencing,
immunofluorescence, Western blot, in vitro test of antigen presentation, and
statistical analysis.
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