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Abstract. Head and neck squamous cell carcinoma (SCC) is primarily managed by surgical cancer resection.
Recurrence rates after surgery can be as high as 55%, if residual cancer is present. Hyperspectral imaging (HSI)
is evaluated for detection of SCC in ex-vivo surgical specimens. Several machine learning methods are inves-
tigated, including convolutional neural networks (CNNs) and a spectral–spatial classification framework based
on support vector machines. Quantitative results demonstrate that additional data preprocessing and unsuper-
vised segmentation can improve CNN results to achieve optimal performance. The methods are trained in two
paradigms, with and without specular glare. Classifying regions that include specular glare degrade the overall
results, but the combination of the CNN probability maps and unsupervised segmentation using a majority voting
method produces an area under the curve value of 0.81 [0.80, 0.83]. As the wavelengths of light used in HSI can
penetrate different depths into biological tissue, cancer margins may change with depth and create uncertainty in
the ground truth. Through serial histological sectioning, the variance in the cancer margin with depth is inves-
tigated and paired with qualitative classification heat maps using the methods proposed for the testing group of
SCC patients. The results determined that the validity of the top section alone as the ground truth may be limited
to 1 to 2 mm. The study of specular glare and margin variation provided better understanding of the potential of
HSI for the use in the operating room. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.3.035004]
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1 Introduction
Head and neck (H&N) cancer is the sixth most-common cancer
worldwide, with majority of cancers of the upper aerodigestive
tract, comprising the oral and nasal cavities, pharynx, and
larynx, being squamous cell carcinoma (SCC).1 Approximately
two-thirds of the SCC patients present with advanced disease,
either stage III or IV.2 Surgical resection is the primary manage-
ment of SCC of the aerodigestive tract, potentially with concur-
rent chemoradiation therapy depending on the extent of the
disease.3 The local recurrence rates for SCC cases depend on
the successful removal of the cancer. For surgeries with negative
cancer margins, the local recurrence rate is 12% to 18%, com-
pared to local recurrence rates of up to 30% to 55%, if positive
cancer margins are determined.4–6 Moreover, positive cancer
margins have a greatly reduced disease-free survival, with esti-
mates ranging from 7% to 52%, compared to disease-free sur-
vival rates of 39% to 73% for negative margins.7,8 Disease
recurrence greatly affects the likelihood for additional surgeries,

reduced quality of life, complications from surgery, and
increased mortality rates.9

Hyperspectral imaging (HSI) is a noncontact optical imaging
modality capable of acquiring a single image of potentially hun-
dreds of discrete wavelengths. Preliminary research demon-
strates that HSI has the potential for providing diagnostic
information for various diseases.10 Preliminary studies from our
group show that HSI combined with machine learning (ML)
may yield diagnostic information with potential applications for
surgical use in head and neck cancers.11–14 Fabelo et al.15–17 have
demonstrated the need and utility of HSI for in-vivo brain cancer
detection and developed a visualization system that could lead to
near-real-time guidance by using a machine learning-based
classification algorithm. Moreover, the use of deep learning
techniques to process the same dataset was studied, demonstrat-
ing that they outperform the traditional machine learning
methods.17 Many applications of HSI for gastrointestinal proce-
dures have been explored, including anatomical organ identifi-
cation, anastomosis and ischemia classification, and cancer
detection.18 Recently, the implementation of HSI for guided
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colorectal surgery as a replacement for tactile information lost in
laparoscopic surgeries has been explored in an ex-vivo study,
and Baltussen et al.19 demonstrated that HSI could distinguish
between normal healthy colon wall and colorectal adenocarci-
noma. Much work has been explored in head and neck HSI as
well. Salmivuori et al.20 detailed the assistance of HSI in ill-
defined, cutaneous basal cell carcinomas of the head and neck,
and the authors contend that HSI offers clinical utility in more
accurately assessing margins. Farah et al.21 demonstrated that
narrow-band imaging (NBI) at green (400 to 430 nm) and blue
(525 to 555 nm) visible light could reveal the extent of oral SCC
under white light. Nonencoding portions of RNA called micro-
RNA function to regulate the expression of DNA.22 Moreover,
Farah et al.23,24 obtained micro-RNA and mRNA expression lev-
els from both the primary tumor core and the near-tumor normal
tissues; it was determined that NBI spatially correlated with
tumor-like expression levels in detecting the abnormality in
near-tumor normal tissues.

Machine learning methods, including support vector
machines (SVMs) and convolutional neural networks (CNNs),
the latter being an implementation of artificial intelligence, have
demonstrated near human-level ability for image classification
tasks.25,26 These experiments have been conducted on gross-
level HSI acquired of ex-vivo tissue specimens from patients
undergoing surgical cancer resection. However, HSI uses wave-
lengths of light that can penetrate different depths into the bio-
logical tissue, so it is possible that the superficial cancer margin
may change with depth and create uncertainty in ground truth,
which is used to obtain evaluation metrics for these experiments.

