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GABRR1 is a rho subunit receptor of GABA, the major inhibitory
neurotransmitter in the mammalian brain. While most investiga-
tions of its function focused on the nervous system, its regulatory
role in hematopoiesis has not been reported. In this study, we
found GABRR1 is mainly expressed on subsets of human and
mouse hematopoietic stem cells (HSCs) and megakaryocyte progen-
itors (MkPs). GABRR1-negative (GR−) HSCs led to higher donor-
derived hematopoietic chimerism than GABRR1-positive (GR+) HSCs.
GR+ but not GR− HSCs and MkPs respond to GABA in patch clamp
studies. Inhibition of GABRR1 via genetic knockout or antagonists
inhibited MkP differentiation and reduced platelet numbers in blood.
Overexpression of GABRR1 or treatment with agonists significantly
promoted MkP generation and megakaryocyte colonies. Thus, this
study identifies a link between the neural and hematopoietic sys-
tems and opens up the possibility of manipulating GABA signaling
for platelet-required clinical applications.
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γ-Aminobutyric acid (GABA) is the major inhibitory neuro-
transmitter in the vertebrate central nervous system and plays a

role in neurogenesis (1–5). In addition, GABA is involved in various
peripheral tissues and organs, such as the intestine and stomach (6,
7), and in embryonic stem cells (8). However, to date, the cell-type-
specific expression of GABA receptors and their anatomical dis-
tribution and functional properties in hematopoietic stem and
progenitor cells (HSPCs) have not been reported.
Hematopoietic stem cells (HSCs) are capable of generating

multiple different cell types in a stepwise way (9). Megakaryo-
cyte–erythroid progenitors (MEPs), derived from HSCs, are
bipotent progenitors, which can differentiate into either mega-
karyocyte progenitors (MkPs; which give rise to platelets) or
erythroid progenitors (EPs; which give rise to erythrocytes) (10, 11).
Supplementing MkPs or platelets is a promising strategy to over-
come thrombocytopenia for rapid recovery of blood-clotting
function in patients (12, 13) from trauma and surgery, chemo-
therapy or radiation-induced thrombocytopenia, sepsis, and other
indications. Recently, attempts have been made for the induction
of differentiation of platelets from various sources, including
HSPCs, pluripotent stem cells, and even other lineage cells (14–17),
and therefore, identification of the regulators that facilitate MkP
generation and differentiation during normal hematopoiesis has
become an important topic.
Gene Expression Commons (GEXC, https://gexc.riken.jp/),

designed by us to perform probeset meta-analysis for a particular
microarray platform and profile absolute expression of any gene
on the microarray (18), has established both human and mouse
hematopoiesis models. In a previous study, we analyzed tran-
scription factors expressed differentially in MkP cells and verified

their function in HSCs and MkPs by gene knockout or over-
expression, which provides a method to discover the regulatory
network, and these identified genes could be part of a diagram of
megakaryocyte development (19). In this study, we first discovered
in GEXC that GABRR1 was expressed predominantly in MkP
and therefore determined the expression of all GABA receptors
in GEXC “mouse hematopoiesis.” While GABRR1 is selectively
expressed in MkPs, the other GABA receptors were not expressed
in any of the HSPC populations. Further analysis by real-time
PCR and flow cytometry demonstrated that a subset of HSCs
and MkPs express GABRR1. Transplantation experiments showed
GABRR1-negative (GR−) HSCs led to higher donor-derived
multilineage hematopoietic chimerism than GABRR1-positive
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(GR+) HSCs. Reduction of the GABRR1 signal by genetic
knockout or specific antagonists in mouse or human cells sig-
nificantly decreased megakaryocyte differentiation and platelet
generation, while GABRR1 overexpression or agonist treatment
increased megakaryocyte and platelet development. Thus, GABA
signaling through its receptor GABRR1 may play a role in the
regulation of HSCs and MkPs.

