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Abstract

Several blood protein biomarkers have been associated with prostate cancer (PrCa) risk. However, 

most studies assessed only a small number of biomarkers and/or included a small sample size. To 

identify novel protein biomarkers of PrCa risk, we studied 79,194 cases and 61,112 controls of 

European ancestry, included in the PRACTICAL/ELLIPSE consortia, using genetic instruments of 

protein quantitative trait loci (pQTLs) for 1,478 plasma proteins. 31 proteins were associated with 

PrCa risk including proteins encoded by GSTP1, whose methylation level was shown previously 

to be associated with PrCa risk, and MSMB, SPINT2, IGF2R, and CTSS, which were previously 

implicated as potential target genes of PrCa risk variants identified in genome-wide association 

studies. 18 proteins inversely correlated and 13 positively correlated with PrCa risk. For 28 of the 

identified proteins, gene somatic changes of short indels, splice site, nonsense, or missense 

mutations were detected in PrCa patients in The Cancer Genome Atlas. Pathway enrichment 

analysis showed that relevant genes were significantly enriched in cancer related pathways. In 

conclusion, this study identifies 31 candidates of protein biomarkers for PrCa risk and provides 

new insights into the biology and genetics of prostate tumorigenesis.
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Introduction

Prostate cancer (PrCa) is the second most frequently diagnosed malignancy and the fifth 

leading cause of cancer mortality among males worldwide(1). In the United States, there 

were 164,690 estimated new PrCa cases and 29,430 estimated deaths due to PrCa in 2018, 

making it a malignancy with the highest incidence and second highest mortality in males(2). 

The survival rate is higher when cancer is diagnosed at a localized stage while it drops 

substantially when PrCa is diagnosed at a metastatic stage(3). Biomarkers are needed for 

screening and the early detection of PrCa. Prostate-specific antigen (PSA) has been used 

widely for PrCa screening(4,5); however, there are controversies in using PSA screening due 

to the lack of a clear cutoff point for high sensitivity and specificity(6-8), unclear benefit in 

reducing mortality in some populations (9-11), and overdiagnosis of PrCa(12). Thus, there is 

a critical need to identify additional screening biomarkers aiming to reduce the mortality of 

PrCa.

Several other protein biomarkers measured in blood have been reported to be potentially 

associated with PrCa risk, such as IGF-1, IGFBP1/2, and IL-6(13-16). However, findings 

have been inconsistent from previous studies. Most existing studies have assessed only a 

small number of candidates. With the recent development of proteomics technology, there 

have been several studies searching the whole proteome to identify novel biomarkers for 

PrCa early detection and diagnosis(17-20). These studies have generated some promising 

findings. However, these have only included a relatively small number of subjects as it is 

expensive to profile the proteome in a large population-based study. More importantly, there 

are multiple limitations that are commonly encountered in conventional epidemiologic 

studies, including selection bias, potential confounding, and reverse causation. These 

limitations may explain some of the inconsistent results from previous studies.

To reduce these biases, we used genetic variants associated with blood protein levels as the 

instruments to assess the associations between genetically predicted protein levels and PrCa 

risk. Because of the random assortment of alleles transferred from parents to offspring 

during gamete formation, this approach should be less susceptible to selection bias, reverse 

causation, and confounding effects. Over the past few years, genome-wide association 

studies (GWAS) have identified hundreds of protein quantitative loci (pQTL)(21,22). With a 

large sample size, many of these genetic variants can serve as strong instrumental variables 

for evaluating the associations of genetically predicted protein levels with PrCa risk. Herein, 

we report results from the first large study investigating the associations between genetically 

predicted blood protein levels and PrCa risk using genetic instruments. We used the data 

from 79,194 cases and 61,112 controls of European descent included in GWAS consortia 

PRACTICAL, CRUK, CAPS, BPC3 and PEGASUS, as described previously(23).
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Methods

