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Abstract

Bioinformatics-based prediction of protease substrates can help to elucidate regulatory proteolytic 

pathways that control a broad range of biological processes such as apoptosis and blood 

coagulation. The majority of published predictive models are position weight matrices (PWM) 

reflecting specificity of proteases towards target sequence. These models are typically derived 

from experimental data on positions of hydrolyzed peptide bonds and show a reasonable predictive 

power. New emerging techniques that not only register the cleavage position but also measure 

catalytic efficiency of proteolysis are expected to improve the quality of predictions or at least 

substantially reduce the number of tested substrates required for confident predictions. The main 

goal of this study was to develop new prediction models based on such data and to estimate the 

performance of the constructed models. We used data on catalytic efficiency of proteolysis 

measured for eight major human matrix metalloproteinases to construct predictive models of 

protease specificity using a variety of regression analysis techniques. The obtained results suggest 

that efficiency-based (quantitative) models show a comparable performance with conventional 

PWM-based algorithms, while less training data are required. The derived list of candidate 

cleavage sites in human secreted proteins may serve as a starting point for experimental analysis.
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1. Introduction

Regulatory proteolysis, or proteolytic processing, the main topic of this study, is a process of 

activation or deactivation of a target protein substrate via site-specific hydrolysis by a 

specialized regulatory protease. The fidelity of this process is driven by high specificity of 

regulatory proteases [1], which allows them to selectively recognize and process their 

substrates, thus modulating (suppressing or enhancing) functional activity. While large 

amounts of experimental data have been collected [2], the entire spectrum of possibilities 

may not be covered in experiment, and hence it is essential to be able to accurately predict 

plausible proteolytic events for the entire set of human proteases and their cognate substrate. 

Such predictions rely on large data collections, especially those generated by high-

throughput techniques such as phage display, synthetic libraries, and genome-scale 

proteomics [3–8].

The protease specificity toward its cognate substrates is largely driven by the amino acid 

sequence context around the cleaved peptide bond. The positional weighted matrix (PWM) 

[9] is the method of choice for modeling the protease specificity because the binding regions 

of any given protease are usually of the same length (hidden Markov [10] models are more 

appropriate in the case of variable-size regions). A PWM-based model is essentially a table 

with frequencies of occurrence of amino acids in positions around the cleavage site. It is 

typically used for calculating the probability (or some normalized score) of a peptide to be 

cleaved at a particular site. Parameters of the model, i.e. positional frequencies of amino 

acids, are obtained from protease profiling experiments such as phage display or peptide 

libraries [11,12].

Most of these experimental techniques yield qualitative information about proteolytic events. 

Recent and emerging methods enable high-throughput quantitative kinetic assessment [13] 
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delivering both cleavage site positions and proteolytic efficiency for each cleavage site. 

Although a PWM matrix can be constructed from both types of data, in the latter case the 

required number of tested substrates is expected to be much lower. Construction of 

predictive models from qualitative data is relatively straightforward [14], whereas 

bioinformatics methods for building predictive models from the quantitative data have been 

less explored.

Recently, both qualitative and quantitative protease profiling studies had been performed for 

the Matrix metalloproteinase (MMP) family [13]. MMPs are a family of zinc-dependent 

endopeptidases playing a crucial role in tissue remodeling, organ development, regulation of 

inflammation, and various diseases such as rheumatoid arthritis and cancer [15]. Cells 

exports MMPs to the extracellular matrix, where they can potentially act on other secreted 

proteins [16].

Twenty three structurally related MMPs expressed in human share some substrate 

preferences, but at the same time they are distinct by the primary specificity and 

physiological role. Since their discovery in 1962 [17], MMPs have been subject of extensive 

studies, including high-throughput experiments [18,19]. Hence MMPs represent a 

challenging, but interesting and informative case for development and validation of 

computational methods. Previously qualitative data from [13], i.e. the information about 

cleavage site positions, has been used to construct MMP specificity models [20]. Here we 

apply a variety of regression methods to develop MMP specificity models based on 

quantitative data from the same study [13]. The obtained models are compared with each 

other and with prediction models constructed from the qualitative data. This analysis 

demonstrates comparable overall performance of both approaches, proving that the 

quantitative (kinetic) approach is useful, as it provides reasonable predictive efficiency after 

training on a relatively small number of substrates. Finally, we applied the developed 

methods to human secreted proteins.

