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Abstract

Metastasis is complex, involving multiple genetic, epigenetic, biochemical, and physical changes 

in the cancer cell and its microenvironment. Cells with metastatic potential are often characterized 

by altered cellular contractility and deformability, lending them the flexibility to disseminate and 

navigate through different microenvironments. We demonstrate that mechanoresponsiveness is a 

hallmark of pancreatic cancer cells. Key mechanoresponsive proteins, those that accumulate in 
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response to mechanical stress, specifically nonmuscle myosin IIA (MYH9) and IIC (MYH14), α-

actinin 4, and filamin B, were highly expressed in pancreatic cancer as compared to healthy ductal 

epithelia. Their less responsive sister paralogs - myosin IIB (MYH10), α-actinin 1, and filamin A - 

had lower expression or disappeared with cancer progression. We demonstrate that proteins whose 

cellular contributions are often overlooked due to their low abundance, can have profound impact 

on cell architecture, behavior, and mechanics. Here, the low abundant protein MYH14 promoted 

metastatic behavior and could be exploited with 4-hydroxyacetophenone (4-HAP), which 

increased MYH14 assembly, stiffening cells. As a result, 4-HAP decreased dissemination, induced 

cortical actin belts in spheroids, and slowed retrograde actin flow. 4-HAP also reduced liver 

metastases in human pancreatic cancer-bearing nude mice. Thus, increasing MYH14 assembly 

overwhelms the ability of cells to polarize and invade, suggesting targeting the mechanoresponsive 

proteins of the actin cytoskeleton as a new strategy to improve the survival of pancreatic cancer 

patients.

Introduction

Altered mechanical states of cells and tissues underlie morphological changes concomitant 

with cancer progression (1–6). Cells undergo shifts in their contractility and deformability, 

with the latter positively or negatively correlated with aggressiveness and patient outcome, 

depending on cancer type. Physical changes in the extracellular matrix (ECM) of the stroma 

and alterations in the cellular composition of tumor microenvironments are established 

promoters of aggressive cancer behavior (7–10). In addition, as cancer cells move from the 

primary tissue environment to distal locations through dissemination, invasion, and finally 

the establishment of metastatic niches, they experience a broad range of external 

environments. Thus, metastasis occurs at the interface of how a cell physically interacts with 

a changing mechanical landscape – these interactions are likely dependent on a cell’s 

intrinsic adaptability to sense and respond to these mechanical changes (11). We anticipate 

that this cellular adaptability allows the cell to tune its mechanical state and force-generating 

capability as needed and depends on the cell’s highly dynamic toolbox of 

mechanoresponsive proteins (defined here as those having the ability to redistribute in 

response to mechanical stress (12,13)). This toolbox, along with its regulatory components, 

collectively constitutes the mechanobiome.

The mechanobiome is the network of proteins that defines the cell’s mechanical properties, 

generates forces, integrates chemical and mechanical cues, and feeds this information back 

onto other cellular processes, such as gene expression and metabolism (14–17). These 

proteins affect cell mechanics through active force generation that results from actin 

assembly that pushes outward on the membrane and myosin II-mediated contractility that 

pulls inward on the membrane (18). Myosin II-mediated contractility also depends on other 

actin crosslinking proteins in the cytoskeletal network, and their cross-talk fine-tunes the 

deformability and contractility of the cell (12). Unsurprisingly, this mechanical network 

undergoes striking changes in expression during cancer progression, which facilitates the 

dramatic spatial and temporal reorganization of the cytoskeleton in a metastatic cell. Varying 

protein levels of critical components of the mechanobiome and the broader actin 

cytoskeleton have been observed in a wide range of cancers (19–30). In addition, major 

Surcel et al. Page 2

Cancer Res. Author manuscript; available in PMC 2020 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cancer drivers and signaling proteins have altered expression patterns and additionally 

impact cell mechanics. Yes-Associated Protein (YAP), whose overexpression is associated 

with numerous cancers (31), modulates cellular actin architecture and nonmuscle myosin II 

regulatory light chain expression and phosphorylation, in turn affecting mechanical 

parameters, specifically cortical tension and deformability (32). Early activating KRAS 

mutations that occur in over 90% of pancreatic cancers, and at high rates in colorectal and 

lung cancers, lead to increased deformability and altered contractility (33,34). 

Overexpression of members of the 14-3-3 family is negatively correlated with prognosis for 

glioblastoma (35) and liver (36), pancreatic (37), and lung (38) cancer patients. While 

14-3-3 proteins are involved in numerous biological processes, they also modulate 

nonmuscle myosin II bipolar filament assembly and cell mechanics (39,40). Furthermore, a 

key inhibitor of myosin II, the myosin light chain phosphatase subunit MYPT1, is highly 

upregulated in pancreatic cancer (41).

Here we use a battery of model systems, from Dictyostelium to human patient samples, to 

test the concept that the upregulation of mechanoresponsive proteins may be harnessed for 

small molecule manipulation with the goal of returning an invasive cell to a more stable, 

non-invasive state (Fig. S1). To accomplish this, we first demonstrate that 

mechanoresponsive proteins are upregulated in patient-derived pancreatic cancer tissue 

samples and cell lines, and that these proteins directly impact cell mechanics. We find that 

altered pancreatic ductal adenocarcinoma cancer (PDAC) mechanics emanate in part from a 

changing ratio of nonmuscle myosin IIs, wherein myosin IIA (MYH9) and IIC (MYH14) 

are upregulated while myosin IIB (MYH10) is downregulated. We quantify the 

concentration of nonmuscle myosin paralogs in pancreatic cancer cells, and find that despite 

its relatively low concentration, myosin IIC has a significant impact on single cell behavior 

and collective behavior in tissue spheroids. We then demonstrate that an upregulated 

mechanoresponsive protein can be used as a pharmacological target, by using a small 

molecule mechanical modulator, 4-hydroxyacetophenone (4-HAP), which we previously 

discovered increases the assembly of myosin IIC and stiffens PDAC cells (42). Since then, 

others have shown that 4-HAP increases the stiffness of breast cancer cells (43). We find that 