Results
The Expression of Gabrr1 in Mouse HSCs and MkPs. In this study, we
first determined the expression of all GABA receptors (α1 to α6,
β1 to β3, γ1 to γ3, δ, e, θ, π, ρ1 to ρ3) in GEXC mouse hema-
topoiesis and found that MkP cell populations were selectively
GABRR1+ and other GABA receptors were not expressed in
any of the HSPC populations (Fig. 1A and SI Appendix, Fig. S1A).

RT-PCR of hematopoietic cell populations confirmed its expres-
sion pattern (Fig. 1B). The GABAA-ρ receptors (Gabrr1-3) are
ligand-gated ion channels that play physiological roles in the retina,
spinal cord, and brain (4, 20, 21). Gabrr1 can be composed entirely
of homo- or heteropentamer ρ subunits (22). Because only Gabrr1
is expressed, we expect that our hematopoietic cells only could form
homo-oligomers.
Further analysis of mouse bone marrow by flow cytometry

revealed that Gabrr1 is mainly expressed on a subset of HSCs
(8.18 ± 1.53%) and MkPs (3.04 ± 0.7%) (Fig. 1C and SI Appendix,
Fig. S1B) (23). Other blood lineage (CD45+) cells were negative
(SI Appendix, Fig. S1C). Gabrr1 expression in immunophenotypically
defined HSCs (pHSCs, CD34-Flk2-CD150+KLS), multipotent
progenitors subset A (MPPa) (CD34+Flk2- CD150+KLS), and
multipotent progenitors subset B (MPPb) (CD34+Flk2-CD150-KLS)
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Fig. 1. Gabrr1 expression and function in mouse hematopoietic system. (A) Expression of Gabrr1 in different mouse hematopoietic populations in Gene
Expression Commons. (B) Gene expression analysis of Gabrr1 in different mouse HSPC populations by real-time PCR. Data shown are mean ± SD from 3
replicates of the same group and are representative of at least 3 independent experiments. (C) Gabrr1 expression analysis in mouse HSPCs from bone marrow
by multicolor flow cytometry. Numbers represent the percentage of Gabrr1+ cells. Data shown are representative of n = 6 mice. (D) A representative image of
a GR+ MkP for patch-clamp recording of GABA-evoked currents. (Scale bar, 20 uM.) (E) The representative current traces induced by application of 1 mM
GABA in GR+ and GR−MkPs held at various membrane potentials from −80 mV at a step of 20 mV. (F and G) Summary graph of the maximum current density
and cell capacitance of GR+ and GR− MkPs (F) and GR+ and GR− HSCs (G). (H) The I-V curves of peak current densities of GR+ MkPs and GR+ HSCs (the x axis
shows the holding voltages; the y axis shows the current densities [peak current/cell capacitance]). (I) Immunostaining analysis shows expression of
GAD65+GAD67, GABA, vGAT, VE-cadherin, and synaptophysin (SP4) in the growth plate/epiphysis. (Scale bar, 50 uM, Right 2 panels; 100 uM, Left 3 panels.) (J)
Mice sections in different sites stained with pentachrome. (Scale bar, 100 uM, Lower; 200 uM, Upper.) (K) The HSC- and MkP-associated genes were analyzed
in purified mouse GR+ and GR− HSCs and MkPs by real-time PCR. Data shown in F and G are mean ± SEM. The number of cells analyzed is indicated in the
bars. **P < 0.01; n.s., not significant; preGM, pre granulocyte-macrophage progenitor; NK, natural killer; FSC, forward scatter.
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(24) showed 1–3% of those early stem and progenitors cells expressed
Gabrr1 (SI Appendix, Fig. S1D). In addition, Gabrr1 expression was
detected at a higher level in platelet-biased HSCs (SI Appendix, Fig.
S1E) (25).
GR+ and GR− HSCs or MkPs cells were then purified and

tested by electrophysiological recording using patch-clamp tech-
niques. The clamped cell was held at various membrane potentials
and incubated with GABA (Fig. 1D). We observed a prominent
GABA-induced inward current in GR+ MkP cells but not in GR−
cells (Fig. 1 E and F). Similarly, significant currents were induced by
GABA application to GR+ HSCs, although the amplitude appears
to be smaller than that in GR+ MkP cells (Fig. 1 G and H). Taken
together, these results suggested that Gabrr1 expressed in HSCs
and MkPs is functional as an ion channel.
We then sought to identify the source of GABA in bone marrow.

