SAZ

S A D

Comments on superconductivity in $AE_2CuO_{4\pm\delta}$ (AE = Sr, Ba)

Hideki Yamamoto^{a,1}

Li et al. (1) report on superconductivity ($T_c \sim 73$ K) that emerged in Ba₂CuO_{4-y} (Ba214) synthesized at extremely high pressures (~18 GPa). They claim that one of the unique features of this compound is an exceptionally compressed local octahedron. I read this article with great interest. However, I am afraid they stretch things a bit. While they claim the crystal structure of the compound is of the K_2NiF_4 (coined as T) type, as is the case with (La, Ba)₂CuO₄, their X-ray powder diffraction data resemble more the Nd₂CuO₄ (coined as T')-type structure (2): In the latter, no local octahedron exists. When lattice parameters are fixed to the reported values (a = 4.003 Å and c = 12.942 Å), a distinction between T- and T'-Ba214 may not be simple using X-ray diffraction. Nevertheless, the large a/c ratio (~0.309) suggests fluorite-structure Ba₂O₂ layers, equivalently T'-Ba214: At the least, Rietveld refinements assuming the T' structure may be worth being considered.

Superconducting T-Sr_{2-x}Ba_xCuO_{3+δ} (3) (or Sr_{2-x}Ba_xCuO_{4-x}) (4), where a substantial number of O vacancies exist in the CuO₂ planes, is challenging the notion that the CuO₂ planes are the playground of high- T_c superconductivity. Out-of-plane lattice constants of these materials are smaller than that for T-La₂CuO₄ (5) despite the larger ionic radii of Sr²⁺ and Ba²⁺ compared to La³⁺. This reduced lattice length stems from the reduced Jahn–Teller distortions due to the O vacancies in the CuO₂ planes. The material (Ba214) reported by Li et al. (1) may be related to those largely O-deficit T-Sr_{2-x}Ba_xCuO_{4-v} cuprates as their Rietveld refinement results (table S1 in supporting information of ref. 1) indicate (~40% of the oxygen vacancies in the CuO₂ planes). However, the *c* value (12.942 Å) of the Ba₂CuO_{4-v} presented in ref. 1 is far off the extrapolation to x = 2.0 in T-Sr_{2-x}Ba_xCuO_{4-v} with various *x* (3): *c* would be ~13.4 Å. This may indicate that the Ba₂O₂ layer does not crystallize in the rock-salt structure as should be in the T structure. Altogether, a formation of a local octahedron in their Ba₂CuO_{4-v} remains elusive and the concept of an exceptionally compressed local octahedron may lose its vindicability.

Finally it is worth noting that we have synthesized Sr₂CuO_{4±δ} (c = 13.55 Å) (6) and Ba₂CuO_{4±δ} (c = 14.6 Å) (7) whose c-axis lattice constants agree well with those expected from the variation of ionic radius [r_i (La³⁺) < r_i (Sr²⁺) < r_i (Ba²⁺)] and also from the trends derived from the $n \ge 2$ members of 0^(Sr)2(n-1)n and 0^(Ba)2(n-1)n homologous series materials in the Sr-Ca-Cu-O (8) and Ba-Ca-Cu-O (9) systems. Also, T_c of ~73 K reported by Li et al. (1) roughly coincides with the onset T_c in the resistivity-temperature curves for our T-Ba₂CuO_{4±δ} specimens (7).

- 1 W. M. Li et al., Superconductivity in a unique type of copper oxide. Proc. Natl. Acad. Sci. U.S.A. 116, 12156–12160 (2019).
- 2 Y. Tokura, H. Takagi, S. Uchida, A superconducting copper oxide compound with electrons as the charge carriers. Nature 337, 345– 347 (1989).
- 3 W. B. Gao et al., Out-of-plane effect on the superconductivity of Sr_{2-x}Ba_xCuO_{3+δ} with T_c up to 98 K. Phys. Rev. B Condens. Matter Mater. Phys. 80, 094523/1–6 (2009).
- **4** T. H. Geballe, M. Marezio, Comment on "Out-of-plane effect on the superconductivity of $Sr_{2-x}Ba_xCuO_{3+\delta}$ with T_c up to 98 K." Phys. Rev. B Condens. Matter Mater. Phys. **82**, 216501 (2010).
- 5 F. C. Chou, J. H. Cho, D. C. Johnston, Synthesis, characterization, and superconducting and magnetic properties of electrochemically oxidized La₂CuO_{4+δ} and La_{2-x}Sr_xCuO_{4+δ} (0.01 ≤ x ≤ 0.33, 0.01 ≤ δ ≤ 0.36). Physica C 197, 303–314 (1992).
- 6 S. Karimoto, H. Yamamoto, T. Greibe, M. Naito, New superconducting Sr₂CuO_{4-δ} thin films prepared by molecular beam epitaxy. Jpn. J. Appl. Phys. 40, L127–L130 (2001).
- 7 H. Yamamoto, M. Naito, H. Sato, A new superconducting barium cuprate prepared by molecular beam epitaxy. *Physica C* 338, 29–37 (2000).
- 8 T. Kawashima, E. Takayama-Muromachi, Superconductivity in the series of compounds Sr₂Ca_{n-1}Cu_nO_y (n = 1 ~4) prepared under high pressure. Physica C 267, 106–112 (1996).
- 9 H. Yamauchi, M. Karppinen, T. Hosomi, H. Fjellvåg, Water-containing phases derived from "02(*n*-1)*n*" superconductors I: Novel 02(*n*-1) *n* homologous series in the Ba-Ca-Cu-O system and the derivative series. *Physica C* **338**, 38–45 (2000).

- The author declares no conflict of interest.
- Published under the PNAS license.
- ¹Email: hideki.yamamoto.np@hco.ntt.co.jp.
- Published online September 10, 2019.

^aNTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan

Author contributions: H.Y. analyzed data and wrote the paper.