4-HAP induces cortical actin belts and increases transverse actin arcs in single cells and 

tissue spheroids in a myosin IIC-dependent manner. This 4-HAP-induced change in 

cytoskeletal structure and mechanics leads to a decrease in PDAC metastasis in a mouse 

liver metastasis model. In Bryan et al. (submitted for publication), 4-HAP also reduces 

metastasis in a colorectal cancer model. Thus, we collectively demonstrate that specifically 

targeting mechanoresponsive proteins by increasing their activity (in this case by promoting 

myosin IIC assembly), has therapeutic potential for patients.

Materials and Methods

Statistical Analysis

Parametric and nonparametric analyses were used throughout the study. For continuous 

distribution data sets, we used either the Student t test or the Mann Whitney Wilcoxon test 

for two groups. For multiple groups, either ANOVA followed by Fisher’s Least Square 

Difference post hoc test or the Kruskal Wallis followed by the Mann Whitney Wilcoxon was 
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used. For two groups characterized as a frequency (percentage), we used Comparison of 

Proportions. We used KaleidaGraph (Synergy Software), R, or manual calculation. The tests 

used are described in individual methods sections and in figure legends. P values are 

presented either in the figure legend or figure panels.

Cell culture and strains

Parental pancreatic cell lines—Human pancreatic ductal epithelial cells (HPDE) were 

obtained from Dr. Ming-Sound Tsao (University of Toronto, Ontario Canada), and human 

primary tumor-derived cells (Panc10.05), human metastatically-derived cells (AsPC-1), and 

human-derived HeLa cells were purchased from ATCC. The Panc4.03 cell line was 

established in the Jaffee lab. All were grown using standard cell culture methods. HPDE 

cells were grown in Keratinocyte media (Gibco) with 1% penicillin and streptomycin, while 

Panc10.05, Panc02, Panc4.03, and AsPC-1 cells were grown in RPMI 1640, L-Glutamine 

media (Gibco) supplemented with 1% penicillin and streptomycin, sodium pyruvate (Gibco), 

non-essential amino acids (Gibco), 10% FBS (ATLAS Bio), and 0.2% insulin. HeLa cells 

were grown in DMEM (Gibco) with 1% penicillin and streptomycin and 10% FBS (ATLAS 

Bio). In accordance with NIH guidelines, cell lines were authenticated using short tandem 

repeat profiling at the genetic recourses core facility at Johns Hopkins University. Routine 

Mycoplasma testing was performed by MycoAlert Mycoplasma Detection Kit (catalog no. 

LT07–118) every 3–6 months. Cell lines were grown for no more than 10 passages in all 

experiments.

Immunohistochemistry of patient samples—The human tissue was collected and 

evaluated under JHH IRB #NA_00001584. Human pancreatic cancer samples were fixed in 

formalin, paraffin embedded, and processed for routine histology. Additional 5-μm sections 

were cut onto plus slides and baked prior to IHC staining. Details of the antibodies and 

methods for staining are provided in the Supplemental Materials and Methods. Quantitative 

analysis of tissue samples (Fig. S2A) across stages of cancer progression (Fig. S2B), plus 

expression pattern data from the Gene Expression Omnibus (Fig. S2C) are shown in the 

Supplement.

Engineered cell lines—Both lentiviral knockdown and adenoviral overexpression cell 

lines were generated in Panc10.05, and in some cases AsPC-1 and HDPE parental strains. 

For lentiviral knockdown, the hairpins used (Sigma Mission shRNA) were selected after 

having analyzed a minimum of three shRNAs for each gene:

shCTRL NT control: 5′-CAACAAGATGAAGAGCACCAA-3′

shIIA: 5’-GCCAAGCTCAAGAACAAGCAT-3’

shIIC: 5’-GCTCAAATATGAGGCCACAAT-3’

shACTN4: 5’-CAGGACATGTTCATCGTCCAT-3’

shFLNB: 5’-GCTGACATTGAAATGCCCTTT-3’

Target plasmids were co-transfected with generation 2.0 lentiviral packaging plasmids 

psPAX.2 and pMD2.G via Transit 20/20 (Mirrus) transfection reagent into Lenti-X 
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HEK293t cells. Sixteen hours after transfection, the media was changed to fresh DMEM 

(10% FBS/1% penicillin-streptomycin). Virus-containing media was harvested after an 

additional 24 hrs for lentiviral infection to target cells. Positively infected cells were then 

selected for with 1 or 5 ng/ml puromycin in Panc10.05 or AsPC-1 cells respectively, for 5 

days as determined by kill-curve analysis. Quantification of expression in control and 

knockdown lines was confirmed by western analysis and CqPCR (Fig. S3).

For overexpression using the adenoviral system, fluorescent adenovirus for the expression of 

GFP-MYH9, GFP-MYH10, MYH14-GFP, mCherry-ACTN1, GFP-ACTN4, and GFP 

control were purchased from Vector BioLabs, Malvern, PA. Optimal multiplicity of infection 

(MOI= # of virus particles/cell) was first calculated by plating equal numbers of cells in a 

96-well plate, then titrating virus between 0 and 200 MOI and observing fluorescence and 

cell death at 48 hours. For the myosins, the optimal MOI was found to be 50, where cell 

death was not seen and the percent of fluorescent cells was highest. While an MOI of 50 

showed the highest expression and no death for the α-actinin constructs, the amount of 

protein expressed in cells was extremely high by western analysis, and so the MOI was 

lowered to 10. For all studies, an MOI of 50 was used for the GFP control. The filamin A 

and filamin B genes were too large to insert in an adenoviral vector with a fluorescent 

reporter. For mechanoresponse experiments on filamin A and filamin B or myosinIICpep, 

AsPC-1 and HeLa cells respectively were transiently transfected with FuGene HD 

transfection reagent (Promega, Madison, WI) using 1 μg of DNA for each plasmid and 

imaged 36 hrs post-transfection. The filamin A plasmid, pmdsRed-FLNA, was a gift from 

Fumihiko Nakamura. The filamin B plasmid, EGFP-FLNB-pCI-C1, was a gift from Arnoud 

Sonnenberg. The myosinIICpep was constructed as described in the Supplemental Materials 

and Methods.