Since glutamic acid decarboxylase 1 (GAD1) and GAD2 synthesize
GABA from glutamate, we searched for the bone marrow cell
source of GABA by examining the expression of GADs by real-
time PCR. Among all cells tested, including bone marrow cell
mixtures, HSPC populations, mature blood cells, skeletal lineage
(Tie2- AlphaV+) cells, nonskeletal and nonendothelial (Tie2-
AlphaV-) cells, and all Tie2+ cells (26), only Tie2+ cells from the
bone marrow cell suspension fraction showed expression of GADs
by real-time PCR analysis (SI Appendix, Fig. S1F). Tie2 marks rare
HSCs, early progenitors of and mature endothelial cells, and per-
haps other cells not yet placed in a lineage (27, 28).
Because cell suspensions can exclude some sessile cells, we

sectioned mouse bones and performed in situ immunofluores-
cence staining for GADs using antisera commonly used to detect
potential GABAergic cells. GAD-positive cells appear in highest
concentration at the growth plate and the femoral epiphysis (Fig.
1 I and J) (29, 30). More staining showed that GABA and ve-
sicular GABA transporter (vGAT) could also be detected in the
same region. However, costaining of GADs with endothelial cell
surface markers, including CD31 and vascular endothelial cadherin
(VE-cadherin), shows that there are only very rare double-positive
cells (Fig. 1I and SI Appendix, Fig. S1G), so the Tie2+ cells are not
endothelial cells in general. The GAD+ cells in the epiphysis
resemble cartilage progenitors. Synaptophysin can be detected
with antisera to SP4 (Fig. 1I), and here we detect some positive
cells also in the epiphysis, but they do not have the morphology
of neurons. These results suggested that nonneural cells in the
bone and bone marrow are candidates for GABA production and
release but do not definitively show which cells are GABAergic.

Gabrr1 Expression Distinguishes Mouse HSC and MkP Populations.
We isolated GR+ and GR− HSCs and MkPs and examined
the gene expression patterns by real-time PCR. We checked the
expression of HSC and MkP shared transcripts and HSC, MEP,
MkP, myeloid, erythroid, lymphoid and platelet lineage-associ-
ated genes (25, 31) and found that both GR+ and GR−HSC and
MkP cells expressed corresponding cell lineage–specific genes (Fig.
1K and SI Appendix, Fig. S2A). GR− HSC and GR− MkP pop-
ulations maintained higher expression levels of multipotency
genes than GR+ populations, while GR+ populations exhibited
higher myeloid, platelet, and erythroid genes, and none of them
expressed lymphoid genes (Fig. 1K and SI Appendix, Fig. S2A).
After in vitro differentiation of GR+ and GR− HSCs, flow
cytometry analysis showed that GR− cells contained more pro-
genitor cells, which is consistent with gene expression analysis
results (SI Appendix, Fig. S2B).
We then characterized GABRR1-expressing and GABRR1-

negative cells by HSC transplantation. GR+ and GR− HSCs
from CD45.2 C57BL/6 mice were transplanted with supporting
CD45.1 bone marrow cells into irradiated CD45.1 mouse recipi-
ents. The results, presented in Fig. 2 A and B and SI Appendix, Fig.
S2C, showed GR− HSCs have higher full multilineage reconsti-
tution than GR+HSCs. Twenty weeks after transplantation, GR−

HSC transplanted mice had higher frequencies of HSCs, MPPs,
MkPs, granulocyte-macrophage progenitors (GMPs), and EPs
(Fig. 2C). Secondary transplantation showed GR− HSCs have the
capacity of robust multilineage chimerism, suggesting they are
long-term HSCs, while GR+ cells contain fewer long-term HSCs
than the GR− population (SI Appendix, Fig. S2 D and E).

