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Abstract

microRNAs (miRNAs) are recently identified small RNA molecules that regulate gene expression 

and significantly influence the essential cellular processes associated with CNS repair after trauma 

and neuropathological conditions including stroke and neurodegenerative disorders.

A number of specific miRNAs are implicated in regulating the development and propagation of 

CNS injury, as well as its subsequent regeneration. The review focuses on the functions of the 

miRNAs and their role in brain recovery following CNS damage. The article introduces a brief 

description of miRNA biogenesis and mechanisms of miRNA-induced gene suppression, followed 

by an overview of miRNAs involved in the processes associated with CNS repair, including 

neuroprotection, neuronal plasticity and axonal regeneration, vascular reorganization, 

neuroinflammation, and endogenous stem cell activation. Specific emphasis is placed on the role 

of multifunctional miRNA miR-155, as it appears to be involved in multiple neurorestorative 

processes during different CNS pathologies. In association with our own studies on miR-155, I 

introduce a new and unexplored approach to cerebral regeneration: regulation of brain tissue repair 

through a direct modulation of specific miRNA activity. The review concludes with discussion on 

the challenges and the future potential of miRNA-based therapeutic approaches to CNS repair.
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Introduction

CNS regeneration after injury is extremely limited, and spontaneous functional recovery is 

primarily depended upon the intrinsic mechanisms involving neuroprotection, neurogenesis, 

structural remodeling of spared axons and dendrites, and consolidation of compensatory 

neuronal circuits within the damaged tissue. These mechanisms involve significant changes 

in gene and protein expression and activation of complex molecular pathways recruited by 
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CNS for survival. Among the actively involved molecules recently identified are short RNAs 

called MicroRNAs (miRNAs). miRNAs, constituting a substantial class of small non-coding 

RNAs, are characterized by short length (~22 nucleotides) and an extensive potential to 

suppress protein-coding genes in eukaryotes [1–3]. The discovery of miRNAs, in 1993, 

introduced a new role of short non-coding RNAs as regulatory molecules and considerably 

redefined the understanding of post-transcriptional gene regulation [4,5]. After more than 20 

years of the extensive investigation, it is now postulated that miRNAs, assembled in the 

regulatory protein complexes, recognize and bind the complementary sequences of the 

messenger RNA (mRNA) and alter protein translation and synthesis, as well trigger mRNA 

destabilization and degradation. Most mammalian genes and more than 60% of human 

protein-coding genes are believed to be controlled by miRNAs [6]. New animal and plant 

microRNAs have been identified, and a stunning number and variety of these molecules 

demonstrate their widespread, prevalent, and important regulatory role. Recently, in addition 

to 1,900 of the previously known sequences, 3,707 novel mature miRNAs have been 

identified in 13 different human tissue types [7]. A detailed atlas of miRNA distribution in 

different human tissues presented the expression profiles of at least 1,300 widely distributed 

and tissue-specific human miRNAs [8].

microRNA Biogenesis

While initially discovered in the intergenic regions, miRNAs are also derived from intronic 

or exonic gene sequences. The microRNAs are transcribed in the nucleus, and their nuclear 

processing is regulated by RNAse III Drosha and its co-factor DGCR8/Pasha. The miRNA 

precursor is exported into the cytoplasm by Exportin 5, while further modification/

maturation is mediated by an endoribonuclease Dicer. A small RNA duplex generated by 

Dicer associates with the Argonaut family proteins (AGO) which form a so-called RNA-

induced silencing complex (RISC or miRISC) [9,10,2]. The unwinding of the AGO-loaded 

duplex and the generation of single-stranded mature miRNA are now believed to occur 

concomitantly with the RISC effector complex assembly [11,12]. The mechanism of RISC 

assembly and its exact composition are still being investigated. RISC is believed to be first 

assembled by AGO proteins, and to contain miRNA-loaded AGO bound to a glycine-

tryptophan repeat-containing protein GW182. During the mRNA silencing, miRNA serves 

as a guide to target a complimentary mRNA, while miRNA-guided RISC effector protein 

complex mediates translational repression and/or mRNA degradation (Figure 1). The 

miRNA-mRNA targeting is governed by base pairing and occurs predominantly at the 3’ 

untranslated region (3’ UTR) of the target mRNA. A miRNA “seed region” (domain 

between the nucleotides 2 −7 at the 5ʹ end) is required for miRNA-mRNA interaction 

[1,13].