Experimental setup and analysis

The cell lines described above were used throughout the study across multiple experimental 

designs. Detailed methods for immunohistochemistry with patient-derived samples 

(including antibodies, reagents, preparation, staining, scoring and analysis), quantification of 

cellular myosin II paralog concentrations, mechanoresponse and mechanics measurements 

via MPA and RT-DC, 2D random migration, actin retrograde flow, transwell assays, tissue 

spheroids (generation, staining, and quantification), and mouse hemisplenectomies (IACUC 

protocol #M014M94) can be found in the Supplemental Materials and Methods.

Results

Mechanoresponsive machinery is upregulated in pancreatic cancer

Using the social amoeba Dictyostelium discoideum, we previously identified ten 

mechanoresponsive proteins from a survey of ~35 proteins that accumulate in varying 

degrees to externally applied mechanical pressure (12,44,45). With these ten, we used 

mathematical modeling to develop a physical theory to explain the accumulation of three 

critical structural elements across phyla – nonmuscle myosin II, α-actinin, and filamin 

(12,46). Our theory also predicted which paralogs of these proteins found in mammals were 

mechanoresponsive (13). To determine if these mechanoresponsive proteins have similar 
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function in human disease, we assessed their localization in human pancreatic cancer cell 

lines in response to applied external stress by using micropipette aspiration (MPA) (Fig. 1). 

Fluorescently labeled myosin IIA (MYH9), IIB (MYH10), and IIC (MYH14), as well as the 

actin crosslinkers α-actinin 1 (ACTN1), α-actinin 4 (ACTN4), filamin A (FLNA), and 

filamin B (FLNB) were transiently expressed in several cell lines. These cell lines included 

HPDE (immortalized Human Pancreatic Ductal Epithelial cells), Panc10.05 (stage II 

pancreatic adenocarcinoma-derived), and AsPC-1 (stage IV ascites-metastasis-derived) (Fig. 

1A). Cells were deformed for five minutes at a pressure of 0.3 nN/μm2, and the maximal 

protein accumulation in response to the dilational deformation at the aspirated tip of the cell 

was quantified by normalizing the fluorescence intensity at the tip region (Ip) to the 

unstressed cortex opposite of the pipette (Io) (Fig. 1B).

Myosin IIA and myosin IIC were mechanoresponsive in all cell lines relative to GFP-only 

controls, whereas myosin IIB showed no accumulation, consistent with its previously 

observed cell-type-specific mechanoresponsiveness (Fig. 1A, B) (13,47). Because myosin 

IIA, IIB, and IIC can co-assemble in cells (48), we then tested how the paralogs might 

influence each other’s mechanoresponsiveness and found that each paralog’s 

mechanoresponsiveness was independent of the other paralogs (Fig. 1C, D).

Of the α-actinins, α-actinin 4, but not α-actinin 1, was mechanoresponsive, especially in 

Panc10.05 and AsPC-1 cells. This differential behavior between the α-actinin paralogs 

likely results from the much lower actin binding affinity of the actin binding domain of α-

actinin 4 (Kd=32 μM) compared to that of α-actinin 1 (Kd=0.36 μM). This affinity 

differential leads to a more dynamic α-actinin 4 behavior that is necessary for the protein to 

respond to mechanical stress (13). As we predicted, the scenario for filamins differs with 

regard to actin binding affinity because cooperativity now plays a role (12,13). In this case, 

filamin B (Kd=7 μM) showed a stronger mechanoresponse than filamin A (Kd=17 μM) did 

(Fig. 1) (13).

We hypothesized that the mechanoresponsive machinery is upregulated concomitant with 

cancer initiation and progression to endow cells with the ability to sense and respond to 

changing physical environments across discrete tissue types. To test this idea, we performed 

immunohistochemistry on pancreatic cancer tissue samples from 20 patients across all seven 

proteins – the three nonmuscle myosin IIs (IIA, IIB, and IIC), the two α-actinins (1 and 4), 

and the two filamins (A and B). We compared normal ducts with cancerous ducts in primary 

and metastatic lesions. In addition, we derived a scoring system that allowed us to delineate 

between high expression and low expression, as well as percentage of cells positively stained 

within the quantified ducts (outlined in Fig. S2A). All mechanoresponsive proteins showed a 

significant increase in expression in cancerous versus normal ducts (Fig. 2A, Fig. S2B), 

quantified in Fig. 2B. Myosin IIA and myosin IIC increased in expression, with myosin IIC 

specifically upregulated in the adenocarcinoma, while myosin IIA increased across the 

pancreatic cancer stroma in addition to the ducts. The non-mechanoresponsive myosin IIB 

showed no significant change in expression, with very little staining in both normal and 

cancerous pancreatic tissues. The mechanoresponsive α-actinin 4 also increased in 

expression in the ducts, concurrent with cancer progression, while α-actinin 1 maintained 

mostly uniform expression levels across all ducts. Filamin B, which is also highly 