Function of Gabrr1 in Mouse Hematopoiesis. To further address how
Gabrr1 is involved in the regulation of hematopoiesis, we used
Gabrr1 knockout mice B6; 129S4-Gabrr1tm1Llu/J (GR−/− mice)
(21) and used B6129SF2/J hybrid mice as controls (SI Appendix,
Fig. S3A). GR−/− mice had significantly lower levels of blood
platelets (87.7 ± 4.92%), and reduction of monocyte was also
observed, while white blood cells, lymphocytes, HGB, and red
blood cells (RBCs) in GR−/− mice were not significantly changed
(Fig. 2D). Among c-Kit-enriched HSPCs, HSCs were decreased
in GR−/− mice to 50% the level of these control mice, while
MkPs present in the c-Kit-enriched marrow cells were reduced
by 13 ± 2.6% compared with controls (Fig. 2E and SI Appendix,
Fig. S3B).
We then examined the effects of agonists and antagonists of

Gabrr1 in C57BL/6J mice, including the agonists GABA, trans-4-
aminocrotonic acid (TACA), Muscimol, and antagonist SR95531.
After 7 d of treatment, we found that GABA treatment increased
platelet numbers by 17.7 ± 11.2%, and treatment by Muscimol and
TACA showed increases of 35.0 ± 13 and 24.6 ± 19.0%, respec-
tively (Fig. 2F). RBC numbers were slightly increased with these
treatments. SR95531 did not affect platelet number significantly
(Fig. 2F). Bone marrow MkPs were increased by several different
agonist treatments, including GABA by 63.7 ± 24.4%, Muscimol
by 55.0 ± 26.7%, and TACA by 23.3 ± 31.1%. Interestingly, EP and
pre colony forming unit-erythroid (CFU-E) were also increased,
consistent with the RBC increase in peripheral blood (Fig. 2G
and SI Appendix, Fig. S3C).

The Expression and Function of GABRR1 in Human HSPCs. To in-
vestigate the role of GABRR1 in human hematopoiesis, we
checked GABRR1 cell surface protein expression by fluorescence
activated cell sorting (FACS). GABRR1 is mainly expressed in
human HSC/multipotent progenitor (MPP) (3.45 ± 1.0%), common
myeloid progenitor (CMP) (1.82 ± 0.34%), and MkP (1.60 ±
0.16%) (Fig. 3A). RT-PCR analysis confirmed the result (Fig. 3B).
HSC or MkP gene expression analyses by RT-PCR in GR+ and
GR−HSC/MPP or MkP cells showed patterns similar to those in
mouse HSPCs, with higher multipotent gene expression in GR−
cells (Fig. 3C). Next, we differentiated Lin-CD34+GR+ and Lin-
CD34+GR− cells in vitro. The results showed Lin-CD34+GR−
cells included more progenitor cells (Fig. 3D). Functional mega-
karyocyte colony-forming assay showed GR− Lin-CD34+ cells
generated more MK colonies than GR+ Lin-CD34+ cells (Fig. 3E).
Those results indicate that both in mice and in humans, GABRR1
influenced HSC multipotency and megakaryocyte differentiation.
We then genetically manipulated GABRR1 expression levels

through lentivirus-mediated gene knockout and overexpression.
First, CRISPR/Cas9-mediated gene knockout was used to elim-
inate GABRR1 expression (32). PCR analysis confirmed its ex-
pression level was reduced in CD34+ cells (SI Appendix, Fig.
S4C). Then, CD34+ cells were cultured and differentiated by
supplementing cytokines TPO, hSCF, hIL3, hIL6, and Flt3
in vitro (SI Appendix, Fig. S4A). Both CD34+CD41+ (selective
MkP/megakaryocyte markers) (33, 34) and CD34+CD71+ (selective
EP/erythrocyte markers) (35) cells were reduced by 30 to 40%
(Fig. 3F and SI Appendix, Fig. S4B).
Overexpression of GABRR1 in human CD34+ cells led to a

