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Abstract

The use of the most accurate (i.e., QM or QM/MM) levels of theory for free energy simulations 

(FES) is typically not possible. Primarily, this is because the computational cost associated with 

the extensive configurational sampling needed for converging FES is prohibitive. To ensure the 

feasibility of QM-based FES, the “indirect” approach is generally taken, necessitating a free 

energy calculation between the MM and QM/MM potential energy surfaces. Ideally, this step is 

performed with standard free energy perturbation (Zwanzig’s equation) as it only requires 

simulations be carried out at the low level of theory; however, work from several groups over the 

past few years has conclusively shown that Zwanzig’s equation is ill-suited to this task. As such, 

many approximations have arisen to mitigate difficulties with Zwanzig’s equation. One 

particularly popular notion is that the convergence of Zwanzig’s equation can be improved by 

using interaction energy differences instead of total energy differences. Although problematic 

numerical fluctuations (a major problem when using Zwanzig’s equation) are indeed reduced, our 

results and analysis demonstrate that this “interaction energy approximation” (IEA) is theoretically 

incorrect, and the implicit approximation invoked is spurious at best. Herein, we demonstrate this 

via solvation free energy calculations using IEA from two different low levels of theory to the 

same target high level. Results from this proof-of-concept consistently yield the wrong results, 

deviating by ~1.5 kcal/mol from the rigorously obtained value.

1 Introduction

For many applications, the use of (S)QM/MM1 Hamiltonians is essential.2–7 Unfortunately, 

when implementing molecular dynamics (MD) based methods for computing free energy 

differences (i.e., free energy simulations, FES), direct use of (S)QM/MM Hamiltonians 

causes two major problems. First, particularly for ai-QM methods, the computational cost 

for the requisite configurational sampling quickly becomes prohibitive. Second, many 

crucial techniques frequently employed in FES using MM force fields, most notably the use 
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of soft-core potentials8,9 are incompatible with (S)QM/MM Hamiltonians.3 Many of these 

limitations can be circumvented by the so-called “indirect” approach to (S)QM/MM FES.
10–15 The key idea is outlined in Fig. 1. The goal is to compute the free energy difference 

between two states X and Y at a high level of theory ( Δ AX Y
high , dashed arrow), where high 

denotes an accurate, but expensive method; e.g., ai-QM/MM. Similarly, the label low 
denotes a computationally affordable method that may not be accurate enough for the 

intended application. Often, the low level of theory is a standard MM force field, but it could 

also be a sufficiently fast SQM/MM method (although at the cost of most alchemical tricks). 

Since the free energy difference along any closed path is zero, the identity

Δ AX Y
high = − Δ AX

low high + Δ AX Y
low + Δ AY

low high (1)

follows immediately from Fig. 1.

Eq. 1 is the foundation of indirect FES using (S)QM/MM Hamiltonians. This is has recently 

re-emerged as a very active area of research as this is both an attractive approach and littered 

with potential pitfalls.16–35 For example, the challenge is to compute ΔAlow→high for states 

X and Y; the free energy difference at the respective low level of theory, Δ AX Y
low , is 

assumed to be easy to compute. In the majority of past applications of the indirect scheme, 

ΔAlow→high was computed using Zwanzig’s equation, often called free energy perturbation 

(FEP),36,37 i.e.

Δ Alow high = − kBT ln exp − Δ Ulow high

kBT
low

(2)

Since the term “free energy perturbation” encompasses also, e.g., Bennett’s acceptance ratio 

method, we will preferentially refer to Eq. 2 as Zwanzig’s equation in this work. Here kB 

and T are Boltzmann’s constant and temperature; ΔUlow→high = Uhigh – Ulow is the 

difference in energy of the system evaluated at the low and high levels of theory, and 〈. . .〉

low denotes an ensemble average of configurations sampled at the low level of theory. Use of 

Eq. 2 has the advantage that MD simulations need to be carried out only at the low level of 

theory and the energy Uhigh is computed only for selected configurations during a post-

processing step.

Recent evidence, however, shows that attempts to compute ΔAlow→high by Zwanzig’s 

equation converge poorly, if at all.18,19,21,38–42 Analysis carried out by various groups 

suggests that this is mostly caused by differences in the internal energy at the two levels of 

theory, in particular bond lengths and angles. E.g., in MM simple harmonic terms 

approximate the bond stretching energy, whereas the true functional dependence is more 

complicated. Thus, configurations generated with MM Hamiltonians are always “slightly 

wrong” at the (S)QM level of theory. By “slightly wrong” we mean that a bond length, 

which is perfectly reasonably at the MM level of theory, may actually be quite off from the 

minimum geometry at the (S)QM/MM level of theory. In principle, the same can happen 
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between two (S)QM/MM levels of theory, employing different quantum chemical 

techniques, but the harmonic terms used in force fields likely acerbate this. These 

individually small “configurational mismatches” sum up to large fluctuations of the central 

quantity entering Zwanzig’s equation, the energy difference ΔUlow→high, and, thus, failure 

of Zwanzig’s equation to converge.37 Given sufficiently large differences between the 

potential energy surfaces of two states, such problems can occur even for diatomic 

molecules.28,43 In the context of indirect (S)QM/MM FES we have observed this for 

quantum regions as small as 10 atoms.44 This configurational mismatch between levels of 

theory only compounds with growing system size, and by proxy so will the observed 

fluctuations in ΔUlow→high, i.e., σΔUlow→high becomes large, easily exceeding several kcal/

mol.

Usually, convergence problems in Zwanzig’s equation are mitigated by the use of 

intermediate states with Hamiltonian H(λ), where λ is the so-called coupling parameter.37 

However, under the specific circumstances H(λ) = (1 – λ)Hlow + λHhigh, so simulations at 

any intermediate state λ > 0 require energy/force evaluations at the high level Hamiltonian. 

Thus, any performance gain of the indirect scheme is lost. The same problem arises in the 

other standard methods to compute free energy differences. For Bennett’s acceptance ratio 

(BAR) method45 simulations at both the low and the high level of theory are needed. In 

thermodynamic integration46,47 by construction several MD simulations at intermediate 

Hamiltonians H(λ), all of which require force evaluations at the high level of theory, are 

needed. It has been pointed out very recently that the introduction of (S)QM intermediate 

states might still improve the overall performance of the free energy simulation if it can 

significantly improve the phase space overlap between levels of theory, thus reducing the 

computational effort to achieve convergence when computing ΔAlow→high.28

In recent years, a growing number of studies attempted to circumvent the poor convergence 

of Zwanzig’s equation in connection with (S)QM/MM FES by taking into account changes 

in interaction energies, rather than full energies.16,21,27,38,39,48–59 We will refer to this 

practice as the interaction energy approximation (IEA). To clarify the term interaction 

energy, consider a solute, S, in water, W. The interaction energy Uinter of such a system is 

defined as

Uinter = Utotal(rS, rW) − US(rS) − UW(rW) (3)

where Utotal (rS, rW) is the total potential energy of the solute–solvent system, with rS, rW 

denoting solute and solvent coordinates. US(rS) and UW(rW) are the potential energies for 

just the solute and solvent coordinates, respectively. The separation of energy terms in Eq. 3 

is always possible, even in the case of non-pairwise interactions, such as a (S)QM/MM 

description of interactions. The interaction energy between a protein and a ligand can be 

defined analogously. The IEA consists of replacing total energies in Zwanzig’s equation by 

interaction energies. Thus, the free energy difference between a system described at the low 

and high level of theory becomes
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Δ Ainter
low high = − kBT ln exp

− Δ Uinter
low high

kBT
low

. (4)

Since the interaction energy difference Δ Uinter
low high = Uinter

high − Uinter
low  does not contain 

contributions from “mismatches” in intramolecular terms, in particular bond stretching and 

angle bending terms, σ
ΔUinter

low high ≪ σ
ΔUlow high .