Surcel et al. Page 6

Cancer Res. Author manuscript; available in PMC 2020 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mechanoresponsive, is upregulated specifically in cancerous ducts. In contrast, filamin A, 

which is much less mechanoresponsive, is upregulated across the entire pancreatic tissue, 

including the stroma. These patterns were also noted in non-invasive lesions, termed 

pancreatic intraepithelial neoplasia (PanINs) (Fig. S2B), with increasing expression 

associated with cancer progression. Our results are largely in keeping with normal versus 

pancreatic cancer tissue datasets in the Gene Expression Omnibus (GEO) (Fig. S2C). The 

staining patterns are also consistent with the Human Protein Atlas, which tracks RNA and 

immunohistochemistry and which suggests that filamin B and α-actinin 4 are poor 

prognostic indicators for pancreatic cancer patients (49). Filamin A shows variable PDAC 

expression across these studies, and α-actinin 1 displays high staining in both normal and 

cancerous cells. Overall, the immunohistochemistry data indicate that, as a unit, the 

mechanoresponsive machinery is upregulated in the pancreatic ductal adenocarcinomas of 

patient tumors.

PDAC cell lines as a mechanoresponsive model for PDAC

To determine if PDAC cell lines can be used to study the changing mechanobiome 

landscape, we first assessed if the expression patterns that we observed in patient samples 

(Fig. 2) matched generally with changes between WT-like HPDE and various primary tumor 

and metastatically-derived lines. Western analysis across four lines revealed a general 

increase in myosin IIA and IIC, the disappearance of myosin IIB, and an increase in α-

actinin 4 and filamin B, with moderate or unchanged levels of α-actinin 1 and filamin A 

(Fig. 3A–C, Table S1). To begin to develop a quantitative framework for the role of myosin 

IIs in pancreatic cancer, we measured the concentration of each myosin paralog in these 

pancreatic cancer-derived cells. We first calibrated both HeLa cells, which express myosin 

IIA and IIB, and AsPC-1 cells, which express myosin IIC, to generate a quantitative 

comparator for measuring each paralog’s concentration across cell lines. To calibrate HeLa 

and AsPC-1 cells, we added purified paralog-specific myosin II tail fragments to the extract 

(Fig. S3A). From these calibration measurements, we calculated that the nonmuscle myosin 

IIA concentration in human pancreatic cells ranged from 540 nM in HPDE cells to 770 nM 

in Panc4.03 cells. These values compare favorably with the amounts of myosin II in budding 

yeast (Myo2p, 450 nM; Myp2p, 380 nM, (50)) and in Dictyostelium discoideum (Myo II, 

3.4 μM, (51)) (Table S1). By comparison to myosin IIA, myosin IIB and IIC are found at 

much lower concentrations. Interestingly, myosin IIC increased 1.5-fold from approximately 

two percent of all myosin II in HPDE cells to about three percent of all myosin II in AsPC-1 

cells, while myosin IIB decreased from ~8% of all myosin II in HPDEs to undetectable in 

AsPC-1 cells (Fig. 3A, Table S1). The dramatic change in myosin IIC in normal and 

cancerous ducts in the immunohistochemistry is consistent with the myosin quantification 

across PDAC cell lines (Fig. 2). Myosin IIC also exists in two splice variants and find that 

both variants increase in expression in AsPC-1 cells (Fig. S3B). While myosin IIC appears 

to be a minor myosin II paralog based on its concentration, in fact we find below that this 

paralog plays a major role in pancreatic cancer cell mechanics and behavior.

Modulation of cell mechanics through mechanoresponsive machinery and 4-HAP

We previously demonstrated that WT-like HPDE cells are less deformable than patient-

derived PDAC cell lines (42). To determine if mechanoresponsive elements of the PDAC 
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mechanobiome contribute to this mechanical differential, we used micropipette aspiration 

(MPA) to measure the effective cortical tension (Teff) of cells with overexpression or 

knockdown of myosin II, α-actinin, and filamin paralogs in Panc10.05 cells (Fig. 4A, Fig. 

S3A, C, D, E). Across all cell lines, knockdowns were 70–95% (Fig. S3C, E). Driving 

myosin IIA levels up or down yielded an altered cortical tension, which rose and fell with 

myosin IIA expression levels. Myosin IIB overexpression had no impact on cortical tension. 

Myosin IIB knockdowns were not pursued since Panc10.05 cells (as well as other PDAC 

lines and patient tissue samples) have no detectable levels of this protein (Fig. 3A, Fig. 2A, 

Fig. S2). Alpha-actinin 1 overexpression had no effect on cell mechanics, while both 

overexpression and knockdown of α-actinin 4 decreased the Teff by half (Fig. 4A; Fig. S3C, 

D, E). Filamin A and B overexpressing cells ruptured under the applied pressures needed to 

measure cortical tension where the condition of Lp=Rp must be met. However, filamin B 

knockdown cells could be measured and had an increase in cortical tension (Fig. 4A).

Interestingly, despite contributing only 3% of the overall myosin II in these cells (Table S1), 

overexpression and knockdown of myosin IIC had a profound impact on cell mechanics, 

leading to an overall reduction in cortical tension of 20% and 40%, respectively (Fig. 4A). 

Myosin IIC has a similar impact on mechanics in colorectal cancer cells, where it also 

constitutes a small percentage of the total myosin II (Bryan et al., submitted for publication). 

To further explore the impact that myosin IIC has on the PDAC mechanobiome and cell 

mechanics, we used the small molecule 4-hydroxyacetophenone (4-HAP) which we 

previously identified in a Dictyostelium screen for mechanical modulators. In Dictyostelium, 

4-HAP increased cortical tension by driving myosin II to the cell cortex. 4-HAP shows 

myosin II-paralog specificity in mammalian cells by increasing the assembly of myosin IIC 

(and IIB) and decreasing the deformability of several PDAC cell lines (42). Indeed, 4-HAP 

treatment increased the cortical tension of control cells where myosin IIC is present, but had 

no impact on myosin IIC-depleted cells (Fig. 4A). In addition, 4-HAP also extinguished the 

mechanoresponsiveness of myosin IIC in a dose-dependent manner, with no effect on 

myosin IIA mechanoresponsiveness (Fig. 1B). We also confirmed that 4-HAP treatment did 

not alter expression of the myosin II paralogs over a 24-hour window (Fig. S3F).