2. Material and methods

2.1. Quantitative protease-activity profiling data and problem formulation

The catalytic efficiency of proteolytic cleavages on a set of 1363 peptides for eight members 

of the matrix metalloproteinase family, MMP2, MMP9, MMP14, MMP15, MMP16, 

MMP17, MMP24, and MMP25, was taken from ref. [13]. The peptide sequence, proteolytic 

site position, and calculated catalytic efficiency of the proteolytic event for 1363 peptides are 

given in Supplemental File 1. For each cleaved peptide we concatenated the 6-aa variable 

part with the 4-aa constant adapter sequences GGSG (left) and TASG (right) and then 

extracted five amino acids on both sides of the cleavage site. The obtained 10-aa sequences 

were thus aligned by the position of the cleavage site in the middle, yielding multiple 

alignments of the cleaved regions of substrates for eight studied proteases (Supplemental 

File 1).

We formulate the problem as the search for a function f: X; → R; which predicts the 

catalytic efficiency for a given peptide, where X is the space of peptides and R is the set of 

real numbers. To construct this function, we applied regression analysis methods including 
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multiple linear regression, ridge regression, and applied specially designed approaches for 

the dimensionality reduction and the sample size expansion. At that, the catalytic efficiency 

values of proteolytic cleavage obtained in experiment may be considered, in terms of the 

regression analysis, as a response or dependent variable, while the indicator variables 

reflecting the presence of particular amino acids at positions close to the cleaved peptide 

bond serve as predictors, or independent variables. In the linear regression model the 

response variable is the sum of the independent variables multiplied by coefficients 

estimated from the data. The matrix of coefficients obtained after fitting of the model is 

equivalent in size and usage to a PWM obtained from qualitative data (Fig. 1a). This matrix 

can be applied for prediction of the proteolytic efficiency at a given peptide bond.

2.2. Multiple linear and ridge regression

To build a multiple linear regression model, we first assign each peptide with an associated 

K-dimensional vector X of binary variables indicating the presence of each of twenty amino 

acids at a particular position of the peptide relative to the cleavage site. The vector length is 

K = naa × L, where naa is the number of possible amino acids and L is the peptide length. 

The multiple linear regression model is then defined as:

y = β0 + β1x1 + β2x2 + ⋯ + βkxk + ε

where y is the response variable, i.e., in our case, the catalytic efficiency of proteolysis, {xi} 

are independent indicator variables of the presence of amino acids in peptide positions, {βj} 

are regression coefficients, and ε is a normally distributed error. A conventional method for 

estimation of the regression coefficients {βj} is the least squares method (OLS). We have 

used an ad-hoc Java implementation of this method based on the Gauss method of 

covariation matrix inversion.

Linear regression with the Tikhonov regularization (known as the ridge regression), which 

penalizes the sum of the squared regression coefficients, minimizes the following function:

L = ∑i = 1
n yi − ∑ j = 1

k β jxi j
2 + α∑ j = 1

k β j
2

where yi is the cleavage catalytic efficiency of the i-th peptide, xij is the j-th indicator 

variable of the i-th peptide, β j  are the regression coefficients, and α is the regularization 

parameter. An implementation of the ridge regression has been derived from our OLS 

implementation by adding α to all diagonal elements of the covariation matrix.

2.3. Selection of important position around the cleavage site

We applied the Forward Feature Selection (FFS) algorithm [21] to estimate the importance 

of amino acid positions around the cleavage site. For each studied protease, the FFS 

algorithm with linear regression was applied to the dataset of cleaved peptides with 

measured catalytic efficiency of proteolysis. The FFS algorithm is a sequential evaluation of 

the feature fixed-size subsets, which begins with single-variable subsets and ends with the 
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all-variable subset. At the first iteration, the linear regression is applied to all possible single-

variable subsets {x1}, {x2},…{xK}, allowing us to select the best individual variable x(1). At 

the next step we find the best subset consisting of two variables, x(1) and one other feature 

from the remaining K–1 variables. Then, the subsets with three, four and more features are 

evaluated. As our indicator variables reflect amino acids occupying a particular position of 

the peptide, we modified the FFS algorithm in the following way: at each iteration, if any of 

twenty indicator amino acid variables for a particular position had been selected, we 

considered this position as selected entirely, i.e. all twenty indicator variables for that 

position were added to the selected variable set. Totally 80 cycles of the FFS algorithm were 

executed and the probability of selecting a position at particular iteration was calculated. The 

FFS algorithm was implemented in Java without specialized libraries.