Selected previous works from our group performing head
and neck squamous cell carcinoma (HNSCC) detection in ex-
vivo samples from the upper aerodigestive tract used only sin-
gle-class tissue specimens (purely tumor or normal tissues) to
demonstrate classification potential with HIS.27,28 Lu et al.14

incorporated tumor-involved cancer margin specimens from
HNSCC, but these methods were implemented on selected
regions of interest (ROIs) of normal and tumor near the margin.
Therefore, the area under the curve (AUC) reported for HNSCC
detection thus far from our group ranges from 0.8 to 0.95, but
these results may be limited to ROIs or single-class tissues.
Similarly, Manni et al.29 used ROIs from tumor-margin speci-
mens of seven patients with tongue SCC and obtained an AUC
of 0.92. Weijtmans et al.30 developed a deep learning architec-
ture that separately extracts spectral and spatial features from
HSI, a dual-streamed approach, also validated on seven patients
with tongue SCC; the proposed model performed better with
both feature streams (AUC of 0.90) compared to individual
stream. A few works have investigated SCC detection at the
actual cancer margin; Halicek et al.31 performed SCC detection
at the cancer margin, upon which the proposed method in this
paper expands, but this previous work was limited by ignoring
regions of specular glare. Trajanovski et al.32 performed seman-
tic segmentation with deep learning of entire ex-vivo tissue spec-
imens with excellent validation performance (AUC of 0.93) on
gross specimens of the cancer margin from 14 tongue SCC
samples.

This study aims to investigate the ability of HSI to detect
SCC in surgical specimens from the upper aerodigestive tract
using several distinct machine learning pipelines. In addition,
another objective of this work is to investigate the limiting fac-
tors of HSI-based SCC detection, including specular glare, noise
and blur, and uncertainty in the ground truth due to changes in

superficial cancer margin with depth, all of which must be thor-
oughly explored to understand the potential of HSI in the oper-
ating room. A preliminary version of this work was presented at
the 2019 SPIE Medical Imaging Conference.31 The contribu-
tions of this journal paper include a proposed algorithm combin-
ing deep learning and unsupervised machine learning;
additionally, five testing patients have been serially sectioned
to reveal changes in the cancer margin. This work expands upon
previous cross-validation experiments with CNN-only methods
on our H&N dataset to include multiple machine learning pipe-
lines involving CNNs and other state-of-the-art methods. The
proposed methods are tested on five HSI of five SCC patients,
and the accuracy of the corresponding ground truths from these
five tissues are discussed in detail along with potential directions
for incorporating the outcomes of this work to improve future
studies with HSI for cancer detection.

2 Methods

2.1 Experimental Design

In collaboration with the Otolaryngology Department and the
Department of Pathology and Laboratory Medicine at Emory
University Hospital Midtown, head and neck cancer patients
undergoing surgical cancer resection were recruited for our
HSI studies. Written and informed consent was obtained from
all patients before acquiring surgical tissue specimens for inclu-
sion in our study, which was used for research purposes only and
deidentified by a clinical research coordinator. The experimental
methods and protocols were approved by the Institutional
Review Board at Emory University. In previous studies, we have
evaluated the efficacy of using HSI for optical biopsy of head
and neck tissues.11,33 Excised tissue samples of HNSCCs and
normal tissues were collected from the upper aerodigestive tract
sites, including tongue, larynx, pharynx, and mandible. Three
tissue samples, with approximate size of 10 × 10 × 3 mm, were
collected from each patient: a sample of the primary tumor
specimen, a normal tissue sample, and a sample at the tumor-
involved cancer margin with adjacent normal tissue; these spec-
imens were scanned with an HSI system.14,28

In this study, we selected 26 tissue specimens from 12
patients with moderate-to-poorly differentiated primary SCC
of the upper aerodigestive tract for this analysis, including pri-
mary origin sites of the larynx, pharynx, tongue, floor of mouth,
alveolar ridge, buccal mucosa, and maxillary sinus. The patients
were divided into two groups, cross-validation and testing
groups. The first seven patients and corresponding 21 tissues
samples were collected early in the course of this project that
met the criteria of having the ideal distribution of tumor,
tumor–normal, and normal tissues and were used for evaluating
quantitative results, expanding from previously published
results with this group of patients.13 In addition, five tumor-
involved margin tissue specimens from five patients acquired
at the end of the data collection period were selected to comprise
the testing group. These tissue specimens were selected because
they had approximately equal amounts of cancer and normal
tissues in each specimen and were verified by the collaborating
pathologist as of interest to undergo serial histological section-
ing through the depth of the tissue. These five patients’ tissues
were classified using models trained from the first seven patient
cross-validation group (following a leave-one-patient-out cross-
validation method), and these five patients’ results are presented
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qualitatively to compare with the variability in the superficial
cancer margin.