A literature search was performed to identify the GWAS that uncovered genetic variants that 

were significantly associated with protein levels. After careful evaluation, the study 

conducted by Sun et al represents the largest and most comprehensive study to date(24). By 

using the data from two sub-cohorts of 2,731 and 831 healthy European-ancestry 

participants from the INTERVAL study, Sun et al identified 1,927 genetic associations with 

1,478 proteins at a stringent significance level(24). The detailed information of this study 

has been described elsewhere(24). In brief, an aptamer-based multiplex protein assay 

(SOMAscan) was used to quantify 3,620 plasma proteins. The robustness of the protein 

measurements was verified using several methods(24). Genotypes were measured using the 

Affymetrix Axiom UK Biobank array, which were further imputed using a combined 

reference panel from 1000 Genomes and UK10K. pQTL analyses were performed within 

each subcohort, with adjustments for age, sex, duration between blood draw and processing, 

and the first three principal components. After combining the association results from the 

two subcohorts via fixed-effects inverse-variance meta-analysis using METAL, the genetic 

associations between 1,927 variants and 1,478 proteins showed a meta-analysis of 

P<1.5×10−11, and a consistent direction of effect and nominal significance (P<0.05). These 

pQTLs were used to construct the instrumental variables for assessing associations between 

protein levels and the risk of developing prostate cancer. When two or more variants located 

at the same chromosome were identified to be associated with a particular protein, we 

assessed the correlations of the SNPs using the Pairwise LD function of SNiPA (http://

snipa.helmholtz-muenchen.de/snipa/index.php?task=pairwise_ld). For each protein, only 

SNPs independent of each other, as defined by r2 < 0.1 (based on 1000 Genomes Project 

Phase 3 version 5 data focusing on European populations), were used to construct the 

instruments.

We used the summary statistics data for the association of genetic variants with PrCa risk 

that were generated from 79,194 PrCa cases and 61,112 controls of European ancestry in the 

consortia PRACTICAL, CRUK, CAPS, BPC3 and PEGASUS(23,25). In brief, 46,939 PrCa 

cases and 27,910 controls were genotyped using OncoArray, which included 570,000 SNPs 

(http://epi.grants.cancer.gov/oncoarray/). Also included were data from several previous 

PrCa GWAS of European ancestry: UK stage 1 and stage 2; CaPS 1 and CaPS 2; BPC3; NCI 

PEGASUS; and iCOGS. These genotype data were imputed using the June 2014 release of 

the 1000 Genomes Project data as a reference. Logistic regression summary statistics were 

then meta-analyzed using an inverse variance fixed effect approach.

For estimating the association between genetically predicted circulating protein levels and 

PrCa risk, the inverse variance weighted (IVW) method, using summary statistics results, 

was used(26). The beta coefficient of the association between genetically predicted protein 

levels and PrCa risk was estimated using ∑i βi, GX ∗ βi, GY ∗ σi, GY
−2 ∕ ∑i βi, GX

2 ∗ σi, GY
−2 , and the 

corresponding standard error was estimated using 1 ∕ (∑i βi, GX
2 ∗ σi, GY

−2 )0.5. Here, βi,GX 

represents the beta coefficient of the association between i th SNP and the protein of interest 

generated from the pQTL study by Sun et al; βi,GY and σi,GY represent the beta coefficient 

and standard error, respectively, for the association between i th SNP and PrCa risk in the 
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PrCa GWAS. The association odds ratio (OR), confidence interval (CI), and P value were 

then estimated based on the calculated beta coefficient and standard error. A Benjamini-

Hochberg false discovery rate (FDR) of < 0.05 was used to adjust for multiple comparisons. 

Furthermore, to evaluate whether the identified associations between genetically predicted 

circulating protein levels and PrCa risk were independent of association signals identified in 

GWAS, we performed conditional analyses, adjusting for the closest risk SNPs identified in 

previous GWAS or fine-mapping studies. For this analysis, we performed GCTA-COJO 

analyses(27-30) (version 1.26.0) to calculate associations of SNPs with PrCa risk, after 

adjusting for the risk SNP of interest. We then re-ran the IVW analyses using the association 

estimates generated from conditional analyses.