2.4. Regression with grouping of rare amino acids

Another known approach of improving the quality of regression models is grouping of rare 

levels of a categorical variable to a single new level. In our case it implies introducing of a 

single indicator variable of a particular position of the peptide that groups indicator variables 

for amino acids that are rare in this position. Let Arare
i  be the subset of amino acids occurring 

at the i-th substrate position with frequencies less than a threshold T:

Arare
i = aa j: f i aa j < T

where aaj is the j-th amino acid out of 20, fi is the frequency at position i. Then the new 

variables, which replace the old variables for rare amino acids, are defined as:

xrare
i =

1, if ∃ j: x j = 1 and x j ∈ Arare
i

0, otherwise

where xj is the j-th indicator variable. Note that the introduced grouping variables are 

position-dependent.

2.5. Amino acid parametrization

Let f(xaa) be a mapping of the amino acid domain into real numbers R:

f : xaa R

Let k be the number of such mappings (k ≤ 20) in the model. Then, the model with amino 

acid parametrization has the following form:

y = ∑
i = 1

n
∑

j = 1

k
αi j f j xi
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where i is a position, j is the mapping number, αi,j is the impact of the j-th mapping at the i-
th position of the peptide, xi is the amino acid at the i-th position of a peptide. Fitting of the 

model on training data implies fitting of the αi,j coefficients, as well as the number of 

mappings k and the mapping itself, i.e. a set of real values defined for each of twenty amino 

acids. The form and the number of mappings have been optimized simultaneously for all 

studied MMPs.

2.6. Regression with addition of presumably uncleaved peptides

As the number of possible peptides strongly exceeds the number of possible proteolysis 

substrates, there is a very low probability to obtain a real protease substrate among randomly 

generated peptides. Thus, it is reasonable to expand the dataset by generating random 

peptide sequences and assigning these peptides with some negligible value of the proteolysis 

catalytic efficiency. A larger training dataset may improve the quality of prediction.

Firstly, we generated a set {U}m of random 10-aa peptides, not intersecting with the cleaved 

peptide set {C}n. Then, we modified the conventional regression loss function to include a 

term responsible for the random peptide set. We defined the loss as zero if the predicted 

cleavage catalytic efficiency was less than all cleavage efficiencies from the set {U}m. 

Otherwise, we calculated the deviation from the minimal value of the cleavage catalytic 

efficiency from {U}m:

L = ∑
i = 1

n
yi − ∑

j

k
βixi j

2
+ ∑

i = 1

m
ymin − ∑

j = 1

k
βixi j

2

where n is the size of the cleaved peptide set, m is the size of the random peptide set, ymin is 

the minimal cleavage catalytic efficiency in the cleaved peptide set {C}n; [x] = x if x < 0, 

otherwise [x] = 0.

2.7. Evaluation of model performance on CutDB dataset

To collect a testing set for the comparison of prediction models, we extracted all proteolytic 

events registered for three studied matrix metalloproteinases, MMP2, MMP9, and MMP14, 

from the CutDB database [22]. We applied the MMP2, MMP9, and MMP14 prediction 

models to peptides from the testing set and calculated the standard metrics of the prediction 

quality, the Receiving Operation Curve (ROC) and the Area Under the ROC curve (AUC).

2.8. Prediction of cleavage sites in human secreted proteins

The list of human secreted proteins was downloaded from the Uniprot [23] database by 

applying the following filter condition: organism=“Homo sapiens”, keyword=“Secreted”. 

All prediction methods developed here were applied to the obtained set of proteins, resulting 

in the cleavage scores calculated by each method for every peptide bond of each protein. The 

obtained predictions are available at http://sector3.iitp.ru/files/

MMPsecretomePredictions.zip. To estimate the prediction reliability, the set of secreted 

proteins was intersected with known MMP substrates from the MEROPS database [24] for 

three out of eight considered MMPs, MMP2, MMP9, and MMP14. These families were 
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selected because they had a sufficiently large number of known proteolytic sites. The 

prediction scores were sorted by decrease for each protein, producing (separately for each 

method) the rank for each peptide bond. Then the ranks Oij of peptide bond i in protein j 
were normalized by the total number Nj of peptide bonds in protein j and inverted so that the 

normalized rank of the highest score in a protein was equal to 1 and that of the lowest score 

was equal to 0:

0i j
norm = 1 − 0i j − 1 / N j − 1 .