An early use of interaction energies is a study by Wood et al. from 1999.54 Using Zwanzig’s 

equation, they sought to account for changes in interaction energies in solute–solvent 

systems between classical and quantum levels of theory. Specifically, they considered a 

classical solvated solute system, then perturbed to a state where both solute and solvent were 

treated classically, but the solute-solvent interactions were obtained with DFT. Within the 

well-defined scope of this study ΔUlow→high is identical to Δ Uinter
low high . The work focused 

on the averages and fluctuations of ΔUlow→high, with the goal of refining solvent nonbonded 

parameters in a way that minimized those quantities. In follow-up work, Wood and co-

workers used this approach, referred to as “ABC-FEP”, in several applications ranging from 

solvation to potential of mean force (PMF) calculations.54–59 More recently, Essex and co-

workers adopted the notion of using interaction energy rather than total energy difference.
16,21,38,39 Unlike in the earlier work by Wood et al., however, the approach appears more and 

more as a workaround to avoid the use of total energies as required by the cycle in Fig. 1 and 

Eq. 2, whilst researchers maintain results are full QM/MM free energy differences.

Based on statistical mechanics (see also Theory), Eq. 4 as replacement for Eq. 2 in the 

context of the indirect thermodynamic cycle (i.e., Fig. 1) cannot be justified rigorously. In 

fact, in their first use of the IEA, Essex and co-workers stated that use of Δ Uinter
low high

constitutes an approximation.16 However, the nature of the approximation was not analyzed; 

the argument given in favor of interaction energies is that their use captures polarization 

between solute and solvent, or protein and ligand, and, hence, includes types of interactions 

not accounted for by, e.g., MM force fields. Essex and co-workers also showed conclusively 

that Eq. 2 (i.e., Zwanzig’s equation with the full energy difference ΔUlow→high) led to an 

incorrect result, as convergence could not be achieved.39 Lately, the improved convergence 

seems to have become the main justification for use of interaction energies.39,49 On the other 

hand, there are cases when use of interaction energies is not appropriate. One obvious 

counter example would be the calculation of a PMF along a reaction coordinate when 

studying a chemical reaction. Clearly, during bond breakage and formation, changes in 

intramolecular geometries and interactions will lead to an essential contribution to the PMF; 

hence, they cannot be omitted. Given the increasing use of the IEA, we are not aware of any 

detailed investigation into the approximation(s) implied by the use of interaction energies, 

and no systematic comparison of results obtained with Δ Uinter
low high instead of ΔUlow→high 

for computing ΔAlow→high is available.
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Providing such an analysis and comparison is the goal of this work. Until recently, this 

would have been challenging because of the failure of Zwanzig’s equation to converge when 

using energy differences ΔUlow→high in all but the simplest applications. In recent studies, 

however, we have demonstrated that Jarzynski’s equation (JAR)60 can be used to obtain 

converged values for ΔAlow→high via non-equilibrium fast switching work simulations.24,61 

Since the mismatches in bond lengths and bond angles correct themselves during even short 

(less than 100 fs) switching simulations, this source of error is removed easily, regardless of 

the size of the quantum region. While the method may be too expensive in large scale 

applications, it can provide reference results in select applications. Several examples are 

presented in this work, which is organized as follows. In the Theory section we work out in 

detail the differences between the use of full energies and interaction energies, providing 

indications when use of the latter may or may not be appropriate. In addition, we briefly 

summarize the use of non-equilibrium work methods to compute ΔAlow→high. The 

theoretical considerations are illustrated by numerical results for several model tasks, all 

concerned with the determination of solvation free energies. In Methods we present the 

rationale behind the choice of model problems and provide the technical details of the 

calculations. The Results section is followed by a discussion in which we point out 

similarities between the IEA and the role of “self-terms” or “intraperturbed-group 

interactions” in alchemical FES.62,63

2 Theory

2.1 Interaction vs. total energies

2.1.1 Brief recapitulation of Zwanzig’s equation—At the risk of belaboring the 

obvious, we start by briefly outlining the derivation of Zwanzig’s equation. The customary 

starting point is two systems (or alternatively, energetic states) X and Y, having potential 

energies UX and UY. Here and in the following, we assume that the kinetic energy part of 

the Hamiltonian can always be decoupled and, thus, can be ignored. This holds true even 

when (S)QM/MM Hamiltonians are considered as the equations of motion are treated 

classically. Defining ΔUX→Y = UY – UX, one can obviously write UY = UX + ΔUX→Y. 

Further, the free energy of system X, AX is assumed to be known. Thus, to determine AY it 

suffices to compute the free energy difference

Δ AX Y = AY − AX = − kBT ln
ZY
ZX

, (5)

where Z = ∫ Γdr exp[ − U(r)/kBT] is the configurational partition, with the integration being 

carried out over all configuration space Γ in the canonical ensemble of the two systems X 
and Y, respectively. Employing the identity 1 = exp[+UX(r)/kBT] exp[−UX(r)/kBT] and the 

definition of the expectation value 

Θ X = ∫ Γdr Θ(r)PX(r) = ∫ Γdr Θ(r)
exp[ − UX(r)/kBT]

∫Γ
dr exp[ − UX(r)/kBT]

 for some observable Θ with the 

Boltzmann probability distribution of state X, PX, leads to
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Δ AX Y = − kBT ln exp[ − Δ UX Y /kBT]
X

; (6)

i.e., the general form of Eq. 2. The subscript X emphasizes that the average 〈…〉X is 

sampled using the potential energy function of state X. When analyzing what contributes to 

a free energy difference obtained by Zwanzig’s equation (Eq. 2 or 6), one has to consider 

both the details of ΔU, as well as the (energy function of the) ensemble at which 

configurations are sampled.

While the exponentials within the integral can be rearranged in various manners, the integral 

in the ensemble average 〈exp(−ΔU/kBT)〉X cannot be split into two (or more) additive terms 

in a unique manner. Specifically, the energy difference between the two states may consist of 

two or more distinct terms, e.g., differences in electrostatic (elec) and Lennard-Jones (LJ) 

interactions, i.e., ΔU = ΔUelec + ΔULJ. While separable at the level of energies, it is not 
possible in an unambiguous fashion to split the exponential average 〈exp[−(ΔUelec + 

ΔULJ)/kBT]〉X, and, hence, the corresponding free energy difference, into contributions from 

ΔUelec and ΔULJ.64–66 In other words, Δ AX Y ≠ Δ AX Y
elec + Δ AX Y

LJ  since 

−kBT ln exp[ − Δ UX Y /kBT]
X

≠ − kBT ln exp[ − Δ UX Y
elec /kBT]

X
− kBT

ln exp[ − Δ UX Y
LJ /kBT]

X
.