While the majority of miRNAs are generated via canonical pathway, several alternative 

biogenesis mechanisms are identified. Some unconventional miRNAs can be produced via 

non-canonical pathways through the nuclear microprocessing by Drosha or cytoplasmic 

processing by Dicer [14–16]. While the existence of non-canonical pathways exposes the 

complexity of miRNA biogenesis, the majority of functional miRNAs are generated via the 

conventional pathway. miRNA biogenesis and miRNA/RISC-induced silencing of the target 

mRNA is tightly regulated both on transcriptional and post-transcriptional levels. Among the 
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regulators of miRNA functions are transcription factors such as MYC, p53, ZEB1 and 

ZEB2; epigenetic factors DNMT1 and DNMT2; RNA-binding proteins; SR proteins; 

heterogeneous nuclear ribonucleoproteins (hnRNPs); and other factors involved in RNA 

splicing [17].

miRNA biogenesis is described in detail in a number of reviews [1,9,18,13]. At present, 

miRNAs are regarded as “master regulators” of gene expression, and “grand managers” of 

numerous cellular processes, including cell growth, differentiation, maturation, proliferation, 

migration, interaction with other cells and extracellular components, metabolism, and 

apoptosis. Therefore, an increasing number of miRNAs are associated with different 

diseases and pathological conditions [19,1,20].

miRNAs and CNS damage

miRNAs have been found to play an important role during CNS development and they are 

abundantly expressed in adult human and rodent brain[21–23,7] and spinal cord [24,8]. CNS 

damage is accompanied by a significant dysregulation in miRNA expression profiles in the 

affected tissue, peripheral blood, and cerebrospinal fluid. Many research findings detected 

significant changes in microRNA profiles associated with TBI [25–28], stroke [29,30], 

epilepsy [31,32], Parkinson’s disease [33,34], Alzheimer’s disease [35,36], and spinal cord 

injury (SCI) [24,37]. These changes reflect concomitantly occurring injury and self-repair 

processes, which complicates the interpretation of the obtained data. Therefore, the most 

important and complicated task for understanding of the function of a specific miRNA is to 

distinguish whether these various and multiple changes in miRNA expression are harmful or 

beneficial for the regeneration and repair processes.

Recent findings have identified miRNAs’ novel role as the mediators of intracellular 

communication. Apart from direct intercellular interactions, crosstalk between neurons, 

astrocytes, microglia and endothelial cells involves indirect intercellular communication via 

small extracellular vesicles (EV) secreted by a cell and internalized by its neighboring cells. 

While various miRNAs can freely circulate in blood and cerebrospinal fluid, a large portion 

of them is transported as cargo within different types of lipid vesicles [38–40]. Along with 

proteins, lipids, and different RNA species, miRNAs represent a substantial component of 

the EV cargo molecules. Among the diverse secreted vesicle population are exosomes, small 

(30–200 nm) lipid bilayer enclosed vesicles, which recently have been implicated as the 

major mediators of intercellular microRNA delivery. Secretion of exosomes and their 

miRNA composition is significantly altered during CNS damage and repair processes 

[41,42].

miRNA functional analysis is performed to identify genes and processes regulated by 

specific miRNAs. These studies are based on gain- and loss-of-function experiments 

utilizing the inhibition or overexpression of miRNAs with specific synthetic inhibitor 

(antagomirs) or mimic (agomirs) oligonucleotides. While most of the miRNA research is 

based on in vitro experiments, systemic or local administration of the miRNA inhibitors and 

mimics are utilized to explore the miRNA function in various experimental animal models. 

In this review, we will focus on the microRNAs, which, based on the functional studies, are 
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thought to have a profound positive or negative effect on regeneration in the animal models 

of CNS injury.

The processes and events accompanying CNS regeneration

The subacute phase of CNS injury is accompanied by the active spontaneous recovery 

process, triggering neuronal plasticity, axonal regeneration, post-injury angiogenesis and 

vasculogenesis, and neuroinflammation as an integral part of both damage and recovery 

processes. In addition, CNS damage results in a neurogenic response and a massive 

migration of neural progenitors into the lesion area, which may substantially contribute to 

recovery and repair processes [43,44]. All these events are associated with significant 

changes in gene and protein expression, and are thus broadly regulated by microRNAs. 