2.2 Hyperspectral Imaging

Hyperspectral images were acquired of ex-vivo surgical speci-
mens using a previously described CRI Maestro imaging system
(Perkin Elmer Inc., Waltham, Massachusetts), which captures
images having 1040 × 1392 pixels and a spatial resolution of
25 μm∕pixel.11,28,34,35 Each hypercube contains 91 spectral
bands, ranging from 450 to 900 nm with a 5-nm spectral sam-
pling interval. The HS data were normalized by a standard
white–dark calibration normalization, which involved sub-
tracting the inherent dark current from the measured spectra and
dividing it by a white reference spectra for all wavelengths
sampled for all pixels.11,35 Figure 1 shows the RGBs, grayscale
images at representative bands, and spectral signatures of the
patients’ HSI data. The grayscale images at selected bands high-
light the choice of the cutoffs due to noise at the ends of the
broadband spectrum. The HSI was used to construct RGB
composite images by implementing a Gaussian function cen-
tered on each color component of the spectrum: red (625 to
700 nm), green (520 to 560 nm), and blue (450 to 490 nm).

2.3 Histological Imaging

To obtain a ground-truth labeling for the tissue specimens
imaged with HSI, tissues were inked after imaging to
preserve orientation, fixed in formalin, paraffin embedded, sec-
tioned from the top of the imaging surface, hematoxylin and
eosin stained, and digitized using a Hamamatsu Photonics
NanoZoomer at 40× objective (specimen-level pixel size,
0.23 μm). The ex-vivo tissue sections were reviewed by a
board-certified pathologist with expertise in H&N pathology
and the cancer margins were annotated directly on the slide
using digitized histology in Aperio ImageScope (Leica
Biosystems Inc., Buffalo Grove, Illinois).

There exists the possibility for substantial deformation of the
histological images during processing relative to the HSI setup.
Previously, the registration challenges were explored by using a
deformation-based image registration pipeline of the histologi-
cal image with known registration landmarks, and an error of
0.5 mm for SCC tissues was calculated.36 For the cross-valida-
tion group patients in this work, the histological images were
automatically registered using this deformable registration pipe-
line to produce the HSI ground truth. However, to calculate the
error of histology ground truths for HSI in millimeters, a more
accurate registration is needed than the automated approach. For
the testing group patients since each had six histological slices,
we manually registered each histological image using mutual
landmarks to the HSI that were serially sectioned to reduce error.

2.4 Hyperspectral Imaging Binary Ground Truth

Specular glare is detected in each spectral band by fitting a
gamma distribution to the pixel intensities of that band. Next,
the top 1% of intensities are identified in this distribution, and
any pixels with intensities of these bins are identified as specular
glare. There were two types of specular glare observed: near-
infrared (NIR) and visible, which usually were spatially inde-
pendent. Visible glare occurs between 450 and 790 nm, and
NIR glare occurs after 800 nm, which can be seen in the selected
bands in Fig. 1. A pixel was identified as a specular glare pixel
and removed if there was a glare identified using the distribution
method in any spectral band from 490 to 790 nm. This rangewas
selected because bands before and after this range were removed
during preprocessing. NIR glare is observed beyond this range,
so it is not relevant.

Binary masks are constructed from the histological images
and used to construct the ground truth for HSI in two methods.
The first method is to investigate only ideal quality pixels, which
is constructed by avoiding HSI regions with a large amount of
specular glare. For the ground-truth mask avoiding glare, only
regions that contain sufficient area to extract 25 × 25 spatial
patches without any specular glare are included. The second

Fig. 1 Two representative tissue specimens from different patients. Left: spectral signatures of SCC and
normal ROIs are shown for both patients in (a) and (b). The HSI-RGB composite images and selected
spectral bands are shown to highlight the noisy band cutoffs during preprocessing. Binary ground-truth
masks including glare regions, generated by only removing patches centered on specular glare is shown;
binary ground-truth mask excluding glare regions, generated by sufficient area to extract 25 × 25 patches
and avoiding specular glare (white: SCC, and normal: gray).
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method is to investigate the degrading effect of specular glare on
classification accuracy. For the “ground-truth mask including
glare” regions, the entire tissue area is included for patch-mak-
ing, but the top 1% of glare pixels are identified by fitting a
gamma distribution to pixel intensities, such that no patches are
centered on a glare pixel. A binary mask of the specular glare
pixels was generated, and patches were produced automatically
using this mask in the regions around the specular glare.
Figure 1 shows an example of the two masks generated from
two different patients. Both masks will be used for evaluating
quantitative testing results and are referred to as “ground-truth
mask excluding glare” and ground-truth mask including glare,
respectively. The specular glare pixels are represented by the
black pixels within the first mask in the middle. The automatic
patch-making process can be seen to avoid the regions of specu-
lar glare shown in the second mask on the right of Fig. 1.