 67

2.1.2 The special case of solvation free energies — definitions—For the 

following analysis we focus on the calculation of a solvation free energy for some solute S 
by an indirect QM/MM FES (Fig. 2). We assume that a solvation free energy has been 

computed using a MM force field Δ Asolv
MM ; this result is to be refined by a QM/MM 

method. The IEA has been used in such scenarios;48–50 also, all model problems considered 

in this work are related to solvation free energies. The considerations given below can be 

straightforwardly extended to other situations, such as the calculation of binding affinities of 

protein–ligand interactions.

In other words, we are interested in the following specialization of Fig. 1, i.e., the 

computation of the free energy difference Δ Asolv
QM /MM for transferring solute S from the gas 

phase (gasp) into aqueous solution (aq). In the full indirect scheme, instead of following the 

dotted arrow in Fig. 2, we would use Eq. 1 and compute

Δ Asolv
QM /MM = Δ Asolv

MM + Δ Aaq
MM QM /MM − Δ Agasp

MM QM . (7)

Using the IEA, i.e., using Eq. 4 instead of Eq. 2, we would instead compute

Δ Asolv inter
QM /MM = Δ Asolv

MM + Δ Aaq, inter
MM QM /MM (8)
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since by construction there is no (solute-solvent) interaction energy in the gas phase. The 

central question we want to address is how Δ Asolv
QM /MM and Δ Asolv inter

QM /MM  differ and whether 

one can expect that Δ Asolv
QM /MM ≈ Δ Asolv inter

QM /MM , i.e., whether use of Eq. 8 instead of Eq. 7 

will lead to an identical or, at least, comparable result. As a shorthand for later, we add a 

conditional expression for the MM → QM /MM (low → high) correction encompassing 

both cases:

Δ Acorr
MM QM /MM

= Δ Aaq
MM QM /MM − Δ Agasp

MM QM : full cycle Fig. 2

≈ Δ Aaq, inter
MM QM /MM : IEA

(9)

We start by writing down, in a schematic way, the various potential energy functions needed 

to compute the terms in Eqs. 7 and 8. The gas phase is straightforward, the solute (S) is 

described either by a MM Ugasp
MM rS  or QM potential energy function Ugasp

QM rS . For the 

aqueous solution, we assume that water (W) is always treated classically, i.e., by a MM force 

field UW
MM rW . Here rS and rW denote the coordinates of the solute and water, 

respectively. Therefore, the potential energy describing the solute in water at the MM and 

QM/MM levels of theory is given by

Uaq
MM = US, S − W

MM rS, rW + UW
MM rW = US

MM rS + US − W
MM rS, rW + UW

MM rW (10)

and

Uaq
QM /MM = US, S − W

QM /MM rS, rW + UW
MM rW . (11)

We assume an additive MM force field; hence, in Eq. 10 we have separated intra-solute 

US
MM rS  and solute–solvent interactions US − W

MM rS, rW . For QM/MM this is not possible, as 

reflected by the combined term in US, S − W
QM /MM rS, rW  Eq. 11.

In preparation for the analysis of the IEA, we also need to give matching expressions for the 

interaction energies at the two levels of theory:

Uaq, inter
MM = Uaq

MM − US
MM − UW

MM = US − W
MM rS, rW (12)
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Uaq, inter
QM /MM = Uaq

QM /MM − US
QM − UW

MM = US, S − W
QM /MM rS, rW − US

QM rS

(13)

Eqs. 12 and 13 follow directly from Eqs. 10 and 11 above; US denotes the potential energy 

of the solute at either the MM or QM level of theory, computed as if the waters were not 

present.

2.1.3 Analysis of using interaction energy differences—We now turn to the 

analysis of the free energy differences involved in computing a solvation free energy when 

using the exact thermodynamic cycle (Fig. 2) and when using the IEA. For the former, the 

difference in total energies between the MM and QM/MM levels of theory is needed. In the 

gas phase one trivially has

Δ Ugasp
MM QM = Ugasp

QM rS − Ugasp
MM rS . (14)

In aqueous solution, subtracting Eq. 10 from Eq. 11 one obtains

Δ Uaq
MM QM /MM = Uaq

QM /MM − Uaq
MM

= US, S − W
QM /MM rS, rW − US

MM rS − US − W
MM rS, rW .

(15)

Since interactions between waters are always treated classically, the term UW
MM(rW) present 

in both Eqs. 10 and 11 cancels from the difference Eq. 15. If interaction energies are used 

instead, the corresponding interaction energy difference (subtracting Eq. 12 from Eq. 13) is

Δ Uaq, inter
MM QM /MM = Uaq, inter

QM /MM − Uaq, inter
MM

= US, S − W
QM /MM(rS, rW) − US

QM(rS) − US − W
MM (rS, rW)

(16)

Eqs. 14, 15, and 16 are the energy differences entering Zwanzig’s equation to compute 

Δ Agasp
MM QM, Δ Aaq

MM QM /MM, and Δ Aaq, inter
MM QM /MM, respectively.

We first focus on comparing Δ Aaq
MM QM /MM and ΔAaq, inter

MM QM /MM . These two quantities 

are obtained from the same underlying simulation of the solute in water, modeled at the low 

level of theory (MM). Its potential energy Uaq
MM is given by Eq. 10. Recall from the 

recapitulation of Zwanzig’s equation that, given an initial state X, the energy of the final 

state Y can be written as UY =UX + ΔUX→Y. Here, UX = Uaq
MM and is given by Eq. 10 One 
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can easily convince oneself that adding Δ Uaq
MM QM /MM (Eq. 15) to Uaq

MM (Eq. 10) leads to 

the potential energy function Uaq
QM /MM of the QM/MM description (Eq. 11), as expected.

Repeating this seemingly trivial exercise for the IEA, we add Δ Uaq, inter
MM QM /MM (Eq. 16) to 

the potential energy Uaq
MM (Eq. 10) of the reference state. This leads to

Uaq
QM /MM = US, S − W

QM /MM(rS, rW) + UW
MM(rW) + US

MM(rS) − US
QM(rS) =

= Uaq
QM /MM + US

MM(rS) − US
QM(rS) .

(17)

where the tilde ˜ is used to distinguish this result from the true Uaq
QM /MM (Eq. 11). The 

difference between Eq. 11 and Eq. 17, US
MM(rS) − US

QM(rS), reflects that the difference in 

intramolecular energies between the two levels of theory is excluded when using interaction 

energies. However, we can go further. Eq. 17, after all, is the effective potential energy 

function corresponding to the high level of theory when using the IEA. What is the nature of 

a system described by Uaq
QM /MM? The intramolecular energy of the solute in this 

hypothetical state is described by the low level of theory (MM), whereas solute–water 

interactions are treated at the desired high level of theory (QM/MM). Thus, when using the 

IEA Δ Acorr
MM QM /MM (Eq. 9) is the free energy difference between the MM representation 

of the system and a hybrid representation in which the intramolecular interactions of the 

solute, our quantum region, are described by MM, and only the solute–water interactions 

correspond to a QM/MM treatment.