Knowing that the myosin II paralogs’ mechanoresponsiveness was independent of each 

other (Fig. 1C, D), we tested how they might influence 4-HAP’s ability to inhibit myosin 

IIC’s mechanoresponse. The overexpression of myosin IIB or IIC did not affect myosin 

IIA’s mechanoresponsiveness, even in the presence of 4-HAP (Fig. 1C). However, myosin 

IIB and myosin IIC’s mechanoresponsiveness was still inhibited by 4-HAP even though 

myosin IIA was co-expressed with them (Fig. 1C, D). Furthermore, loss of myosin IIA does 

not alter myosin IIC’s ability to assemble in cells, as assessed by sedimentation (Fig. S3G).

Our previous studies indicated that 4-HAP works by promoting assembly of myosin IIC and 

IIB (42). To further flesh out the concept that 4-HAP inhibits mechanoresponsiveness by 

driving over-assembly of myosin IIC, we asked whether driving assembly of myosin IIC in a 

different manner would also inhibit its mechanoresponsiveness. To do this, we expressed the 

human version of the myosin IIC tail fragment that corresponds to the mouse version, known 

to promote bipolar filament assembly (52). Indeed, expression of the myosin IIC tail 

fragment inhibited myosin IIC’s mechanoresponsiveness phenocopying 4-HAP’s effect (Fig. 
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1D). These observations further confirm that 4-HAP influences myosin IIC, and myosin IIB, 

independently of myosin IIA and does so by promoting bipolar filament assembly.

In concert with micropipette aspiration, which measures mechanical properties on the >500-

ms time-scale (cortical tension measurements are performed over 10s of seconds), we used 

Real Time Deformability Cytometry (RT-DC) (53), which measures mechanics on the 4-ms 

timescale and across the whole cell (Fig. S4A). Reduction of myosin IIA, but not myosin 

IIC, increased cell deformation (Fig. 4B). The deformation was converted to an elastic 

modulus and calculated to be 1.17±0.37 kPa (mean±SD) for control, 1.07±0.3 kPa for shIIA, 

and 1.21±0.34 kPa for shIIC. This trending reduction (9%) in the elastic modulus measured 

for knockdown of myosin IIA, which is the most abundant paralog in the PDAC cells, is 

similar to the reduction in elasticity measured for WT versus myoII genetic deletion cells in 

Dictyostelium (54). The elastic modulus measured on short time-scales contrasts with the 

~2-fold difference in cortical tension measured over longer time-scales, highlighting the 

complexity of the mechanical roles of these proteins (55). In addition, RT-DC reveals 

mechanical differences across pancreatic cancer cell lines (Fig. S4B).

Myosin IIC alters actin bundling and flow, facilitating dissemination

In addition to mediating mechanoresponsiveness (Fig. 1) and cell mechanics (Fig. 4), 

nonmuscle myosin II proteins also impact cytoskeletal arrangements and contractility. To 

determine how myosin IIC specifically impacts the cytoskeletal organization in collectives 

of cells, we generated tissue spheroids with knockdown Panc10.05 cell lines and examined 

the impact of 4-HAP treatment on those spheroids. Control knockdowns plated in 3D 

collagen I matrices showed partial dissemination, which was greatly increased in NMIIA 

knockdowns, similar to observations in other cancer models (56–58). In contrast, 

knockdown of myosin IIC showed no dissemination (Fig. 5A, top row). Upon treatment 

with 4-HAP for 24 hours, dissemination in both the control and NMIIA knockdown 

decreased, while no change was observed in the myosin IIC-depleted spheroids. To further 

analyze the fine-detail in cytoskeletal structures, spheroids were plated on collagen I-coated 

2D substrates, and similar morphological differences were observed as in the 3D cultures 

(Fig. 5A, middle row). In addition, we observed tight actin cortical banding patterns on the 

periphery of the tumor spheroids in the absence of myosin IIC. This banding pattern was 

also observed in the control and NMIIA knockdown spheroids with 4-HAP treatment. To 

assess the actin redistribution, we used computer-assisted image analysis on the 2D 

spheroids and measured the continuity of banding, the percent coverage of actin filaments at 

the spheroid edge, and the homogeneity of the actin in those structures (calculated as the 

standard deviation of pixel intensity normalized to control) (Fig. S5). Across all analyses, 

myosin IIA knockdown spheroids had the least amount of discrete and continuous banding 

(Fig. 5B, Fig. S5A, B) and the least amount of actin staining at the tissue edge (Fig. S5C). 

Upon 4-HAP treatment, all of these metrics changed – more discrete and continuous belts 

emerged and the median percentage staining of actin increased 2-fold. By comparison, the 

myosin IIC knockdown tissue spheroids had discrete and continuous actin belts that 

remained unchanged upon 4-HAP addition (Fig. 5B, Fig. S5B, C), consistent with 4-HAP 

working primarily through myosin IIC. Interestingly, by these analytics, treatment with 4-

HAP in the control tissue spheroids seemed to decrease discrete band formation.