For each of the genes encoding the proteins that are identified in our study in association 

with PrCa risk, we evaluated genetic variants/mutations/indels in prostate tumor tissues from 

PrCa patients included in TCGA. The somatic level genetic changes were analyzed using 

MuTect(31) and deposited to the TCGA data portal. Data were retrieved in April, 2016, 

through the data portal. The proportion of assessed genes containing such somatic level 

genetic events tended to be enriched, when compared with the proportion of all protein-

coding genes across the genome. Analysis was performed using MedCalc online software.

To further assess whether our identified PrCa associated proteins are enriched in specific 

pathways, molecular and cellular functions, and networks, we performed an enrichment 

analysis of the genes encoding identified proteins using Ingenuity Pathway Analysis (IPA) 

software(32). The detailed methodology of this tool has been described elsewhere(32). In 

brief, an ‘enrichment’ score [Fisher’s exact test (FET) P-value] that measures overlap of 

observed and predicted regulated gene sets was generated for each of the tested gene sets. 

The most significant pathways and functions with an enrichment P-value less than 0.05 were 

reported.

Results

Of the pQTLs for 1,478 proteins assessed in this study, association results for PrCA risk 

were available for pQTLs of 1,469 proteins in the PrCa GWAS. For 1,106 of these proteins, 

only a single pQTL was identified. Two pQTLs were identified for 302 proteins and three or 

more pQTLs were identified for 71 proteins. Using the inverse variance weighted (IVW) 

method, we identified 31 proteins for which their genetically predicted levels were 

associated with PrCa risk at a false discovery rate of < 0.05 (Tables 1 and 2), including 22 

encoded by genes located more than 500 Kb away from any reported PrCa risk variants 

identified in GWAS or fine-mapping studies (Table 1). The other nine associated proteins are 

encoded by genes locate at previously reported PrCa risk loci (Table 2), including MSMB, 

SPINT2, IGF2R, and CTSS, which were previously implicated as candidate target genes of 

PrCa risk variants identified in GWAS(33-35). Interestingly, we also observed a significant 

association for glutathione S-transferase Pi, encoded by GSTP1 (Table 2), whose 

methylation has been identified as a potential biomarker for PrCa (36). In our study, an 

inverse association between protein level and PrCa risk was detected for PSP-94, DcR3, 

IGF-II receptor, KDEL2, Cathepsin S, ZHX3, ZN175, GPC6, RM33, PIM1, WISP-3, 

NCF-2, ATF6A, Laminin, Glutathione S-transferase Pi, GNMT, LRRN1, and SNAB (ORs 
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ranging from 0.69 to 0.97). Conversely, an association between a higher protein level and 

increased PrCa risk was identified for TACT, GRIA4, PDE4D, TIP39, SPINT2, MICB, 

IL-21, ARFP2, RF1ML, TPST1, KLRF1, TM149, and NKp46 (ORs ranging from 1.11 to 

1.23).

To determine whether the identified significant associations between genetically predicted 

protein levels and PrCa risk were independent of GWAS-identified association signals, we 

performed conditional analyses adjusting for the GWAS-identified risk SNPs closest to the 

genes encoding our identified proteins (Tables 1 and 2)(27). For proteins listed in Table 1, 

the analysis could not be performed for three proteins due to lack of data, and for all other 

proteins, the associations remained essentially unchanged in the conditional analysis, 

suggesting these associations may be independent of GWAS-identified association signals. 

On the other hand, for proteins whose encoding genes locate at known PrCa risk loci, except 

for IGF2R, all other associations were no longer statistically significant when conditioning 

on GWAS-identified risk SNPs, suggesting these associations may be influenced by GWAS-

identified association signals (Table 2).