In the special case of solvation free energies, there is a second aspect worth pointing out in 

connection with the IEA. In the full indirect cycle (Fig. 2), the correction ΔAMM →QM is 

computed both for the gas phase, as well as for solution. Since in the gas phase there are by 

definition no interaction energies, any contributions from the gas phase are not taken into 

account when the IEA is employed. For flexible molecules the minimum energy 

conformation(s) in the gas phase and in solution need not be the same. Clearly, any free 

energy contribution from such conformational preferences is omitted in the IEA. This 

constitutes an additional source of error that goes beyond the earlier considerations, where 

we identified the chimeric high level state employed by the IEA. Assume a solute–solvent 

system for which the low-level (MM) description of intra-solute molecular forces in solution 

is comparable to that of the high-level description; i.e., the solute’s behavior in aqueous 

solution in the MM simulation is very similar to what it would be during a true QM/MM 

simulation. Since in this case the remaining difference between the two levels of theory is 

the solute–solvent interaction, the use of IEA would seem justified. However, just because 

the intra-solute molecular forces are adequately described in solution, this does not mean 

that this is true in the gas phase as well. E.g., biomolecular force fields often sacrifice gas 

phase properties in order to describe interactions in and with water correctly.68 Since the gas 

phase is not even considered in the IEA, any such free energy contributions are overlooked. 

An alternative way of viewing this is to state that in the IEA the properties of the solute, in 
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particular its conformational preferences, are assumed to be identical in the gas phase and in 

aqueous solution.

Thus, two assumptions are made when applying the IEA to the calculation of solvation free 

energy differences. (1) The IEA connects the low level of theory (MM in our analysis) with 

a hypothetical high level state, in which the solute is described by MM and only the solute-

solvent interactions obey the QM/MM potential energy function. (2) Further, the IEA 

implicitly requires that the solute’s conformational preferences are identical in the gas phase 

and in aqueous solution.

2.2 A brief summary of Jarzynski’s and Crook’s equation

Next, we briefly describe the theoretical basis of non-equilibrium work methods to 

accurately compute ΔAMM →QM /MM corrections even in cases when Zwanzig’s equation 

fails to converge. Approximately twenty years ago, Jarzynski 60 showed that Zwanzig’s 

equation is merely a limiting case of a much more general identity, i.e.,

Δ AX Y = − kBTln exp −WX Y

kBT
X

(18)

Here, WX→Y is the non-equilibrium work (NEW) of transforming state X into Y in finite 

time. We refer to a simulation, during which the potential energy function is changed 

between two states and the corresponding work W is recorded, as ‘switch’. The average 〈…〉

X is carried out over multiple such switches, each starting from an equilibrium configuration 

and velocity set obtained at state X. Zwanzig’s equation is recovered when carrying out the 

switch instantaneously, in this case WX→Y reduces to ΔUX→Y = UX – UY. Similarly, 

thermodynamic integration can be viewed as Jarzynski’s equation in the limit of infinitely 

slow switching times, thus keeping the system at each intermediate step in equilibrium.

Jarzynski’s equation has become an indispensable tool to model biophysical/biochemical 

processes that range from pulling experiments to ligand (un)binding; more recently it is also 

used in alchemical FES.69,70 As we showed in earlier work,24,61 it is also well suited for the 

problem at hand, the reliable computation of ΔAlow→high. Even short switching protocols 

(50–100MD steps) can ameliorate mismatches between the low and high level description of 

the system, in particular disparity in bonded degrees of freedom. While quite costly, in 

particular if ai-QM methods are used, the switches are a post-processing step, and hence any 

number of switching simulations can be trivially carried out in parallel.

Just as Jarzynski’s equation is the non-equilibrium extension of Zwanzig’s equation, its two-

sided equilibrium variant, BAR, can also be generalized to averages of forward and 

backward non-equilibrium work values. In particular, Crooks71 proved the general theorem

exp −β Δ A =
f W X

f −W exp −βW Y
(19)
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Eq. 19 is true for any function f (W), where, as in the above discussion of Jarzynski’s 

equation, W denotes a non-equilibrium work value. The average 〈. . .〉 is taken over multiple 

work values, starting from equilibrated configurations corresponding to state X or Y (as 

indicated by the subscript). By minimizing the statistical variance with respect to the 

arbitrary function f (W), Bennett was the first to show that the choice

f W = [1 +
nX Y
nY X

exp β W − Δ A ]
−1

(20)

minimizes the variance in the free energy estimate. 45 Here nX→Y, nY→X are the number of 

forward and backward switches, respectively. While Bennett’s derivation was carried out for 

the equilibrium case, Eq. 20 can also be used to compute free energy difference from 

Crooks’ theorem. Additional details about using Jarzynksi’s and Crooks’ equation to 

compute ΔAlow→high can be found in our earlier work; for general background we refer the 

reader to a recent review of NEW methods by Dellago and Hummer. 72

In principle, BAR and Crooks are problematic methods for computing ΔAlow→high since in 

both cases simulations at the high level of theory are required (cf. the Introduction). 

However, both in previous work,24,61 as well as in this study SQM/MM was/is employed as 

the high level of theory for model problems. For these systems, simulations at an SQM/MM 

level of theory are feasible. Being able to use two-sided free energy perturbation methods, 

such as BAR or Crooks serves as a stringent test whether free energy differences obtained by 

one-sided methods (i.e., Jarzynski’s equation) have indeed converged.

3 Methods

Overview of model calculations

Validating the IEA is challenging due to the poor convergence of Zwanzig’s equation when 

computing ΔAlow→high. Specifically, it is difficult to obtain reference results for the full 

thermodynamic cycle (Fig. 2) for all but the simplest systems. E.g., Ref. 39 convincingly 

demonstrated the convergence failure of Zwanzig’s equation, but because of the practical 

impossibility to achieve convergence, it could not be shown that the use of interaction 

energies instead of the full thermodynamic cycle would lead to identical results. In contrast, 

ΔAlow→high with NEW methods is much more robust as compared to Zwanzig’s equation; 

thus, we will rely heavily on these to obtain reference results.

Although (S)QM/MM calculations are the ultimate target, it seems instructive to start with 

purely MM test cases. For such systems reference results and results based on the IEA can 

be calculated with high precision. The application we will be studying is the solvent affinity 

of blocked amino acids using three CHARMM force fields to describe the solute with the 

TIP3 water model employed in all three cases. We arbitrarily consider one force field the 

low level of theory, and the two others high levels of theory.