Surcel et al. Page 9

Cancer Res. Author manuscript; available in PMC 2020 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We then used Structural Illumination Microscopy (SIM) to acquire higher resolution views 

of the structures along the tissue spheroid edges (Fig. 5A bottom row, Fig. 5B). In the 

control spheroids, the actin belts are formed by the structural rearrangement of the actin 

bundles. Specifically, 4-HAP induces a coarser distribution of actin composed of dense actin 

belts and leads to the emergence of filopodial-like structures or retraction fibers. In the 

myosin IIA knockdowns treated with 4-HAP, tight actin belts, as well as elaborate arrays of 

parallel actin bundles, are also clearly visible. In contrast, myosin IIC knockdowns had 

elaborate peripheral actin structures that were largely unchanged between untreated and 4-

HAP-treated samples. Thus, 4-HAP induces alterations in peripheral actin structures in a 

myosin IIC-dependent manner.

To address myosin IIC’s role in actin rearrangements, we next determined its cellular 

localization. In tissue spheroids, fluorescently-labeled myosin IIC is both diffusely localized 

throughout the cell and along actin filaments (Fig. 5C). When actin filaments collapse to 

form actin belts upon 4-HAP treatment, myosin IIC shows strong co-localization with those 

belts. In single Panc10.05 and AsPC-1 cells, endogenous myosin IIC is predominately 

confined to the cell cortex including in actin-rich protrusions, whereas myosin IIA localizes 

along stress fibers (Fig. 5C). In single cells, 4-HAP decreases the number of actin-rich 

protrusions, as measured with our edge detection algorithm (Fig. 5D, E, Fig. S6). Similarly, 

in tissue spheroids, 4-HAP induced peripheral actin belts that are rich in myosin IIC (Fig. 

5F).

Overall, this analysis highlights two major findings. First, in collections of cells, despite 

being present in small quantities, myosin IIC plays a major role in mediating actin network 

structural rearrangements and dynamics. Myosin IIA, known to contribute to retrograde 

actin flow, may work in concert with myosin IIC to drive these cytoskeletal rearrangements. 

Second, 4-HAP reduces the fluidity of the network: by stabilizing actin belt structures in a 

manner independent of myosin IIA, but dependent on myosin IIC. Thus, by altering the actin 

cytoskeleton, 4-HAP inhibits dissemination from tissue spheroids.

Because retrograde flow moves actin filaments away from the cell perimeter, we 

hypothesized that the cortical actin belts could be formed by a reduction in this flow. 

Therefore, we examined the impact of 4-HAP on retrograde actin flow by staining live cells 

with SiR-actin and observing the actin network using lattice light sheet microscopy (Fig. 

S6A) and confocal microscopy. Most 4-HAP-treated cells had undetectable levels of actin 

flow, as observed by Kymograph (Fig. 5G, Fig. S6B). Those cells in which retrograde flow 

could be measured showed a 50% reduction in velocity over untreated controls (Fig. 5H, 

Movies S1, S2). In addition, cells treated with 4-HAP showed an increase in bleb formation 

(Fig 5H, inset). This large and measurable impact on actin dynamics explains in part the 

dose-dependent decrease on trans-well migration in control and myosin IIA knockdown 

AsPC-1 cells (Fig. 5I). Overall, 4-HAP’s reduction of actin flow, cell dissemination, and 

invasion indicates its potential for preventing PDAC metastasis.

4-HAP decreases PDAC metastatic potential in mice

Critical regulators of myosin II have significantly altered expression associated with 

pancreatic cancer progression and in pancreatic cancer-derived cell lines (19,39,41). These 
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genetic alterations suggest that myosin II, particularly myosin IIC whose expression is 

specifically elevated in malignant pancreatic ductal epithelia, may be an attractive target for 

modulating PDAC cell behavior. Therefore, we tested 4-HAP in a mouse model of PDAC 

using hemisplenectomy, which simulates the metastatic process in the liver. In this model, 

the spleen is separated into halves and tumor cells are injected into one half, which is then 

removed after the tumor cells have entered the liver to prevent local injection-site tumor 

formation. Mice develop micrometastases in 1–2 weeks and gross disease by 3–4 weeks. 

Athymic NCr-nu/nu mice with AsPC-1 liver metastases were divided into three groups: 

control (untreated), PBS (200 μl PBS IP injections, every other day), and 4-HAP (5 mg/ml, 

200 μl IP injections, every other day). Mice were sacrificed at 5-weeks post-surgery, when 

the first mouse expired. Metastases to the liver were observed and quantified using our 

custom Matlab script, which measures surface area tumor coverage (Fig. 6A). Results from 

both liver weights and tumor coverage show that 4-HAP treatment led to a 50% reduction in 

tumor formation (Fig. 6B, Fig. S7).

Discussion

A cell’s ability to react to changing mechanical and chemical cues in its environment 

depends on the adaptability of its mechanobiome. Increased contractility and altered 

deformability, as well as rapid turnover of cytoskeletal proteins, are trademarks of cells 

responding to constantly changing surroundings. Gene expression programs are upregulated 

to provide cells with added adaptability at specific time points in developing embryos, and 

differentiating cells show increased expression of mechanoresponsive proteins during 

mechanically turbulent periods. For example, filamin’s mechanoresponsiveness is required 

for maturation of actin-rich ring canals that interconnect the nurse cells and oocyte in 

developing Drosophila egg chambers (59), and filamin B is upregulated in embryonic 

vascular endothelial cells (60). Both α-actinin 1 and α-actinin 4 show temporally defined 

expression in developing zebrafish embryos, with both expressed in the notochord and α-

actinin 4 also expressed in the developing gut (61). Each of the nonmuscle myosin II 

paralogs have roles in development as well, including but not limited to neurite outgrowth 

and maturation (NMIIB and NMIIC) (62), nephron development (NMIIA and NMIIB) (e.g. 

(63)), and hearing (NMIIA) (64).