The distribution of the normalized ranks of predicted cleavage score was approximated by 

the exponential distribution and the distribution parameter λexp was estimated (the higher is 

the value of this parameter, the stronger is the prediction power of the method).

3. Results

3.1. Estimating the number of important positions around the cleavage site

Prior to building the prediction models, we identified substrate positions around the cleavage 

site that significantly influence the catalytic efficiency of each studied protease. To this end, 

we applied a feature selection approach to independent indicator variables corresponding to 

a large number of positions in both directions from the cleaved peptide bond. We used the 

Forward Feature Selection algorithm (FFS) [21], at each step iteratively selecting a single 

position that, upon addition to the current position set, yielded the best prediction result 

among all remaining positions. At each iteration of the FFS algorithm, we applied linear 

regression and calculated the prediction quality. As seen in Figure 2a, the prediction quality 

improves with addition of new positions until five or six positions have been selected. After 

that the quality of prediction stabilizes or even decreases. In agreement with earlier 

observations [25,26], the P1’ subsite position (in the Schechter–Berger notation [27]) has 

been always selected as the most important one (Figure 2b). The P3 subsite position was 

also selected with 100% frequency at the second iteration and the P1 position dominated at 

the third iteration. At the fourth and fifth iteration, either P2 or P2’ were most frequently 

selected depending on the considered protease. Specifically, at the fourth iteration, the P2 

subsite position was selected most frequently for MMP2, MMP9, MMP14, and MMP16, 

while P2’ was selected for MMP15, MMP17, MMP 24, and MMP25. The P3’ position was 

most frequently selected at the sixth iteration. Other subsite positions, P5, P4, P4’, P5’, were 

selected at iterations 7–10 without any consistent order.

3.2. Performance of regression models is comparable with PWM models of protease 
specificity

Using the optimal set of positions around the cleavage site, we applied a variety of 

regression approaches for building models from the quantitative protease activity data. We 

compared their performance with phage-display derived PWM models built using 

information about the frequencies of occurrence of amino acids around the cleavage 

position. We obtained models of protease specificity for eight matrix metalloproteinases, 

MMP2, MMP9, MMP14, MMP15, MMP16, MMP17, MMP24, and MMP25. The number 
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of peptides in the training set used for construction of the models was 1363 (Supplemental 

File 1). Using proteolytic event data taken from the CutDB database (see Methods), we 

compared the prediction quality of the constructed models with PWM matrices derived from 

the phage-display experiment [20]. (Figure 3,4, Supplemental File 2). As shown in Figure 4, 

although the prediction quality estimated by AUC for the linear regression (LR) model built 

on quantitative date is less than the prediction quality of the phage-display derived PWM 

model (PD), their performance is comparable for MMP2, and slightly smaller for MMP9 

and MMP14: 0.76 versus 0.8 for MMP2, 0.68 versus 0.85 for MMP9 and 0.59 versus 0.75 

for MMP14, respectively.

Application of ridge regression (RR) improved prediction for two out of three tested matrix 

metalloproteinases, MMP2 and MMP9 (Figures 3, Supplemental File 2).

3.3. Dimension reduction

We then attempted to reduce the problem dimension by grouping rare amino acids (LRaa) 

and by applying a newly developed method of amino acids parametrization (DR). Grouping 

of rare amino acids improved prediction for all tested proteases (MMP2, MMP9, MMP14), 

compared to the linear and ridge regression (Figures 3,4, Supplemental File 2). The AUC 

metric calculated for MMP2 was 0.78, which is 2.4% and 2.3% more than that for the linear 

and ridge regression, respectively. Similarly, the AUC calculated for MMP9 was 0.71, which 

is 3.2% and 2.9% more, and the AUC calculated for MMP14 was 0.60, 0.7% and 0.8% more 

than that for the linear and ridge regression, respectively. We also introduced a novel amino 

acids parametrization method, which transforms the input variables into a relatively small set 

of real-valued functions {f(x)} on the amino acid domain (see Methods).These functions 

may be interpreted, for example, as approximations of physicochemical properties of amino 

acids such as hydrophobicity, charge, or size. The number of functions and their definitions, 

together with the weighted impact of the functions at each position of the peptide are derived 

from the training data. At that, while the same set of functions is considered for all positions, 

the weight of a function at a given position may vary, reflecting positional preferences 

towards amino acid properties. Here, we defined these functions as linear and optimized 

their number iteratively increasing it from 1 to 20. The optimal fitted number of functions 

f(x) was six. Figure 3 features the improvement of the prediction quality for the three 

considered proteases. The AUC calculated for MMP2 was 0.82, that is 7.2%, 7%, and 4.6% 

more than for the linear regression, ridge regression, and grouping of rare amino acids, 

respectively. The same value of AUC, 0.82, was obtained for MMP9, which improves the 

prediction performance in comparison with the specified methods by 19.6%, 19.3% and 

15.9%, respectively. The AUC value for MMP14 was 0.71, that is 19.2%, 19.4%, and 18.4% 

more than for the LR, RR, and LRaa methods, respectively.