Our proof-of-concept work demonstrating the utility of Jarzynski’s equation to compute 

ΔAlow→high contained examples of varying complexity.24,61 Thus, we will use some of these 

Hudson et al. Page 11

J Chem Theory Comput. Author manuscript; available in PMC 2020 August 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



earlier results for ΔAlow→high as reference values and compare them to values obtained with 

the IEA. First, we chose the zeroth order test application of FES, the solvation free energy 

differences of ethane and methanol, and refine MM results at the SQM/MM level of theory 

(see below for details), using both the full indirect cycle as shown in Fig. 2, as well as the 

approximation based on interaction energies. For these systems, we expect the use of 

interaction energies to suffice. Second, we report results for the blocked amino acids alanine 

(N-acetyl-alanine-methylamide, Ala) and serine (N-acetyl-serine-methylamide, Ser). These 

are flexible systems, with different conformational preferences in the gas phase and in 

aqueous solution, as well as when described by force fields and at the SQM/MM level of 

theory. Thus, they contain all the potential complications discussed in the Theory section 

which might result in incorrect results relying on interaction energies.

In Ref. 61 we also reported results for bis-2-chloro diethyl ether (2CLE) in the gas phase. 

This rather small molecule proved quite difficult since MM parameters obtained from the 

CHARMM generalized (CGenFF) force field 73 led to rather different conformational 

preferences compared to SQM. While we could obtain converged results for ΔAlow→high 

using Jarzynski’s equation, the low to high correction could be obtained more easily using 

reoptimized force field parameters. Here, we present results not only for the gas phase but 

for 2CLE’s full free energy of solvation calculation, using two different MM representations 

as the low and SQM/MM as the high level of theory according to Fig. 2. The result obtained 

with the full indirect cycle will be compared to the use of the IEA.

Free energy differences between force fields

The first generation of the CHARMM all-atom protein force field74 was revised in 2004 by 

the introduction of the so-called crossterm correction (“CMAP”).68 We consider the initial 

protein force field, 74 referred to here as C22,noCMAP, to be the low level of theory, and the 

revised force field,68 referred to as C22, a possible “high” level of theory. The two parameter 

sets differ only by the absence / presence of the cross-term correction. The CMAP force 

field term is an intramolecular energy term and would pertain only to the solute. Hence, 

using the interaction energy approach, the free energy difference of solvation between any 

system described with the C22,noCMAP and the C22 force fields will be, by definition zero, 

as the interaction energies are the same in both cases. We will compare this theoretical result 

based on the IEA with the true relative solvation free energy difference for Ala and Ser when 

using the two force fields. Further, we will repeat this comparison for C22,noCMAP and the 

current CHARMM36 protein force field (C36).75,76 In this case, there are several differences 

between the two parameters sets, some also directly affecting protein–water interactions.77 

Hence, both corrections Δ Δ Asolv
low high, the one based on the IEA and the one on the full 

thermodynamic cycle Fig. 2, need to be computed.

Specifically, MD simulations of blocked Ala and Ser were carried out in the gas phase and in 

aqueous solution, using the three force fields C22,noCMAP, C22, and C36. Trajectories 

were saved and energies recomputed at the respective other states. E.g., configurations saved 

during simulations with C22 were reevaluated with C22,noCMAP, and C36. Based on these 

energy time series, BAR was used to compute the free energy differences between force 

fields in a single step, in analogy to Ref. 78. Trajectories generated in aqueous solution were 
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further used to compute interaction energies (the energy of the solute and water-water 

energies were subtracted from the full energies). Then, Zwanzig’s equation was used to 

compute the free energy difference corrections based on the IEA. Error bars for the BAR and 

Zwanzig’s equation free energy difference were obtained as follows. Dividing the full data 

set (here 100,000 ΔU values) into ten sequential blocks, we computed ΔAi (i = 1, . . . 10) for 

each block independently. The standard deviation s of these ten ΔAi is reported as statistical 

error estimate (s = 1/(N − 1)∑i = 1
N ( Δ Ai − Δ A)2, where in this work N = 10). The 

approach just outlined was motivated by an approach of Wood et al.79 to estimate “sample 

size hysteresis” and was also used in Refs. 44, 61. Simulation details are provided in SI.

Ethane/methanol, Ala/Ser

We take results from Ref. 61 for ΔAlow→high, with low referring to the C36 force field and 

high to the semi-empirical SCC-DFTB method80–84 with the 3ob-3-1 parameter set85–88 and 

third order corrections (herein referred to as DFTB3). The trajectories saved during earlier 

work61 were used to compute interaction energy differences and to compute ΔAlow→high 

according to the IEA. In particular, we report results for ethane (ETHA), methanol (MEOH), 

blocked Ala and Ser, for which we had computed values for ΔAlow→high both in the gas 

phase and in aqueous solution. The details of the underlying simulations can be found in 

Ref. 61.

Solvation free energy of bis-2-chloro diethyl ether (2CLE)

Finally, we carried out a full solvation free energy calculation for 2CLE. As reported for the 

gas phase earlier,61 for this molecule the CGenFF force field parameters generated by 

PARAMCHEM89,90 turned out to lead to very different conformational sampling than at the 

DFTB3 level of theory. Using refined force field parameters obtained with GAAMP91 

resulted in more similar conformational sampling and facilitated convergence of 

Δ Agasp
low high .61 Results using this parameterization will be referred to as “GAAMP”. Here 

we again use the CGenFF and GAAMP force field parameters as low levels of theory and 

refine results obtained with them to the DFTB3 level of theory.92

Fig. 3 depicts the individual steps used to compute the solvation free energy of 2CLE, using 

either the CGenFF or the GAAMP force field, and to refine the classical results to the 

DFTB3 level of theory. The calculation of the classical solvation free energy Δ Asolv
MM consists 

of three steps, denoted (ii)–(iv) in the figure: First, in step (ii) the charges of the solute atoms 

were turned off in five steps. Next, step (iii), all Lennard-Jones interactions of the solute 

were turned off (six steps, see below for details). In the PERT module of CHARMM, one 

cannot selectively turn on/off solute–solvent interactions, so steps (ii) and (iii) also removed 

solute intramolecular nonbonded interactions. This contribution was calculated in step (iv), 

in which nonbonded intramolecular interactions were turned on again (vide infra). Steps (i) 
and (v) are the corrections steps ΔAlow→high for aqueous solution and the gas phase, 

respectively. Simulation details for the five steps can be found in SI.

Given the relatively small system size and the semi-empirical level of theory chosen, we 

could afford to carry out MD simulations at the high level of theory. Thus, we used Crooks’ 
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equation (Eqs. 19 and 20) to compute the free energy difference ence between the high and 

low level of theory (steps (i) and (v) in Fig. 3). Non-equilibrium switches in the two 

directions were carried out using the MSCALE93 facility of CHARMM combined with the 

slow-growth mode of the PERT module; cf. Refs. 24, 61 for further details. In the gas phase, 

10,000 forward (low → high) and backward (high → low) switches were carried out; only 

every fourth of the 40,000 restart files saved at the low level of theory were used. Switches 

were started from the restart files saved during the production simulations at the two levels 

of theory and were carried out during 1000 steps of Langevin dynamics (friction coefficient 

5 ps–1 on all atoms, 0.5 fs timestep). The same switching protocol was also used in solution. 

Out of the 40,000 restart files collected during simulations using the CGenFF and GAAMP 

force field, as well as the SQM/MM simulation (see SI), every second was used, resulting in 

20,000 forward and backward work values.