Some excellent reviews describe the involvement of miRNAs in acute and chronic CNS 

injury and neurodegenerative disorders, accompanied by neuronal and axonal injury, cell 

apoptosis, vascular damage, aberrant gliosis, and demyelination [45–47]. This review will 

focus mostly on regeneration, and will describe the miRNAs, which were experimentally 

proven to have a significant impact on each of the different components of recovery in the 

animal models of CNS injury.

Neuroprotection

Various microRNAs have been identified as critical regulators of cell survival following 

CNS injury. They control the levels of various target genes and signaling proteins, which are 

important for CNS tissue preservation and recovery. These microRNAs control signaling 

cascades involved in CNS cell survival and apoptosis; among them are components of 

hypoxia inducible factor −1α (HIF-1 α), mitogen activated protein (MAP) kinase, 

mammalian target of rapamycin (mTOR), transforming growth factor (TGF-β), Wnt, Notch, 

and p53 signaling pathways. Recently, the excellent reviews summarized the list of 

microRNAs, which are up- or down-regulated during the repair process and exerting either 

protective or damaging effects [48–50]. Based on the recent findings, Table 1 demonstrates 

some of the regulatory microRNAs and the associated experimentally verified direct target 

proteins underlying miRNA-based neuroprotection in animal models of CNS injury.

Neuronal plasticity and axonal regeneration

Neuronal plasticity, an intrinsic mechanism by which the CNS responds to the environment, 

is considerably activated after the injury and is directed toward post-damage survival. In 

both the brain and spinal cord, a reparative process based on neuronal plasticity includes the 

repair of damaged neuronal connections, and consists of different stages, such as clearance 

of debris, axonal sprouting, and formation of new functional synapses [72,73]. These events 

mainly take place in the peri-infarct or peri-impact area, however more distal (to the injury) 

portions of the CNS also undergo neuroanatomical changes, and thus contribute to the 

adaptation and compensation of impaired function. Axonal regeneration depends on the 

activity of different intrinsic and extrinsic factors that either inhibit or promote neuronal 

plasticity. The regeneration process is significantly impeded by multiple processes 

accompanying a sub-acute phase of injury, including generation of free radicals, ongoing 

demyelination, neuronal death, delayed cell death, activation of astrocytes and 
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oligodendrocytes, formation of the barrier for the axonal sprouting, and a direct inhibition of 

neurite outgrowth [72,74]. Among the molecules, which inhibit post-injury plasticity are 

chondroitin sulphate proteoglycans and NogoA, while Inosine, Activin and other members 

of TGF-β family exert a neuroprotective effect and support neurite growth and axonal 

regeneration [72,75]. Many of these significant molecular pathways are believed to be also 

regulated by microRNAs [76–78]. In vivo experimental manipulation of the expression 

levels of several miRNAs has been proven beneficial for neurite outgrowth and axonal 

regeneration in the animal models of CNS injury. Among these microRNAs and their 

experimentally verified targets (shown in parenthesis), are: MicroRNA-431(Kremen1) [79]; 

miR-210 (EFNA3) [80]; miR-182 (BCAT2) [81]; miR-34a (synaptotagmin-1 SYT-1 and 

CTX1A) [82]; miR-127 (mitoNEET) [83]; miR-21 (PDCD4) [84]; and miR-320 (ARPP-1) 

[85].

Vascular reorganization

Significant vascular disfunction is associated with CNS trauma, stroke, and 

neurodegenerative disorders, including mild cognitive impairment and dementia, 

Alzheimer’s disease, arteriolosclerosis and cerebral amyloid angiopathy (small vessel 

disease), Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, multiple 

sclerosis, and chronic traumatic encephalopathy [86,87]. Primary and secondary CNS 

injuries are associated with significant endothelial cell damage, which leads to destruction of 

microvasculature and development of hemorrhagic and ischemic states. Vascular injury and 

disfunction are followed by significant impairment and loss of the brain and spinal cord 

tissue [88,89]. Spontaneous regeneration processes involves post-injury angiogenesis and 

vasculogenesis [90,91]. The number of specific miRNAs is implicated in regulating 

endothelial morphogenesis and vascularization [92,93]. Vascular morphogenesis is a 

complex process that involves an intricate interplay between multiple cell signaling 

pathways. Formation of new capillaries includes endothelial cell morphogenesis, and 

subsequent maturation of intercellular junctions and the surrounding basement membrane. 