By analyzing exome-sequencing data of prostate tumor-adjacent normal tissue and tumor 

tissue obtained from 498 PrCa patients of The Cancer Genome Atlas (TCGA), we observed 

somatic level changes of indels, nonsense mutations, splice site variations, or missense 

mutations in at least one patient for 28 of the 31 genes encoding identified associated 

proteins (enrichment p<0.0001 compared with the proportion of all protein-coding genes 

across the genome) (Supplementary Table 1). In addition to the somatic missense mutations 

detected in 24 genes, indels were detected in four genes (ARFIP2, LRRN1, ZNF175, and 

PDE4DIP), splice site variations were detected in four genes (IGF2R, IL21, MICB, and 

PTH2R), and a nonsense mutation was detected in KLRF1 (Supplementary Table 1). 

Although the majority of these somatic changes occurred in only one patient, a missense 

mutation in PTH2 occurred in nine patients (1.8%) (Supplementary Table 1).

Based on the IPA analysis, several cancer-related functions were enriched for the genes 

encoding the associated proteins identified in this study (Supplementary Table 2). The top 

canonical pathways identified included STAT3 Pathway (p=4.54 × 10−3), Glutathione Redox 

Reactions I (p=0.027), Glutathione-mediated Detoxification (p=0.030), Endoplasmic 

Reticulum Stress Pathway (p=0.031), and tRNA Splicing (p=0.044).

Discussion

This is the first large-scale study to evaluate the associations of genetically predicted protein 

levels with PrCa risk using GWAS-identified pQTLs as instruments. We identified 31 

proteins that demonstrated a statistically significant association with PrCa risk after FDR 

correction, including 22 whose encoding genes were located more than 500 Kb away from 

any reported PrCa risk variants. Our study provides novel information to improve the 

understanding of genetics and etiology for PrCa, and generates a list of promising proteins 

as potential biomarkers for early detection of PrCa, the most common malignancy among 

men in most countries around the world.
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In the current work, we used data from large genome-wide association studies (GWAS) 

involving 79,194 PrCa cases and 61,112 controls. The purpose and approach of the current 

analysis are different from those of the study of Schumacher et al(23). In the GWAS study, 

investigators evaluated each genetic variant across the genome one at a time, aiming to 

identify novel susceptibility variants showing an association with PrCa risk(23). The current 

work aimed to use genetically predicted protein expression levels as the testing unit to 

identify PrCa associated proteins. We used a protein-based approach that aggregates the 

effects of several SNPs into one testing unit whenever possible. The analysis unit for our 

study is proteins, while the analysis unit in GWAS by Schumacher et al(23) is genetic 

variants.

Previous research suggests that PSA, IGF-1, IGFBP1/2, and IL-6 measured in blood may be 

associated with PrCa risk. For PSA, IGFBP1/2, and IL-6, there was no corresponding pQTL 

identified in the study conducted by Sun et al(24), thus they were not investigated in the 

current study. For IGF-1, by using its pQTL rs74480769 as instrument, we did not observe a 

significant association with PrCa risk (OR=0.98, 95% CI: 0.90–1.07; P=0.70). The 

inconsistent finding of IGF-1 with previous studies could be due to either a weak instrument 

used in the current study or potential confounded estimates of associations in previous 

studies using a conventional epidemiological design. Indeed, the significant positive 

association of IGF-1 was observed in the Health Professionals Follow-up Study(15), but not 

in the Prostate Cancer Prevention Trial(14). Further research would be needed to better 

understand the relationship between these proteins and PrCa.

In this large study, we identified 22 associated proteins of which the encoding genes are 

located at genomic loci not mapped by any of the previous GWAS. The statistical power in 

our study is larger than GWAS because 1) the number of comparisons is smaller in our study 

than GWAS and thus we could use a less stringent statistical significance threshold rather 

than 5 × 10−8 in GWAS and 2) the predicted protein levels are continuous variables, which 

improves statistical power. It is worth noting that nine of the proteins identified in this study 

are encoded by genes locating at the GWAS-identified loci. For many of the identified 

proteins, the genetic instrument includes trans pQTL(s) beyond only cis pQTL(s) (Tables 