significant increase of CD34+CD41+ and CD34+CD71+ pop-
ulations by ∼3- to 4-fold (Fig. 3F and SI Appendix, Fig. S4B).
Using RT-PCR analysis, we analyzed gene expression levels of
megakaryocyte-related genes, erythroid genes, and genes of both
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lineages in both GABRR1 knockout and overexpression cells
(11). The results showed the RNA expression of those genes was
significantly enhanced in GABRR1-overexpressing cells but reduced
in GABRR1 knockout cells (SI Appendix, Fig. S4 C and D).
Starting with 10,000 CD34+ cells, we obtained 52 megakaryocytic
colonies from GABRR1-overexpressing cells, 8 from GABRR1
knockout cells, 30 colonies from nonvirus-treated control, and 20
from the vector control transduced group (Fig. 3G).
Since HSC differentiation into MkPs involves several steps (9),

we next determined at which stage GABRR1 functions. By an-
alyzing the frequencies of HSPCs populations in GABRR1-
overexpressing cells (Fig. 3H and SI Appendix, Fig. S4E), we
found that HSC/MPP increased to 263.6 ± 51.6% and almost all

downstream progenies also increased (CMP to 267.3 ± 53.6%,
MEP to 263.3 ± 68.7%, MkPs to 254.5 ± 92.6%, EPs to 423.2 ±
67.7%). Those results indicated GABRR1 affects MkP genera-
tion at the early stage of differentiation.
We treated human CD34+ cells with different agonists and

antagonists of GABRR1. The CD34+CD41+ and CD34+CD71+
populations increased ∼2- and 4-fold, with the treatment of
GABRR1 agonists (GABA, TACA, and Muscimol) and decreased
dramatically when treated with GABRR1 antagonist SR95531
(Fig. 4 A and B). GABA was the most effective treatment that
increased MkPs, to 168.9 ± 41.0%. The other agonists also pro-
duce 1.5- to 2-fold increases in the MkP frequency. The antagonist
SR95531 decreased the frequency of all HSPCs tested, especially
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the MkPs, which were decreased to 40.3 ± 13.6% (Fig. 4 C and D).
Real-time PCR analysis demonstrated that GABA significantly
increased the megakaryocyte-related genes (Fig. 4E), while the
other agonists showed similar effects. The CFU-MK assay showed
that GABA, Muscimol, and TACA generated 1 to 3-fold increases
in megakaryocyte colonies, while SR 95531 decreased them by 40%
(Fig. 4F). These results indicated that GABRR1-mediated GABA
signaling could regulate human hematopoiesis.

Discussion
To date, the precise control of HSC differentiation to MkPs is
largely unknown, and there is currently no efficient way to pro-
duce MkPs from HSCs for clinical applications. In our study, we
have identified a potential regulator of MkPs both in mice and in
humans. We found that GABRR1 is expressed in subsets of
HSCs and MkPs (Figs. 1 B and C and 3 A and B). Inhibition of
GABRR1 signaling by genetic knockout or antagonists signifi-
cantly decreased megakaryocyte and platelet differentiation, while
overexpression of GABRR1 or agonist treatment increased
megakaryocytic lineage development (Figs. 2 D–G, 3 G–H, and 4

A–C). Although all of the in vitro studies clearly support the
function of GABRR1 in megakaryocytic lineage differentiation,
it would be interesting to see in the future in an in vivo circum-
stance whether GABRR1 has a similar function, for example, to
assess the content of platelets in GABRR1 transgenic mice in
normal conditions or to check the functional role of GABRR1 in
platelet production under challenging conditions, such as major
blood loss or chemically induced thrombocytopenia, or in mouse
models with increased platelet counts.
In the present study, we found GABRR1 is expressed only in

subsets of HSCs and MkPs but not other hematopoietic progeni-
tor populations. Previous studies identified many common fea-
tures between HSCs and MkPs, such as the requirement for TPO,
shared cell surface markers, and specific transcription factors (31).
Our study adds more evidence to these shared features. Furthermore,
our gene expression analysis and in vivo study clearly demonstrated
the differences between GABRR1+ and GABRR1− HSCs, sug-
gesting that there might be several different HSC subtypes, as
suggested in another study (25), and warrant further study to identify
more surface markers to elucidate these subtypes.
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18420 | www.pnas.org/cgi/doi/10.1073/pnas.1906251116 Zhu et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1906251116