2.5 Effect of Sectioning Depth on Cancer Margin
Ground Truth

HSI uses wavelengths of light in the visible and NIR spectrum
that can penetrate different depths into biological tissue. It is
possible that the cancer margin may change with depth and cre-
ate uncertainty in the classification results because of the vari-
able penetration of the HSI broadband spectrum. To investigate
this, additional histological sectioning was performed on five
tumor-involved margin tissue specimens (see Fig. 2).

During histological sectioning, it is a standard procedure to
discard the first sections until the first good-quality section is
obtained that contains the entire perimeter of the tissue speci-
men. The five specimens used for additional histological sec-
tioning were retroactively enrolled for serial sectioning, so it
was unknown what initial depth of tissue was discarded to
obtain the first good-quality slice. In discussion with the path-
ology laboratory technician, who performed the histological
sectioning, and through observation of specimen sectioning,
it was estimated that ∼100 to 200 μmwere discarded on average
during initial sectioning before obtaining the first high-quality,
tissue-encompassing slide.

To produce serial histological sectioning further into the
depth of the tissue specimens, the thickness of the remaining

paraffin-embedded tissue was estimated. The microtome used
for this study produced slices at 5 μm, so the number of addi-
tional sections was documented and the distances of additional
depth could be measured. From the sectioned surface, which
corresponds to the top of the tissue that was optically imaged,
five more sections were obtained, up to 300 μm further into the
depth of the tissue, by discarding nonincluded slices. The extent
of the additional serial sections were obtained for 100 to 300 μm
beyond the first good-quality slice; the exact values for the five
tissue specimens’ total additional sectioning depths were 100,
150, 200, and 300 μm, depending on the unique tissue speci-
men. Therefore, the combined total estimate of additional sec-
tioning is ∼200 to 500 μm into the tissue depth from the original
HS image surface. Penetration depth depends on the tissue com-
position and wavelength of light. This sectioning depth was
investigated because it represents the effective penetration depth
for biological tissue in the shorter wavelengths of HSI used,
which correspond to the most relevant features for HSI classi-
fication, such as hemoglobin between 550 and 600 nm.37–39

2.6 Machine Learning Techniques

2.6.1 Data preprocessing

A further preprocessing chain was applied to the data mainly to
reduce the noise in the spectral signatures (Fig. 3) and was com-
pared with the standard white-reference calibration. The
machine learning methods detailed below were tested with and
without the following preprocessing steps. The proposed
preprocessing chain is based on four steps: image calibration,
operating bandwidth selection, noise filtering, and data normali-
zation. In the first step, the previously described method to nor-
malize the data using white reference and dark current is
performed. Next, the spectral bands are truncated between
490 and 790 nm, so the final HS cube contains only 61 bands,
which will be used for classification. Spectral bands outside this
range were noisy because they were too close to the detectable
limits of the HS camera. In the third step, a smoothing filter is
applied to the data in order to reduce the spectral noise. A mov-
ing average with a span of 10 spectral bands was used as the
smoothing filter, implemented as a sliding low-pass filter with

Fig. 2 Representative tissue specimen that underwent serial histological sectioning to evaluate cancer
margin variation with tissue depth. (a) HSI-RGB composite image; (b) first histological slice (the green
outlined area is the pathologist annotation of the SCC region); (c) combined merged image of the six
binary masks from the six histological images (cancer shown in white, normal in gray); (d) merged image
of the SCC contours from the six histological images. The two rightmost images are used to depict the
total variation of the cancer margin.
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coefficients equal to the reciprocal of the span. Finally, each pix-
el’s spectral signature is normalized between 0 and 1, using a
function to map the minimum and maximum to these values.

2.6.2 Convolutional neural networks

A deep CNNwas used to detect SCC in the ex-vivo specimens of
the upper aerodigestive tract, implemented using TensorFlow in
Python on a NVIDIA Titan-XP GPU.13,25,26,40 In summary, an
Inception-V1-style three-dimensional (3-D) CNN was designed
and trained using leave-one-patient-out cross validation.26

The 3-D convolutional kernels that comprised the modified
3-D inception V1 modules were of sizes 1 × 1 × 1, 3 × 3 × 3,
and 5 × 5 × 5, and in total, the CNN architecture contained two
inception modules, three convolutional layers, and two fully
connected layers using the 3-D patch input size of 25 × 25 × 91
(height × width × spectral bands) for unprocessed HSI patches
and 25 × 25 × 61 for preprocessed HSI patches. The total num-
ber of HSI samples in the cross-validation group was 647,000
normal HSI pixels and 877,000 cancer HSI pixels, calculated
from the binary masks excluding glare, from the 21 tissue spec-
imens from 7 patients. Each HSI pixel served as the center for an
image patch (height × width × spectral bands). Dropout was
employed to avoid overfitting in the CNN models.