In the mechanobiome, forces are shared between myosin II and different actin crosslinkers, 

with myosin II having potentiating or inhibitory effects on certain crosslinkers and vice 

versa (12,54). This mechanosensory system constitutes a control system, where mechanical 

inputs can be converted to signaling outputs in a manner analogous to chemical signal 

transduction (45). Through our work (12), an important delineation has emerged: the cell has 

at least two systems of proteins that when depleted, lead to alterations in cortical 

viscoelasticity and tension. One set of proteins leads to increased mechanoresponsiveness, 

while the other set of proteins leads to reduced mechanoresponsiveness. Cells that mature 

into terminally differentiated tissues often readjust the cytoskeletal milieu to favor reduced 

mechanoresponsiveness over their developmental program. These stable expression patterns, 

however, are altered in precancerous cells (often caused by upstream genetic lesions), and 

revert cells to programs activated in early development that endow them again with 
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increased adaptability. In fact, supporting cells of the tumor, the pancreatic stellate cells, also 

become highly adaptable, a trait which can be targeted to reduce tumor cell invasion (8).

The mechanobiome of the cancerous ductal cells plays an essential role in cell shape change, 

leading to PDAC invasion and metastasis (Fig. 7A). Specifically, the mechanoresponsive 

proteins myosin IIA, myosin IIC, α-actinin 4, and filamin B are upregulated in patient-

derived tissues (Fig. 7B), where they alter the structural arrangement of the actin 

cytoskeleton and impact cell mechanics to facilitate metastasis (Fig. 7C). In addition, despite 

its low abundance, myosin IIC plays an important role in facilitating actin organization and 

retrograde flow. Also, our data on myosin IIC suggest that changes in the expression level of 

minor proteins that are often discounted in larger data mining may in fact, be worthy of 

reconsideration, given the large impact myosin IIC has on cell mechanics and cell behavior. 

Our in vivo metastasis assays demonstrate that the myosin IIA-IIC dynamic can be fine-

tuned towards a therapeutic benefit with mechanical modulators such as 4-HAP (Fig. 7D). In 

addition, because myosin IIC is specifically upregulated in ductal adenocarcinoma cells, the 

pharmacological modulation of this protein is unlikely to negatively impact healthy 

pancreatic tissue; 4-HAP should synergize with other strategies such as immunological 

intervention in pancreatic cancer patients, since immune cells do not typically express 

myosin IIC (42). In fact, enhanced activation of T cells on stiffer substrates suggests that 4-

HAP, which stiffens the immunological target cells, could behave as an excellent 

immunotherapy adjuvant (65).

In summary, the observations presented here imply that targeting cancer by broadening 

strategies to include small molecule mechanical modulators can have significant effects by 

reducing metastatic potential. Modulation of mechanoresponsive proteins has several 

advantages. First, we can fine-tune the activity of proteins that are upregulated in cancerous 

tissue, thus harnessing the cell’s intrinsic protein make-up to revert them to more normal 

phenotypes, while protecting healthy cells that do not upregulate these targeted proteins. 

Second, this strategy draws upon the normal biochemistry of the protein to overwhelm the 

mechanics of the system. In our studies, we are hitting on both concepts: We are using 4-

HAP to increase the assembly of myosin IIC, which is specifically upregulated in PDAC, in 

order to overcome the protein’s innate adaptive ability. 4-HAP treatment pushes myosin IIC 

to lock onto the cytoskeletal network, thus inhibiting the tumor cell’s ability to polarize and 

reorganize its actin cytoskeleton. This concept is reinforced by the actin structural 

remodeling observed in colorectal cancer cells presented in our companion paper by Bryan 

et al. (submitted for publication). Overall, incorporating the mechanobiome as a targetable 

drug space in combination with other therapeutic approaches is a valuable strategy for 

reducing PDAC metastases (Fig. 7).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Significance:

Mechanoresponsive proteins are upregulated during pancreatic cancer progression and 

can be pharmacologically targeted to inhibit metastasis.
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Fig. 1: Nonmuscle myosin IIA, myosin IIC, α-actinin 4, and filamin B show 
mechanoresponsiveness in pancreatic cancer cells.
A. Representative images across HPDE, Panc10.05, and AsPC-1 cell lines of the maximum 

accumulation of GFP alone, GFP-labeled myosin IIs, α-actinin 4, filamin A, and filamin B, 

and mCherry-α-actinin 1, show peak intensity after applied stress in MPA mechanoresponse 

experiments. Arrows identify regions where mechanical stress was applied. Scale bar, 7 μm. 

Cartoon shows how mechanoresponse is calculated. B. Quantification of 

mechanoresponsiveness normalized as a ratio of fluorescence intensity at the tip (Ip) to the 

intensity at the opposite cortex (Io), both in the absence of and the presence of two different 

concentrations of 4-HAP. C, D. Quantification of mechanoresponsiveness of myosin IIA and 
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IIB normalized as an Ip/Io ratio in HeLa cells co-transfected with different myosin paralogs 

in the presence and absence of 500 nM 4-HAP. We used HeLa cells here because myosin IIB 

is mechanoresponsive in these cells (13,47). D. In addition, quantification of myosin IIC co-

transfected with a small myosin IIC peptide known to induce IIC assembly is provided. 