Interestingly, our study showed GABRR1+ cells produce
fewer megakaryocyte colonies than GABRR1− progenitors,
while GABRR1 knockout or antagonist also decreased mega-
karyocyte differentiation. We think there is a cellular hierarchy
in the megakaryocyte lineage, with GABRR1− cells at the apex.
GABRR1− cells in the HSC phenotype transplant better than
GABRR1+ cells, and the increased colony counts could be due
to the self-renewal potential of HSC versus the multipotent but
poorly self-renewing GABRR1+ cells. Therefore, the GABRR1−
population self-renews and also produces GABRR1+ cells, which
could further generate megakaryocyte colonies. However, working
out the kinetics of these responses will be complicated, as the 2
populations differ in self-renewal.
Our in vitro studies of human hematopoietic progenitors

showed significant depletion of platelets with antagonist and
augmentation with agonists. Similarly, the in vivo treatments
in mice showed the agonists increased platelets, while the an-
tagonist did not affect platelet numbers as significantly as the

agonists. There are many possible reasons, including a species-
specific effect and the half-life of the reagents in vivo; we dosed
mice with the published effective concentration. It is also pos-
sible that the effect of blockade of GABRR1 with its antagonist
could be compensated (to some extent) by other signal factors
such as TPO.
Regulation of hematopoiesis by the nervous system has been

reported and is an active area of research (36). In 2001, our
laboratory, by taking advantage of microarray on purified cells,
demonstrated an overlap between the genetic programs of he-
matopoietic and neural stem cells, indicating a relationship be-
tween the genes expressed in the hematopoietic and nervous
systems (37). Another report showed that HSC migration out
of the bone marrow depends critically on signals from the sympa-
thetic nervous system, as uridine diphosphate-galactose ceramide
galactosyltransferase-deficient (Cgt−/−) mice display virtually no HSPC
egress from bone marrow following granulocyte colony-stimulating
factor (G-CSF) or fucoidan administration (38). Studies of
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Drosophila larva showed that the peripheral nervous system sup-
ports blood cell homing and survival (39). Interestingly, in Dro-
sophila, olfactory stimulation could induce the secretion of GABA
from a small set of neurosecretory cells. The GABA levels in the
circulation promote blood cell maintenance (40). Here in our
study, we identified a conserved link between the neural product
GABA and hematopoietic systems in mice and humans that may
provide a strategy for producing MkPs and then platelets by ma-
nipulating GABRR1-mediated GABA signaling.

Materials and Methods
Cell isolation and culture, transplantations and peripheral blood analyses,
virus production and transduction, colony-forming unit assay, flow cytom-
etry, RNA isolation and real-time PCR, electrophysiology, gene expression
commons analysis, and immunohistochemistry were done as described in
SI Appendix.

Mice. C57BL/6J, B6.SJL-Ptprca Pepcb/BoyJ, B6; 129S4-Gabrr1tm1Llu/J, and
B6129SF2/J mice were purchased from the Jackson Laboratory and were bred

at our animal facility according to NIH guidelines. Male mice of similar ages
(6–10 wk) were used in the experiments. All animal protocols were approved
by the Stanford University Administrative Panel on Laboratory Animal Care.

Plasmids. The LentiCRISPR V2 plasmid was purchase from Addgene. The
single-guide ribonucleic acid of GABRR1 was designed and cloned into the
all-in-one CRISPR lentiviral vector. The pCDH-MSCV-MCS-EF1-GFP+Puro cDNA
cloning and expression vector (CD713B-1) was purchased from SBI. GABRR1
cDNA (NM_001256703.1) was cloned from pDONR223, which was purchased
from DNASU and inserted under the murine stem cell virus promoter. The same
empty vector without GABRR1 cDNA was used as the vehicle control.
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