Finally, all coordinates saved during the force field simulations in aqueous solution 

(CGenFF, GAAMP) were also used to compute interaction energies, Uinter, at the low and 

high levels of theory, respectively. The interaction energy differences, Δ Uinter
low high, were 

then inserted into Eq. 4 to compute Δ Ainter
low high according to the IEA.

4 Results

Free energy differences between force fields

Table 1 summarizes results for the differences in solvation free energies for Ala and Ser 

using three generations of CHARMM protein force fields C22,noCMAP, C22, and C36. As 

described in Methods, these were computed exactly and employing the IEA. The case 

C22,noCMAP vs. C22 is of particular interest, as it is clear in this case that the free energy 

resulting from the IEA has to be exactly zero (cf. Methods). By contrast, as one sees in Table 

1, the exact result is approximately 0.5 kcal/mol for both Ala and Ser. A similar discrepancy 

is obtained for C22 vs. C36. For Ala, the IEA again suggests a free energy difference of 

zero, whereas the correct value is 0.4 kcal/mol. For Ser, the exact result is 0.1 kcal/mol, 

whereas the IEA leads to a value of –0.2 kcal/mol. While the discrepancy in results is not 

large, it clearly is not negligible.

The cross-term (CMAP) correction modifies the ϕ/ψ backbone angle distribution sampled 

by peptides and proteins. Thus, there are two ways in which its presence / absence 

contributes to the solvation free energy. First, as the average conformation of the peptide is 

different with and without the CMAP term, solute–solvent interactions are changed, even 

though the nonbonded force fields terms are identical in both cases. Since in the framework 

of the IEA the respective other state is never simulated, this contribution is not accounted 

for. Second, the effect of the CMAP correction on the preferred φ/ψ values is different in the 

gas phase and in water. As the gas phase is not even considered in the IEA, any free energy 

contributions resulting from this cannot be accounted for. Thus, although the numerical 

discrepancy for these purely classical systems is not large, it nicely illustrates the types of 

contributions ignored by the IEA, in line with the earlier theoretical analysis.
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Ethane/methanol, Ala/Ser

Table 2 summarizes several results from Ref. 61 concerning MM → SQM(/MM) corrections 

which are required to compute solvation free energies. In addition, we used our raw data to 

compute the corrections using the IEA. For two model systems, ethane and methanol, the 

results are in quite good agreement. Both systems have little conformational flexibility, and 

the MM force field can be expected to describe intramolecular, as well as interactions with 

water well; hence, this findings is not surprising. For Ala and Ser, on the other hand, the 

deviations between the two approaches (exact thermodynamic cycle Fig 2 vs. IEA) are 

considerable. In both cases, the MM→SQM/MM correction obtained from the IEA is too 

negative, –1.9 kcal/mol for Ala, and –1.2 kcal/mol for Ser. Given the flexibility of the two 

peptides and their different conformational preferences observed when described by MM 

and by SQM/MM,24,61 these findings are not too surprising. As outlined in the Theory 

section, use of the IEA implicitly relies on the assumption that the simulations at the low 

level of theory result in configurational and conformational sampling that is also 

representative for the high level of theory. Our earlier results showed this not to be the case; 

hence, the expected failure.

Finally, the Ala/Ser results of Table 2 are worrisome in a second regard. One main 

justification for the IEA is that the modified Zwanzig equation (Eq. 4) is expected to 

converge more quickly than the exact expression, Eq. 2. Indeed, we showed in Refs. 24,61 

that attempts to compute ΔAMM→SQM/MM for Ala and Ser by Zwanzig’s equation fail to 

converge, both in the gas phase and in solution. Using non-equilibrium work methods, on 

the other hand, the exact correction can be computed, though in aqueous solution relatively 

long switching protocols were required. The interaction energy results for Ala and Ser in 

Table 2 have relatively high standard deviations, almost ±1 kcal/mol. Further, they fail 

several of the criteria we recently suggested to gauge convergence of Zwanzig’s equation. 44 

Despite being computed from 200,000 interaction energy differences each, the Π value,94 

which ideally should be > +0.5, is only –0.26 for Ala and –0.15 for Ser. The standard 

deviation of the interaction energy differences themselves is ≈ 4kBT in both cases, the 

absolute upper limit we found for Zwanzig’s equation to lead to correct results. Thus, while 

the use of interaction energies helps convergence and makes it possible to use somewhat 

larger quantum regions, it does not remove all of the underlying diffculties hindering 

convergence. In Ref. 61 we pointed out that the solute’s charge distribution was quite 

different for MM and SQM; hence, water configurations appropriate for a MM charge 

distribution may be quite “incorrect” for a SQM solute. Clearly, this factor hampering 

convergence is also present when using interaction energies.

Solvation free energy of bis-2-chloro diethyl ether (2CLE)

Finally, we report solvation free energies of 2CLE at the SQM/MM level of theory. Two 

MM force field were used as the low level of theory; the MM results were refined either by 

the full thermodynamic cycle Fig. 2, or according to the IEA. All results are summarized in 

Table 3.

With the regular CHARMM CGenFF force field (C36), one obtains a solvation free energy 

difference Δ Asolv
MM of –3.26 kcal/mol, deviating slightly less than 1 kcal/mol from the 
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experimental value of –4.23 kcal/mol. 95 When this MM result is refined through the indirect 

cycle Fig. 2, the solvation free energy Δ Asolv
SQM /MM becomes –3.46 kcal/mol, in slightly 

better agreement with experiment. If one does the same with the IEA (column ’IEA’ in 

Table 3), the agreement with experiment becomes much poorer. The “corrected” solvation 

free energy Δ Asolv(inter)
SQM /MM = − 1.53 kcal/mol, which deviates by almost 3 kcal/mol from the 

experimental value.

Since the C36 MM simulations led to conformations of 2CLE which were rather different 

from those obtained with SQM,61 we repeated the MM simulations with parameters 

obtained from GAAMP (lower half of Table 3). Somewhat surprisingly, the MM solvation 

free energy is in much poorer agreement with experiment than the one obtained using the 

C36 force field (see below). Correcting to the SQM/MM level of theory improves this result 

considerably, although the deviation of ≈ 1.2 kcal/mol from the experimental result remains 

higher than for the SQM/MM corrected result based on C36 (deviation ≈ 0.8 kcal/mol). In 

hindsight, this result is not as surprising as first thought as recent work has clearly shown 

that solvation free energies are very sensitive to differences in (S)QM levels of theory (i.e., 

differences in local intermolecular interactions with waters in the first solvation shell).
22,26,96 Using the IEA, the “corrected” number is close to the one based on C36 and is far off 

the experimental value. Thus, we have two clear cases where the use of the IEA leads to a 

poor result and in one case even makes the MM result worse. The “performance” of the IEA 

here is particularly treacherous, as the results appear well converged (pass all our usual 

convergence criteria). Further, the “corrected” solvation free energy differences obtained 

from the two MM representations agree almost perfectly.

Two aspects of the results merit additional consideration. First, we remind the reader of the 

goal of the GAAMP re-parameterization, which is to make the configurations / 

conformations sampled more high-level like. We already showed that this is the case in Ref. 