In total, the CNN described was separately trained using four
different scenarios using the information from two versions of
the binary ground-truth masks and the two proposed processing
methods, which produce different models: first, CNN trained
without specular glare patches (trained separately both with and
without added preprocessing of spectral data), and second, CNN
trained with specular glare patches (trained separately both with
and without added preprocessing of spectral data). The 95%
confidence intervals (CIs) were calculated using a bootstrapping
method by sampling 1000 pixels from each class with replace-
ment from each patient and calculating the AUC of the receiver
operator characteristic (ROC); the method was performed 1000
times for each patient and 2.5 and 97.5 percentiles were
reported. The saved, trained models of the patients from the pre-
vious work were used to classify the HS images of the five test-
ing group patients that underwent serial histological sectioning
for surgical margin variation with depth evaluation. The prob-
abilities of all models were averaged per patient to obtain quali-
tative probability heat maps, scaled from 0 to 1, where 0
represents normal class and 1 represents high probability that
the tissue belongs to the cancer class.

2.6.3 HELICoiD algorithms

The results of the CNN classification method and the generated
probability maps were compared to the results obtained by a
machine learning pipeline previously developed for intraopera-
tive detection of brain cancer using HIS.15,41–44 In summary, a
spatial–spectral classification algorithm, here referred to as
HELICoiD [Fig. 4(a)], was implemented using a classification
map obtained by an SVM classifier that is spatially

homogenized by employing a combination of a one-band rep-
resentation obtained from the first principal component analysis
(PCA) decomposition through a K-nearest neighbors (KNN) fil-
tering method [Fig. 4(a), part A]. After that, the result of the
KNN filtering is merged with an unsupervised segmentation
map generated by a hierarchical K-means (HKM) algorithm
through a majority voting (MV) method.16 The result of this
algorithm is a classification map that includes both the spatial
and the spectral features of the HS images. In addition, for this
application, the KNN filtering is applied again to the MV prob-
abilities and the PCA one-band representation to homogenize
the results [Fig. 4(a), part B].

A component of the HELICoiD algorithm was isolated and
referred to as spatial SVM, which uses both the spectral and the
spatial components of HSI for machine learning through a com-
bination of PCAþ SVMþ KNN. This spectral–spatial imple-
mentation of SVM is performed with and without the additional
preprocessing pipeline to be used as a surrogate for direct
comparison to the CNN with and without preprocessing.
Furthermore, a pipeline that combines the CNN architecture
with the entire HELICoiD algorithm was proposed. In this case,
the spatial–spectral stage of HELICoiD (PCAþ SVMþ KNN)
is replaced by the CNN architecture trained with the prepro-
cessed data [Fig. 4(b)]. Both HELICoiD and CNNþ
HELICoiD algorithms use the preprocessed HS data as input.

In summary, we present six algorithms for investigation of
HSI machine learning: the CNN (with and without preprocess-
ing), the spatial SVM (with and without preprocessing), the
HELICoiD algorithm, and finally the CNNþ HELICoiD algo-
rithm. These six machine learning algorithms were tested first
on the group of experiments using the binary ground-truth
masks that exclude specular glare, and again the experiments
were performed with the binary ground-truth masks that include
specular glare. The six algorithms were compared using box plot
distributions of the values and median AUC with 95% CIs, and,
a paired, one-tailed t-test on the classification results was used to
determine statistical differences with a 0.05 threshold for signifi-
cance. The quantitative classification results of seven patients
are reported in Table 1, obtained by using leave-one-patient-out
cross validation. In addition, like the CNN method, the saved,
trained models from these patients were used to classify five
tissue specimens that were imaged with HSI and underwent
serial histological sectioning for cancer margin variability evalu-
ation. The probabilities of all models were averaged per patient
to obtain qualitative probability heat maps, scaled from 0 to 1,
where 0 represents normal class and 1 represents high probabil-
ity that the tissue belongs in the cancer class.

3 Results
Quantitative results from the leave-one-patient-out cross valida-
tion, using both the ground-truth regions that include glare pix-
els and the subsampled masks that include only ideal quality
regions that exclude glare, show that the CNN-based classifier
group outperformed the SVM-based classifier group using the
average AUC of the ROC, as shown in Table 1 and Fig. 5. The

Fig. 3 Block diagram of the proposed preprocessing chain.
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results are reported using sevenfold cross validation to validate
on all seven patients.