3.4. Extension of the dataset size with the random peptides increases the predictive 
power of the models

For each of eight protease-specific datasets, in addition to the registered cleaved substrates, 

we generated the same number of random peptides and considered these peptides as if their 

values of cleavage catalytic efficiency were below all values of catalytic efficiency for the 

cleaved peptides (see Methods). We further assigned a quadratic loss penalty to random 
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peptides when their catalytic efficiency values were predicted to be higher than at least one 

of the cleaved peptides. The ROC-curves (Figures 3, Supplemental File 2) for such 

prediction models (PQ) demonstrate better prediction quality compared to all above 

approaches. Hence, the AUC calculated for MMP2 was 0.84, that is 9.7% more than for 

linear regression, 9.6% more than for ridge regression, 7% more than for grouping of rare 

amino acids, and 2.8% more than for parametrization of amino acid. The improvements for 

MMP9 were 0.84, 22.7%, 22.3%, 18.9%, and 2.6%, and for MMP14 they were 0.79, 33.5%, 

33.7%, 32.6%, and 11.7%, respectively.

3.5. Application to human secreted proteins

We applied the prediction models to all human proteins known to be secreted, and estimated 

the prediction quality by comparing the predictions with known proteolytic sites from the 

MEROPS database [24]. A substantial number of secreted substrates in MEROPS was found 

only for MMP2, MMP9, and MMP14, and thus we limited our quality estimation to 

substrates of these three proteases. Figure 4 shows the distribution of normalized ranks of 

predicted cleavage scores for peptide bonds corresponding to known proteolytic cleavages. 

All distributions are shifted to 1, proving that all models have predictive power. The best 

quality of prediction was demonstrated by the PQ method, with λexp being 7.09 for MMP2, 

5.41 for MMP9, and 6.16 for MMP14. The second best predictive power was demonstrated 

by DR (5.15, 4.53 and 6.16, respectively). For LR, RR, and LRaa, the predictive power it is 

approximately the same for all three proteases, with λexp in the range [3.48, 3.64] for 

MMP2, [3.2, 3.3] for MMP9 and [2.49, 2.5] for MMP14 (Supplemental File 2). It is lower 

than that of the PWM method (PD) for MMP2 (5.1), almost the same for MMP14 (2.44), 

and better for MMP9 (2.2).

3.6. Estimation of the minimal required size of the training set

We also identified the minimum number of substrates required for the efficient training of 

the regression models for protease specificity based on the catalytic efficiency by training 

the models on reduced datasets and comparing their performance with the frequency-based 

models trained on the whole set of substrates (PWM models), and also with the position 

weight matrices obtained from the phage-display experimental data [13] (PD models). The 

top performing PQ model was trained using 10%, 20%, …, 90% of the initial data. As 

shown in Figure 5 and Supplemental File 2, the PQ models outperform the PWM model for 

each of the three proteases after inclusion of 30–60% of the training data. For two out of 

three considered proteases, the PQ models based on reduced training sets outperformed the 

PD models constructed with considerably larger numbers of training substrates [13]. Thus, 

we conclude that in practice, training of six-position protease specificity regression models 

requires around 400–800 substrates with measured catalytic efficiency of proteolysis.

4. Discussion

Until recently, protease activity profiling data were largely qualitative, reflecting proteolytic 

events but not proteolytic efficiency. Computational models derived from such data required 

large samples to estimate the frequency of proteolytic sites given amino acid context of 

cleaved bonds. Here, we have used quantitative data providing catalytic efficiency for each 
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proteolytic event. Theoretically, to estimate the impact of all amino acids at each position of 

a peptide of length L, assuming their independency, it is sufficient to have 20×L independent 

measurements of the catalytic efficiency. Therefore, with the quantitative (kinetic) approach 

much less substrates need to be analyzed to construct a prediction model.