61, and this is also reflected by the much lower statistical uncertainty of Δ Acorr
MM SQM /MM,

±0.14 for GAAMP vs. ±0.57 for C36. One should keep in mind the role of the low level in 

indirect (S)QM/MM FES. The purpose of the low level is to act as a bridge, helping to 

generate configurations/conformations which are also meaningful at the desired high level of 

theory.

The second observation worth mentioning is that the two corrected SQM/MM results do not 

fully agree, though, given the rather high statistical uncertainty of the C36 based result, 

stemming from the difficulty to converge the ΔAMM →SQM/MM corrections, the two final 

results are statistically indistinguishable. Further, the GAAMP re-parameterization led to 

changes of some Lennard-Jones parameters. In CHARMM based (S)QM/MM calculations, 

electrostatic interactions between the (S)QM and the MM region are computed based on the 

(S)QM charge distribution; however, the apolar interactions are still calculated using the 

classical Lennard-Jones parameters for the (S)QM region. Since these are different in the 

two parameterization, differences in solvation free energies are to be expected.
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5 Discussion

In this section we address several topics related to the IEA. First, the rationale for its use is 

to avoid the configurational mismatch between the two levels of theory, i.e., the mismatch 

between bond lengths and angles sampled at the MM level of theory, which are “slightly 

wrong” at the desired (S)QM level of theory. Since by definition interaction energies do not 

consider bonded degrees of freedom, this issue and the resulting poor convergence are 

avoided. We note, however, that our results for Ala and Ser (Table 2) suggest that IEA it is 

still susceptible to other sources of poor convergence. In addition, we argued in the Theory 

section that when applied to solvation free energies use of the IEA removes any 

considerations of the gas phase. If, e.g., a solute adopts different conformational states in the 

gas phase and in solution, the resulting free energy contributions are not accounted for.

Curiously, this last issue bears resemblance to a 20+ year old question in classical 

alchemical FES, specifically, whether the so-called “self-terms” or “intra-perturbed group 

interactions” cancel from relative free energy differences.62,63,97 As a reminder, consider the 

thermodynamic cycle used to compute a relative free energy difference of solvation. Along 

the alchemical, horizontal paths, identical changes in intra-molecular interactions occur in 

the gas phase and in aqueous solution. The resulting contributions to the free energy changes 

Δ Agasp
A B and Δ Aaq

A B have been called self-terms (intra-perturbed group interactions). 

However, while, at least in additive force fields, the changes in potential energy are always 

separable, the additivity of interactions is not mirrored by an additivity of free energy 

differences, i.e., in general

Δ Aaq
A B ≠ Δ Agasp

A B + Δ Aaq, inter
A B . (21)

Nevertheless, several free energy codes in wide use 20 years ago excluded or made it 

possible to exclude intramolecular energy terms from the calculations of free energies, 

assuming that Δ Agasp
A B would approximately cancel out of Eq. 21. This approach had the 

added advantage that no gas phase calculations were required. E.g., the alchDecouple 

option of NAMD still makes it possible to exclude self-terms.98 Boresch and Karplus 

investigated this question in detail,62,63 taking into account the underlying differences 

between a single or a dual topology approach to carry out the alchemical transformation.99 It 

was concluded at the time that “the present results indicate that selected terms of the energy 
function might be omitted from the free energy formalism unless single free energy 
differences are required”.63 In particular, it could be derived that contributions from changes 

in stiff, bonded degrees of freedom, i.e., bond stretching and angle bending terms, canceled 

more or less completely from parallel legs of a thermodynamic cycle. For the soft bonded 

terms, dihedral angles etc. the theoretical considerations were less conclusive, though for the 

model systems investigated any errors were negligible. However in a later study focused on 

computing the relative solvation free energy differences between leucine and asparagine, it 

was concluded that “. . . because of the different conformations adopted by the two 
molecules in the gas phase and in solution . . ., the contributions to ΔAgasp and ΔAaq from 
changes in the potential energy function that are identical along the alchemical portions of 
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the thermodynamic cycle (i.e., all intramolecular energy terms of leucine and asparagine 
affected by the alchemical mutation) are not the same”.100 Thus, there is very concrete 

evidence in the context of classical FES that (indirectly) “omitting” different conformational 

preferences in two parallel legs of a thermodynamic cycle can lead to systematic errors.

In MM simulations it is customary to constrain some or all bond lengths through 

SHAKE101,102 or a similar algorithm. Fixing bond lengths (and angles) may, in principle, 

provide a different route to avoid the “configurational mismatch” problem, though it is not 

immediately clear whether constraining internal degrees of freedom is appropriate at 

(S)QM/MM levels of theory. Recently, König and Brooks outlined how to separate 

approximately hard and soft bonded degrees of freedom in (S)QM/MM FES; the low level 

simulations employ SHAKE and the loss of vibrational entropy is accounted for in a post-

processing step.40

It seems appropriate to comment on the relative computational cost of the full indirect cycle 

vs. the use of IEA, as well as provide an overview of available toolchains. First, if inserting 

full energy differences into Zwanzig’s equation led to converged free energy differences, 

then use of the IEA would actually increase the computational cost. In addition to 

recomputing the total energy of the system at the (S)QM/MM level of theory, one has to 

compute the (S)QM energy of the intended high level region in order to extract interaction 

energies. However, in practical terms the overhead is relatively small; extracting interaction 

energies from trajectories is more tedious than costly. Carrying out NEW switching 

simulations is computationally more demanding, though overall there are mitigating factors. 

As already pointed out in Refs. 24,61, the switching simulations are a post-processing step 

and are completely independent; hence, they are trivial to parallelize. Further, we typically 

carry out much fewer switches compared with using Zwanzig’s equation or, in the context of 

the present study, employing the IEA. E.g., the full results for ethane, methanol, Ala and Ser 

(Table 2) were obtained from 10,000 NEW switches, whereas the IEA results were 

computed from 100,000 coordinate sets. The investigation into optimal switching lengths/

protocols, as well as finding criteria how many switches are needed is work in progress. 

Finally, carrying out NEW switches may seem daunting. As described in Methods/SI, we 

employed the MSCALE module of CHARMM,93 with which such calculations can be set up 

in a straightforward manner, though details remain tricky (c.f. 10.5281/zenodo.2328952).103 

Very recently, Wang et al.34 carried out NEW switching simulations using the AMBER 

SQM/MM code.104

One key result of the present study is highlighting that use of the IEA amounts to employing 

a chimeric potential energy function as the high level of theory: interactions between the 

MM and (S)QM/MM regions are modeled at the high level of theory, whereas interactions 

withing the “S(QM)/MM” region continue to be modeled at the low level. The use of 

chimeric potential energy functions in (S)QM/MM is actually not uncommon. Already in the 

1990s Gao worked out (S)QM/MM methods, intended for the calculation of free energy 

profiles along a reaction coordinate, in which the treatment within the (S)QM region itself 

and the treatment of (S)QM/MM interactions could be described at different levels of theory.
105,106 Such dual-level strategies, refined, e.g., by the groups of Moliner and Tuñón,107 are 

essential in several applications of (S)QM/MM methods. A review of such approaches 

Hudson et al. Page 18

J Chem Theory Comput. Author manuscript; available in PMC 2020 August 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



applied to the study of kinetic isotope effects was published recently.108 An important 

difference between these dual-level strategies and IEA, however, is the fact that the former 

employ a higher level of theory for the (S)QM region itself, whereas IEA, as shown in this 

work, employs the low level of theory.