When classification is performed on only ideal quality pixels
(obtained from the subsampled mask, see Fig. 1), the results
indicate that additional preprocessing of the spectral signature

and addition of the HELICoiD method and KNN filtering do
not significantly improve the results compared to only using the
CNN [see Fig. 5(a)]. The average AUCs for the CNN groups are
0.86, 0.84, and 0.82 for the CNN, CNN with preprocessed input
data, and CNNþ HELICoiD method, respectively. The average
AUCs for the SVM-based groups are 0.71, 0.82, and 0.82 for the
spatial SVM without and with preprocessed input data, and
HELICoiD method, respectively. The 95% CIs overlap for all
groups except for spatial SVM, as shown in Table 1. In addition,
all methods have a similar interquartile range and median dis-
tribution (see Fig. 5).

However, when the classification is performed over the entire
HS image tissue area, which includes classification of specular
glare pixels that contain more noise and variability, the CNN +
HELICoiD method outperforms other methods tested with an
average AUC of 0.81 for classification. This classification
scheme, including specular glare pixels, represents a more
realistic application of HSI. The CNN algorithm alone with
or without preprocessing has an average AUC of 0.78 and
0.73, respectively, and both constitute a statistically significant
decrease in performance compared the CNNþ HELICoiD

method (p ¼ 0.03 and 0.04, respectively). The average AUC
values range from 0.69 to 0.79 for the SVM-based groups, and
the HELICoiD algorithm significantly outperforms the spatial
SVM (p ¼ 0.01). The additional preprocessing pipeline, as
described in Fig. 3, only offers a statistically significant increase
in performance for the spatial-SVM algorithm (p ¼ 0.02), not
the CNN (p ¼ 0.1) (see Table 1, for complete results with 95%
CIs). In summary, from the cross-validation experiments, the
best classification method was using the CNN as the input for
the HELICoiDþ KNN filtering method. For comparison, using
the spectral–spatial SVMþ PCAþ KNN for input to the
HELICoiD algorithm instead of the CNN component yielded
slightly lower results that were not statistically significant.

Fig. 4 Block diagrams of the proposed classification frameworks. (a) HELICoiD algorithm with the addi-
tional KNN filter. (b) Pipeline of the mixed algorithm.

Table 1 Results of interpatient cross validation of SCC versus nor-
mal, obtained using the leave-one-patient-out method. Average AUCs
are reported with bootstrapped 95% CI.

Ground truth Classifier
Average AUC

[95% CI]

Excluding
glare

Spatial SVM 0.71 [0.68, 0.74]

CNN 0.86 [0.82, 0.89]

Spatial SVM (preprocessed HSI) 0.82 [0.80, 0.84]

CNN (preprocessed HSI) 0.84 [0.81, 0.86]

HELICoiD (preprocessed HSI) 0.82 [0.79, 0.84]

CNN + HELICoiD
(preprocessed HSI)

0.82 [0.79, 0.85]

Including
glare

Spatial SVM 0.69 [0.67, 0.71]

CNN 0.73 [0.71, 0.76]

Spatial SVM (preprocessed HSI) 0.76 [0.74, 0.77]

CNN (preprocessed HSI) 0.78 [0.76, 0.81]

HELICoiD (preprocessed HSI) 0.79 [0.77, 0.81]

CNN + HELICoiD
(preprocessed HSI)

0.81 [0.80, 0.83]
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For generalization and application, HS images from five tis-
sue specimens from five patients with SCC comprised the hold-
out testing group and were classified using the saved models that
were trained and cross validated using the seven patient cross-
validation group. The testing patients were classified by all
cross-validation models and averaged to obtain qualitative prob-
ability heat maps. Qualitative investigation of the five testing
patients, classified with the CNN trained with preprocessed
data alone and the CNNþ HELICoiDþ KNN filtering method
is shown in Fig. 6. As shown in Figure 6, the CNNþ
HELICoiDþ KNN technique performs better on the five testing
patients, in agreement with the quantitative metrics from the
cross-validation group. The SCC probability heat maps are
shown with binary masks depicting the uncertainty and variation
in the cancer margin with depth. Depending on the tissue, as
demonstrated, the margin changes by about 1 mm depending
on the sectioning depth. Therefore, our qualitative results can
be interpreted within the range of uncertainty of the ground truth
to provide more insight into the classification potential of
machine learning methods using HSI for cancer detection.