These stages are influenced by the number of signaling proteins, including VEGF, Notch, 

and TGF-β [94,95]. There are a number of miRNAs that are linked to the endothelial cell 

morphogenesis [96] in general, and particularly, in post-injury vascular remodeling [97,98]. 

In addition to the vascular reorganization, microRNAs regulate endothelial tight junctions, 

and thus, significantly influence the integrity and permeability of the blood brain barrier 

(BBB) and the blood-spinal cord barrier (BSCB). A significant number of microRNAs wave 

been implicated in regulating the endothelial barrier function through alteration of the 

expression levels and functions of the endothelial tight junction and the adherens junction 

proteins, including claudins, occludin, zonula occludens protein family (ZO-1,−2 and-3), 

VE-cadherin, and their regulatory signaling molecules [99–102]. Several regulatory 

microRNAs and their experimentally verified targets have been identified as the mediators of 

different molecular pathways involved in endothelial integrity and vascular remodeling in 

the animal models of CNS injury. Among them are miR-320a (AQP1) [102]; miR-363 

(Timp-1 and THBS3) [103]; miR-150 (VEGF) [104]; and miR-155 (Annexin-2, claudin-1, 

DOCK-1, Rheb) [105,106].
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Neuroinflammation

Post-injury inflammatory response represents an integral part of the injury, defense response, 

and recovery after CNS trauma, hypoxia, infection, and neurodegeneration. 

Neuroinflammation is associated with the elevation of cytokines; recruitment of neutrophils, 

lymphocytes, and monocytes; and activation of resident microglia, astrocytes, and 

endothelial cells. The cellular inflammatory response leads to the additional release of 

cytokines/chemokines and other pro-inflammatory factors [107,108]. While it is known that 

lower levels of pro-inflammatory cytokines and higher expression of anti-inflammatory 

cytokines are associated with a better clinical outcome, it is also accepted that inflammation-

associated events play an active role in tissue remodeling and recovery. Among different 

factors triggered by the “injury” signals from the damaged CNS tissue are cytokines such as 

interleukins −1, −6, −4, −10 (IL-1α and IL-1β, IL-6, IL-4, IL-10) released within minutes 

after the insult, tumor necrosis factor-α (TNFα), interferon-γ (IFNγ), nitric oxide (NO), 

and cyclooxygenase-2 (COX-2) [109–111]. All these factors are context-dependent, and, at 

different times during the inflammation, exert either pro- or anti-inflammatory functions. 

Cytokine signaling is mediated via essential signaling pathways including JAK/STAT 

pathway, and negatively regulated by a number of molecules, such as SHIP-1, and SOCS 

family proteins. microRNAs are now known to be actively involved in every aspect of 

neuroinflammation, including the dynamic changes in cellular response and cytokine 

release/signaling, monocyte recruitment and infiltration, the interaction between different 

types of resident and infiltrated cells, and the de-activation and resolution of 

neuroinflammation. Based on these multiple regulatory functions, it is evident that miRNAs 

have an essential influence on both innate and adaptive immune responses. Increasing 

evidence supports the involvement of miRNAs as key regulators of neuroinflammation 

associated with various CNS pathologies [112–114]. Table 2 summarizes the list of 

regulatory microRNAs and their targets, which, after the interventional changes in their 

expression (inhibition or overexpression), modulate neuroinflammation and recovery in the 

animal models of CNS injury.

Endogenous stem cell activation

In the adult mammalian brain, neural stem/progenitor cells (NSPCs) are primarily restricted 

to the subventricular zone of the lateral ventricles and subgranular zone of the dentate gyrus, 

and, in low numbers, in septum, striatum, and cortex. NSPCs have been identified in the 

spinal cord (the ependymal cell layer lining the central canal), optic nerve, and retina, where 

neurogenesis persists throughout adulthood [121–123]. The external signals and intracellular 

mechanisms that control NSPC generation, function and behavior following injury have 

been studied intensely, and various aspect of neuronal replacement and cell-based therapy 

have been introduced. In this review, we focus on the contribution of the endogenous neural 

stem cells to repair mechanisms, and the possible regulation of this process by microRNAs.