1-2), thus explaining why the corresponding protein-coding genes are not always at known 

susceptibility loci. In vitro/in vivo studies and human studies have suggested that some of 

these novel genes may play an important role in prostate tumorigenesis. For example, an 

inter-chromosomal interaction between a known PrCa risk locus, 8q24, and CD96 was 

observed by the use of a chromosome conformation capture-based multi-target sequencing 

technology(37). GPC6 was found to be recurrently altered across tumors of advanced and 

lethal PrCa patients(38). PDE4D was shown to function as a proliferation-promoting factor 

in PrCa and was overexpressed in human prostate carcinoma(39); its inhibition had been 

shown to decrease PrCa cell growth(40). ATF6, which is related to the unfolded protein 

response, was observed to be down-regulated in high-grade prostatic intraepithelial 

neoplasia compared with normal prostate samples(41).

Of the nine associated proteins of which the encoding genes are located at GWAS-identified 

PrCa risk loci, several have also been found to potentially play functional roles in PrCa 

development. For example, the decreased GSTP1 expression was observed to accompany 
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human prostatic carcinogenesis(42). It is highly expressed in benign prostate glands while 

tends to not express in prostate cancer glands(43). MSMB encodes MSP for prostatic 

secretory protein of 94 amino acids, which is secreted by the prostate and functions as a 

suppressor of tumor growth and metastasis(44). Besides the study of Sun et al (24), several 

other studies also support the potential of MSP as a serum marker for the early detection of 

high-grade PrCa(45,46). The decreased expression of IGF2R was thought to be partly 

responsible for the increased growth of LNCaP human prostate cancer cells(47). In a mouse 

model, the mRNA of IGF2R was significantly decreased in metastatic prostate lesions and 

androgen-independent PrCa(48). By analyzing patient samples, it was identified that the loss 

of the heterozygosity of IGF2R was an early event in the development of PrCa(49). In in 
vivo and human studies, it was suggested that the shedding of MICB might contribute to the 

impairment of NK cell antitumor immunity in PrCa formation(50,51). These previous 

studies provide support for a potential role of these genes in prostate carcinogenesis.

The sample size for the main association analysis of our study was large, providing high 

statistical power to detect the protein-PrCa associations. Also, the design of using genetic 

instruments reduces biases, such as selection bias and potential confounding, and eliminates 

potential influence due to reverse causation. On the other hand, there are several potential 

limitations of our study. The possibility of pleiotropy effect cannot be excluded. For 

example, rs28929474, which was the instrument for proteins ZN175, ARFP2, GPC6, RM33, 

PIM1, and WISP-3, as well as one of the two variants constituting an instrument for NCF-2, 

was also reported to be associated with several other traits, including glycoprotein 

acetyls(52-54). Similarly, rs429358, which was included in the instruments of LRRN1 and 

SNAB, was associated with cerebral amyloid deposition and red cell distribution 

width(55,56); rs62143206, which was included in the instrument of Glutathione S-

transferase Pi, was also associated with the monocyte percentage of white cells and the 

granulocyte percentage of myeloid white cells(55). Further studies will be needed to validate 

our identified protein-PrCa associations. Secondly, our analysis was constrained by the 

pQTLs identified in previous GWAS of circulating protein levels, and thus we were unable 

to evaluate some important protein biomarkers for PrCa as discussed previously. We 

anticipated that additional protein biomarkers could be identified using newly identified 

pQTLs in the future. Furthermore, the current work generates a list of promising protein 

candidates that show an association with PrCa, which can be investigated further in future 

studies that directly measure levels of these proteins. Identification of circulating protein 

biomarkers should be useful for PrCa risk assessment.

In conclusion, in a large-scale study assessing associations between genetically predicted 

circulating protein levels and PrCa, we identified multiple novel proteins showing a 

significant association. Further investigation of these proteins will provide additional insight 

into the biology and genetics of PrCa and facilitate the development of appropriate 

biomarker panels for the early detection of PrCa.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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