6 Conclusions

The data just presented clearly indicate that the IEA may lead to erroneous results, or, at 

least, to results which deviate systematically from a full correction to a (S)QM/MM level of 

theory. We showed that the use of the IEA corresponds to a ‘chimeric’ potential energy 

function: the interactions within the high level region (in our cases the intramolecular energy 

of the solute) are described at the low level of theory, and only the interactions between the 

high level region of interest and the remainder of the system are computed at the high level 

of theory. If one looks back to the initial use of interaction energies by Wood and co-

workers,54 this is the exact construction of the Hamiltonian they employed. However, in 

recent applications of the IEA this distinction became blurred, and use of interaction energy 

differences rather than differences in total energy was suggested as a means to improve 

convergence.39,49 Our data also show that IEA only mitigates convergence problems, but 

does not resolve them. Based on the theoretical considerations and the results reported here, 

we advise against the IEA.

Overall, the free energy community at large needs to refocus on improving ways to 

rigorously compute indirect free energies as opposed to finding ways to “cut corners” with 

theoretically unjustified approximations. Our own work is based on a two-pronged 

approach: on the one hand, we explore more powerful methods to compute ΔAlow→high, 

such as NEW based techniques.24,61 Recent work by Ryde and co-workers is moving in this 

direction as well.33,34 On the other hand, we are searching for ways to make the low level of 

theory more high level like, as reflected in present work focusing on using force matching as 

a means to reparameterize force-fields to better provide accurate indirect free energy 

calculations. 30,31,109 Additionally, we are very interested in machine learning approaches 

that facilitate more quantum-like treatment of systems at a fraction of the computational 

cost.110–113
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Figure 1. 
Thermodynamic cycle underlying the “indirect” scheme in FES employing (S)QM/MM 

potential energy functions.
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Figure 2. 
Indirect scheme to refine a MM solvation free energy at a QM/MM level of theory.
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Figure 3. 
Detailed thermodynamic cycle to compute the solvation free energy of 2CLE, including an 

overview of the purely classical steps. S denotes the solute, W water.
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Figure 4. 
Thermodynamic cycle used to compute the relative free energy difference of solvation 

Δ Δ Asolv
A B = Δ Asolv

B − Δ Asolv
A = Δ Aaq

A B − Δ Agasp
A B for two solutes X and Y.
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Table 1

Toy problems based on purely classical mechanical force fields. All free energy differences are in kcal/mol.

Ala Ser

full
a

IEA
b

full
a

IEA
b

Δ Agasp
C22, noCMAP C22

-0.57±0.01 -0.82±0.06

Δ Aaq
C22, noCMAP C22

-0.12±0.11 -0.27±0.07

Δ Acorr
C22, noCMAP C22c

0.45±0.11 0.00
d 0.55±0.09 0.00

d

Δ Agasp
C22, noCMAP C36

-0.04±0.01 2.85± 0.10

Δ Aaq
C22, noCMAP C36

0.39±0.07 2.93±0.08

Δ Acorr
C22, noCMAP C36c

0.43±0.07 -9×10–4±0.00 0.08±0.13 -0.18±0.00

a
Corrections ΔAlow→high (low = C22, noCMAP, high = C22 or C36) computed separately in gas phase and in solution, cf. Fig. 2.

b
Correction Δ Aaq, inter

low high
 (low = C22, noCMAP, high = C22 or C36) computed according to the IEA.

c
Eq. 9.

d
Theoretical result — there is no change in interaction energy between C22,noCMAP and C22
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Table 2

Test of IEA in an SQM/MM setting. All free energy differences are in kcal/mol.

Etha Meoh

full
b

IEA
c

full
b

IEA
c

Δ Agasp
C36 DFTB3a -86.49±0.01 -8.64±0.01

Δ Aaq
C36 DFTB3a -86.83±0.01 -6.82±0.01

Δ Δ AC36 DFTB3d   -0.34±0.01 -0.18±0.01 1.82±0.01 1.92±0.01

Ala Ser

Δ Agasp
C36 DFTB3a -46.09±0.04 -27.31±0.17

Δ Aaq
C36 DFTB3a -56.97±0.03 -36.06±0.09

Δ Acorr
C36 DFTB3d -10.88±0.05 -12.79±1.01   -8.75±0.19 -9.98±0.81

a
For better readability, free energies listed in the table are offset by +4, 100 (Meoh), +3, 500 (Etha), +16, 400 (Ala) and +18, 500 kcal/mol (Ser). 

All ’full’ results taken from Tables 2 and 3 of Ref. 61.

b
Corrections ΔAC36→DFTB3 computed separately in gas phase and in solution, cf. Fig. 2.

c
Correction Δ Aaq, inter

C36 DFTB3
 computed according to the IEA.

d
Eq. 9.
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Table 3

IEA compared to full free energy correction (Fig. 2) as applied to the computation of the solvation free energy 

ΔAsolv of bis-2-chloroethylether (2CLE). All free energies in kcal/mol. The experimental solvation free energy 

is –4.23 kcal/mol.95

full
b

IEA
c

Δ Agasp
C36 DFTB3a -27.34±0.20

Δ Aaq
C36 DFTB3a -27.54±0.53

Δ Acorr
C36 DFTB3d   -0.20±0.57 1.73±0.26

Δ Asolv
C36e   -3.26±0.08 -3.26±0.08

Δ Asolv
DFTB3/MMf   -3.46±0.57 -1.53±0.27

Δ Agasp
GAAMP DFTB3a -33.55±0.13

Δ Aaq
GAAMP DFTB3a -35.79±0.04

Δ Acorr
GAAMP DFTB3d   -2.24±0.14 -0.88±0.20

Δ Asolv
GAAMPe   -0.81±0.03 -0.81±0.03

Δ Asolv
DFTB3/MMf   -3.05±0.14 -1.69±0.20

a
For better readability, free energies listed in the table are offset by +12,200 kcal/mol.

b
Corrections ΔAMM→DFTB3 (MM is C36 or GAAMP) computed separately in gas phase and in solution, cf. Fig. 2. Results as reported were 

computed using non-equilibrium work methods, specifically Crook’s equation.

c
Correction Δ Aaq, inter

MM DFTB3
 (MM is C36 or GAAMP) computed according to the IEA; cf. Eq. 4

d
Eq. 9, MM is C36 or GAAMP.

e
Classical solvation free energy for 2CLE computed using the C36 or GAAMP force field parameters for the solute. This corresponds to the 

horizontal arrow at the bottom of Fig 2. For details of the computational protocol see SI.

f
Solvation free energy for 2CLE corrected to the DFTB3/MM level of theory: Δ Asolv

DFTB3/MM = Δ Asolv
MM + Δ Acorr

MM DFTB3, where 

MM is C36 or GAAMP.
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