4 Discussion
In this work, we presented and quantified the combination of
two state-of-the-art machine learning-based classification meth-
ods for HSI of ex-vivo HNSCC surgical specimens. In summary,
there are two methods for generating SCC prediction probability
maps: the first uses a CNN, and the second uses a combination
of SVMþ PCAþ KNN. After generating the predicted cancer
probabilities on a pixel level, the probability map is combined
with an HKM unsupervised segmentation layer through an MV
algorithm that determines the class belonging to the ROI.
Therefore, two distinct methods are compared using leave-one-
patient-out cross validation to obtain quantitative evaluation
metrics. In addition, the methods are tested on a group of
HSI obtained from five SCC patients who underwent serial

histological sectioning to evaluate the variation in the cancer
margin with penetration depth of the light wavelengths.

The quantitative results of this paper suggest that when work-
ing with ideal quality pixels, such as the spectral signatures gen-
erated from flat-surface-tissue surfaces with no glare, the CNN
techniques and spatial–spectral machine learning algorithms
will perform with no significant difference and no additional
preprocessing will be necessary. The average AUCs for these
methods using the preprocessed input data range from 0.82
to 0.86 with overlapping CIs. However, when the pixels classi-
fied contain noise, for example, due to sloping of the tissue
edges or specular glare from completely reflected incident light,
additional spectral smoothing and additional HELICoiDþKNN
filtering of the classifier improve classification results of
the CNN. The best performing method tested was CNNþ
HELICoiDþ KNN with an average AUC of 0.81 [0.80,
0.83]. These tested methods outperform the traditional spec-
tral–spatial machine learning methods employed in this study.
Therefore, the HELICoiDþ KNN techniques using both the
CNN and SVMþ PCAþ KNN for cancer probability maps
performed best for the seven cross-validation patients, and so
both were employed on the five patients testing set. One major
limitation of the approach used in this paper was the small sam-
ple size, and therefore, the proposed ML models could be prone
to overfitting and lack generalization to larger testing datasets.
To investigate potential overfitting in this experiment, we ana-
lyzed the training and cross-validation accuracies for the CNN
trained with preprocessed HSI data. The average training accu-
racy was 85%, and the average cross-validation accuracy with
CI was 79% [78, 81] for excluding glare and 74% [73, 76] for
including glare. This result indicates that our models did not
suffer substantially from overfitting.

Excluding glare, the CNN alone without preprocessing per-
forms best. It is hypothesized that CNN and deep learning meth-
ods should be expected to outperform traditional ML techniques

Fig. 5 Results of interpatient cross validation of SCC versus normal, obtained using the leave-one-
patient-out method. Top: average AUCs reported with 95% CI. Bottom: box plots with the range in black,
75th and 25th percentile in blue, and median in red.
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Fig. 6 Representative results of binary cancer classification of the five testing patients. From top to bot-
tom: HSI-RGB composite; histological ground truth showing variation in cancer margins with cancer area
outlined; heat maps for cancer probability for CNN − HELICoiDþ KNN and HELICoiDþ KNN tech-
niques. The extremes in the superficial cancer margin are overlaid on to the heat maps.
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because a substantially large dataset should allow learning of
variance, tolerance of noise, and removal of the need for prepro-
cessing. Also, the CNNþ HELICoiD method performs only
slightly better than the original HELICoiD; this could be pro-
duced because the CNN probability maps are out-weighted
by the PCA and KNN filtering that are applied afterward.
After the inclusion of specular glare, the results change relative
to each method, with the CNN with preprocessing outperform-
ing the CNN without preprocessing. This outcome could be the
result of the classification problem becoming more challenging
compared to excluding glare, so the dataset is now too small for
the CNN to perform well without preprocessing. Expanding the
training dataset with more patients with specular glare and large
amounts of noise may allow original CNN methods to outper-
form other techniques.

To test the general application of the proposed methods,
HSI from five testing group patients with SCC were classified
using the models that were trained and cross validated using the
seven-patient group. To qualitatively investigate these results,
histological images of the five ex-vivo tissue specimens were
obtained down to about 0.3 mm to determine how the superficial
cancer margin may change with depth. As shown in Fig. 6,
the CNNþ HELICoiDþ KNN technique performs best on the
five-patient SCC testing group, which was the same result
obtained from the sevenfold quantitative cross-validation
experiment.

The five patients’ tumor-involved margin specimens were
classified with the CNN trained with the fully preprocessed
image patches that were extracted from the complete binary
ground-truth mask including specular glare pixels. These prob-
ability maps are shown in Fig. 6, and the CNN map is also used
as the input for the HELICoiD + KNN-filtering technique. In
the top three rows of Fig. 6, there are regions of glare with tissue
specimens that are classified incorrectly as normal with the
CNN, but the CNNþ HELICoiD correctly classifies these ROIs
as SCC. It is also possible to observe that the CNNþ
HELICoiD method tends to overpredict SCC at regions of nor-
mal tissue near the cancer margin. We hypothesize that the
CNNþ HELICoiD technique outperforms the patch-based
CNN alone because it can incorporate more local and regional
spatial and spectral information to overcome the degrading
effect of specular glare. Therefore, future work could involve
the application of a full CNN for SCC detection on tissues with
specular glare. This algorithm requires more data necessary for
training as it produces labels that are end to end, a full pixel
classification map for a full HSI input, and so it would require
the entire HSI dataset acquired for this project.