Medians plotted; *p<0.05, **p<0.005, ***p<0.0005.
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Fig. 2: The mechanoresponsive machinery is elevated in pancreatic ductal adenocarcinoma in 
human pancreatic tissue.
A. Immunohistochemistry staining of pancreatic tissue from human PDAC patients shows 

increased expression in the cancerous ducts of mechanoresponsive proteins nonmuscle 

myosin IIA and IIC, α-actinin 4, and both filamin A and B. Scale bar = 100 μm. For each 

sample – normal duct (N), cancerous duct (C), and metastatic lesion (L) – the same site is 

shown across all seven antibodies stained. In addition, both the normal and cancerous ducts 

are from the same patient. B. Quantification of staining intensity and surface area across 20 

patients illustrate an up-regulation of mechanoresponsive proteins, as well as filamin A. Data 

are plotted as a histogram of the intensity average per patient (described in Fig. S1A and 

Materials and Methods) across the study group.
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Fig. 3: Mechanoresponsive proteins increase in pancreatic cancer-derived cell lines.
A. Expression of myosin IIA (NMIIA), myosin IIB (NMIIB), myosin IIC (NMIIC), and 

actin in HPDE (normal pancreatic ductal epithelium), Panc4.03 (stage II primary tumor), 

Panc10.05 (stage II primary tumor), and AsPC-1 (stage IV ascites metastasis) cells, 

compared with HeLa lysate for the purposes of quantification. NMIIA and NMIIC increase 

in expression, while NMIIB decreases in expression in cancer cell lines. For full 

quantification of myosin II paralogs, see Table S1. B. Expression of α-actinin 4 (ACTN4) 

and filamin B (FLNB) increase, while expression of α-actinin 1 (ACTN1) and filamin A 

(FLNA) do not change in cancer cell lines. C. Quantification of western blots, examples 

shown in B, where numbers on the bars indicate n-values. *p<0.05, **p<0.005.
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Fig. 4: Mechanoresponsive proteins impact cortical tension and deformability of PDAC cells.
A. The effective cortical tension (Teff) measured by MPA experiments (schematic) is 

significantly affected by overexpression of myosin IIA, myosin IIC, and α-actinin 4, all 

mechanoresponsive paralogs. 500 nM 4-HAP increases the cortical tension of sh-control 

cells. 4-HAP also increases the cortical tension in myosin IIA knockdown cells, whose 

primary myosin paralog myosin IIC is activated by 4-HAP (42). Knockdown of myosin IIC 

also leads to a decrease in cortical tension, unchanged by 4-HAP challenge. Medians 

plotted; * p<0.03; **p<0.0001 relative to control. B. RT-DC experiments (schematic) 

demonstrate increased deformation when myosin IIA and myosin IIC are knocked-down 

(plotted as a probability distribution). All cell lines are generated from Panc10.05 cells. 

N=7521 cells for control, 9632 cells for myosin IIA knockdown, and 5933 cells for myosin 

IIC knockdown. Cell types are distinct (p<0.0001). Inset: Median deformation of three to 

five RT-DC independent runs across cell types from which the elastic modulus was 

calculated. Average median deformation values are 0.027±0.002 (mean±SD) for ctrl, 

0.032±0.002 for IIA knockdown, and 0.031±0.0003 for IIC knockdown.
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Fig. 5: Myosin IIC alters cytoskeletal actin architecture and cell behavior upon 4-HAP 
treatment.
A. Panc10.05 tissue spheroids grown, stained with phalloidin, and imaged in 3D (Matrigel) 

or 2D (collagen) show dissemination, exacerbated in myosin IIA knockdown. Myosin IIC 

depletion suppresses dissemination and generates actin cortical belts. 4-HAP induces actin 

belts in control and myosin IIA-depleted spheroids. These belts are already present in 

myosin IIC-depleted spheroids. Scale bar, 40 μm (confocal); 10 μm (SIM). B. Quantification 

of these actin structures using normalized standard deviation of pixel intensity; see 

Methods. Medians plotted; p values on graphs. C. Endogenous myosin IIA in AsPC-1 cells 

localizes on actin stress fibers; myosin IIC localizes to the actin cortex. D. 4-HAP reduces 

the number of extensions formed by AsPC-1 cells. E. Numbers of extensions/μm of 
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perimetric distance are plotted. F. GFP-myosin IIC decorates actin filaments, especially 

actin belts induced by 4-HAP in tissue spheroids. G. Sample kymographs of line scans 

across active leading edges in AsPC-1 SirAct live-stained cells. H. 4-HAP decreases 

retrograde flow. Medians are plotted. Inset shows increase in bleb formation in 4-HAP-

treated cells (p=0.0028). I. AsPC-1 shCTRL and shIIA cells show dose-dependent reduction 

of transwell migration upon 4-HAP treatment. Medians are shown.
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Fig. 6: 4-HAP reduces PDAC liver metastasis in murine model.
Livers harvested from 4-HAP-treated mice that underwent hemi-splenectomies with AsPC-1 

cells show a reduction in tumor coverage over those livers from untreated mice. A. Images 

were quantified using image segmentation based on color gradients to discern tumor 

coverage (Fig. S5). B. Quantification of tumor coverage show a 50% reduction in surface 

tumor load. Medians are provided on the graph.
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Fig. 7: New therapeutic strategy: Ablate metastasis by overwhelming intrinsic machinery to 
prevent polarization.
A. Pancreatic cancer progression is histologically defined by a series of cell shape change 

events from cuboidal epithelial cells (normal), through pseudo-stratified epithelial layers 

(PanIn), to disorganized and prolific cell growth (cancer). B. These changes are concomitant 

with genetic lesions and alterations in protein expression, including those proteins that 

define the mechanoresponsive machinery in PDAC, primarily myosin IIA, myosin IIC, α-

actinin-4, and filamin B. These changes in mechanoresponsive machinery have (C) 

significant implications on cell behavior moving the system from a stable state with high 

cellular adhesion, low motility, and set polarity, to an adaptive state with low adhesion, high 

motility, and altered polarity. D. Common therapeutic approaches have primarily involved 
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inhibiting key proteins. This loss of activity is not a viable approach for the PDAC 

mechanobiome because it leads to uncontrolled growth and dissemination as seen in myosin 

IIA inhibition or knockdown. Instead, we propose activating or overwhelming the system 

with mechanical modulators such as 4-HAP which revert the system to a more wildtype-like 

phenotype, reducing the dynamics of the system without promoting uncontrolled growth.
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