Here we demonstrate that linear regression methods can be successfully applied to the 

prediction of protease specificity using quantitative protease-activity profiling data. The 

predictive models constructed in this study for eight MMP enzymes demonstrate comparable 

performance with PWM models derived from larger qualitative data. Three special 

techniques incorporated into the regression methods may improve the predictive quality. 

These methods are dimensionality reduction by grouping of (positionally) rare amino acids 

and by transformation of the input data into a set of real-valued functions on the amino acid 

domain. The third technique, specific for protease-activity profiling studies, implies 

inclusion of random peptides to the training set under assumption that most of them would 

not be cleaved. The latter approach showed the best performance among the methods tested 

in this study. In addition, ridge regression also proved to be useful.

All predictive models constructed in this study are available at Supplemental File 3. 

Currently, dozens of protease specificity prediction models are available from MEROPS [24] 

and other resources [28]. However, these collections do not cover the entire repertoire of 

important regulatory proteases. With advances in modern experimental techniques, new 

quantitative type of data from protease-activity profiling experiments will become widely 

available. Here, we have shown that this type of data could be successfully used for 

construction of protease specificity predictive models using regression methods. These 

models demonstrate comparable or superior performance (depending on the testing dataset) 

to qualitative data-based models while requiring less peptide substrates. The obtained list of 

predicted MMP proteolytic sites, available at http://sector3.iitp.ru/files/

MMPsecretomePredictions.zip, may serve as a starting point for experimental validation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank Andrei Osterman and Jeffrey W. Smith for useful discussions and constructive comments on the 
manuscript. Processing of experimental data was supported by NIH grant 1R01-GM107523. Computational 
analysis was supported by the Russian Foundation for Basic Research (grant 18–29-13011 to M.G.) and RAS under 
program “Molecular and Cellular Biology” (M.K. and G.P.). The publication fees were supported by RFBR under 
the same grant.

Abbreviations:

PWM position weight matrices

MMP matrix metalloproteinases

LR linear regression

LRaa linear regression with grouping of rare amino acids
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RR ridge regression

DR regression with amino acid parametrization

PQ regression with random peptides
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Highlights

• Protease specificity models can be built from quantitative protease profiling 

data

• Regression methods is applicable for the building of such predictive models

• These models perform at least as well as traditional quantitative PWMs

• Significantly smaller number of peptide substrates are required for training 

data
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Figure 1. 
(a) Example of a Position Weight Matrix (PWM) for Matrix metalloproteinase-2 (MMP2). 

Columns represent positions of the peptide in the active-site cleft. Rows show logarithms of 

amino acid frequencies in the active-site positions. The score of a possible proteolytic 

cleavage for a particular peptide bond is calculated as S = ∏i = P3
P3′ f i j, where i is the position, 

j is the amino acid, fij is the logarithm of the frequency of amino acid j in position i. (b) 

Phage-display experimental data provides information only about the position of the 

proteolytic cleavage in the peptide. In contrast, data considered in this study (c) provides 

also the measured catalytic efficiency of the proteolytic event.
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Figure 2. 
(a) Selection of substrate positions around the cleavage site using the FFS algorithm with 

linear regression. (b) Frequency of selection of subsite positions at different iterations of the 

FFS algorithm.
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Figure 3. 
(a) Comparison of the prediction quality of the considered regression methods by ROC 

curves on CutDB proteolytic events. (b) Area Under ROC Curves (AUC) calculated for the 

considered regression methods on the CutDB data. Abbreviations: PD – phage-display 

derived PWM, LR – linear regression, LRaa – linear regression with grouping of rare amino 

acids, RR – ridge regression, DR - regression with amino acid parametrization, PQ – 

regression with random peptides.
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Figure 4. 
Distributions of the normalized ranks of predicted cleavage scores (best is 1, worst is 0) for 

peptide bonds corresponding to known proteolytic sites of MMP2, MMP9, MMP14 for 

human secreted proteins from the MEROPS database. Abbreviations of prediction methods 

as in Figure 3. All distributions were approximated by the geometric distribution and 

parameter pgeom was calculated and shown in plots (higher values of pgeom indicate stronger 

shift of distributions toward 1, i.e. greater prediction power of a method).
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Figure 5. 
Comparison of the prediction quality by the AUC metric (a) and ROC cirves (b) for PQ 

models, constructed using increased fractions of the training data, the position weight matrix 

build based on the whole training set (PWM) and phage-display experiment data derived 

model (PD). Abbreviations PQ and PD as in Figure 3.
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