An additional aim of this investigation was to determine the
variation of the superficial cancer margin through the depth of
the tissue. From the five testing patient tissue specimens, it can
also be seen that the superficial cancer margin of the ex-vivo
tissue specimens can vary from the extreme near and far margins
in the range of 1 to 2 mm. These results allow interpretation of
the cancer prediction probability maps with observed variation
in the ground truth. However, additional possible uncertainty
may exist in the histological ground truth. For example, if the
angle of the sectioning plane is skewed from the tissue plane,
then the ground truth could be warped, which could lead to
errors that cannot be corrected by deformable registration. In
a previous work, we explored a pipeline of affine and deform-
able demons-based registration for alignment of the histological
ground truth to gross-level images of specimens, and it was

determined via needle-bored control points that target registra-
tion error was 0.4� 0.2 mm.36 The combination of these two
main sources of uncertainty in the histological ground truth for
the ex-vivo tissue specimens allows for error propagation of up
to 2.5 mm in the binary mask. This would greatly affect the
results of the pixel-wise evaluation metrics such as accuracy,
sensitivity, and specificity.

Future work includes development and implementation
of a new performance evaluation method to handle this margin
uncertainty, for instance, evaluating primary tumor clearance
at several millimeter increments from the ideal tumor margin.
Currently, the standard for surgeons’ opinions on margin
adequacy is 5 mm for HNSCC, with margins between 1 and
5 mm defined as “close margins.”45 However, some studies sug-
gest that outcomes may be similar for margin of 2.2 to 5 mm.46 It
is evident that the question of margin adequacy is still being
determined, and surgeons would be interested in the perfor-
mance of optical imaging methods at different margin distances.
Therefore, the proposed error metric should extend to about 2 to
3 mm. Figure 7 demonstrates how the cancer margin could be
systematically eroded and be used to determine accuracies at
several distances from the cancer margin to better provide sur-
geons and physicians with a method for interpreting results for
HSI studies, given the conclusions of this paper on the uncer-
tainty of the cancer margin. The outcomes of this work suggest
the use of this error metric for future studies.

Another avenue of future work involves the rethinking of the
definition of normal tissues in the tissue specimens of the tumor-
involved margin. In oral SCC, it has been studied that normal
tissue directly adjacent to the primary SCC is molecularly dis-
tinct from normal tissues farther from the SCC, and additional
resection to this extended margin may lead to increased disease-
free survival and reduced local recurrence.23,24 Moreover, this
result was obtained by investigation that NBI at 400 to 430 nm
and 525 to 555 nm reveals changes in normal tissue that corre-
late to significantly different levels of micro-RNA epigenetic
regulation compared to primary tumor and normal tissue that
are not visible under white light alone.21,23,24 Therefore, it may
be possible to extract micro-RNA expression levels to determine
a molecular ground truth for certain tissues employed in this
study, as Liu and Xu47 have demonstrated that micro-RNAs can
be reliably obtained from formalin-fixed, paraffin-embedded
tissue samples.

Fig. 7 Proposed evaluation metric demonstrates millimetric, system-
atic cancer-margin erosion that could provide performance updates at
several distances from the cancer margin to provide physicians with
an easily interpretable method for understanding the results of HSI
studies.
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5 Conclusion
This study investigated the effects of specular glare, noise, blur-
ring, and tissue-edge sloping artifacts on HSI-based cancer
detection. It explored the potential of HSI and machine learning
for the detection of head and neck cancer. According to the
experimental results, the CNN seems to be more robust against
the environmental conditions of the acquired images and pro-
vides better classification results even without data preprocess-
ing. Future work includes experimenting with deep learning
methods that can incorporate more contextual information of the
tissue, such as a full CNN. In addition, another objective was to
evaluate the general efficacy on example test cases with uncer-
tainty in the ground truth as the superficial cancer margin varies
with penetration depth. This was tested by serially sectioning the
tissue samples in the testing group to reveal the variation of the
cancer margin through the depth of the tissue. This determined
that the validity of the top section alone as the ground truth may
be limited to 1 to 2 mm, suggesting that an alternative approach
for obtaining performance metrics should be developed. All of
the above factors are necessary to explore and understand the
potential of HSI in the operating room. The proposed deep
learning and machine learning methods employed to study these
objectives require sufficiently large patient datasets for training,
validation, and testing. Therefore, the preliminary results of this
study encourage the inclusion of more data and further explo-
ration into the ability of HSI for cancer detection.
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