Neurogenesis—It is well established that oxygen is an important signal in all major 

aspects of stem cell biology. In vivo studies utilizing experimental models of ischemia 

showed that NSPCs strongly respond to hypoxia by massive proliferation and migration 

towards the stroke-induced brain lesion [43] indicating the importance of the NSPCs in the 

adaptation and possible recovery following acute brain damage or prolonged pathological 
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conditions. Functional recovery from TBI is accompanied by active neurogenesis primarily 

in the hippocampal dentate gyrus [124–126]. In the spinal cord, neurogenesis occurs in 

response to specific kinds of spinal injury, including dorsal root lesion, compression, 

contusion, or dorsal funiculus incision [127–130].

Activation, proliferation, and differentiation of NPSCs in specific regions of the CNS are 

accompanied by significant changes in gene and protein profiles, which together lead to the 

upregulation of pro-neurogenic cell signaling cascades. Recent findings demonstrate that 

miRNAs specifically regulate neurogenesis, including the proliferation, migration, cell fate 

determination, and differentiation of various stem cell populations during CNS development 

and injury [131–134]. Most of these studies have been executed using neural stem/

progenitor cells in vitro. Several studies utilizing the in vivo inhibition or overexpression 

approaches, identified the miRNAs and their direct targets that are actively involved in the 

endogenous stem cell activation in the animal models of CNS injury. It has been 

demonstrated that miR-7 overexpression resulting in suppression of its direct target NLRP3, 

supports SVZ neurogenesis in the animal model of Parkinson’s disease [135]. In the animal 

models of stroke, overexpression of miR-124a supports neurogenesis by directly targeting 

JAG1 protein [136], and miR-17–92 cluster mediates neural progenitor cell proliferation via 

its target protein PTEN [137].

Oligodendrogenesis—A small portion of SVZ neural progenitors produces 

oligodendrocyte progenitor cells (OPCs), which migrate into the white matter and cortex 

[138]. Loss of oligodendrocytes and demyelination associated with CNS damage are 

accompanied by active oligodendrogenesis, spontaneous remyelination, and myelination of 

new sprouting axons [139–141]. These processes are associated with the activation of 

parenchymal and SVZ-derived oligodendrocyte progenitor cells, and their migration toward 

the lesion [142–145]. It has been demonstrated that following CNS damage induced by 

stroke, OPCs migrate out of the SVZ and differentiate into myelin forming oligodendrocytes 

[146,140]. The number of OPCs significantly increases after TBI and spinal cord injury, 

which could contribute to the repair process by improving white matter function [147–150]. 

miRNAs have been identified as key regulators of oligodendrocyte functions, myelination, 

and OPCs generation and differentiation [151,140,152]. Functional in vivo studies have 

identified that increased expression of miR-146a promotes stroke-induced 

oligodendrogenesis [153], while overexpression of miR-219 after LPC-induced 

demyelination supports OPC maturation and regeneration processes in mice [154]. 

Transgenic mice with overexpressed miR-23a in oligodendrocytes demonstrated enhanced 

oligodendrocyte differentiation and myelination of CNS axons [155].

Multifunctional miRNA miR-155

Several miRNAs have been directly associated with different types of CNS pathologies. 

Among them is miR-155, a multifunctional and broadly conserved miRNA implicated in 

regulating various physiological and pathological processes. MiR-155 is processed from an 

exon of a noncoding RNA transcribed from the B-cell Integration Cluster (BIC) located on 

chromosome 21. BIC shows strong sequence homology among human, mouse, and chicken, 

implying an evolutionary conserved function [156–158]. miR-155 is specifically expressed 
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in hematopoietic cells and cells involved in vascular remodeling [159,160]. In the brain 

tissue, the expression of miR-155 has been detected in the cerebrovascular endothelium, 

astrocytes, and microglia [158,161,162]. Apart from being regarded as a major pro-

tumorigenic and pro-inflammatory miRNA, this miRNA is implicated in regulating 

hematopoietic lineage differentiation, endothelial and vascular function, and the progression 

of cardiovascular diseases [156,157,163]. Silencing of this miRNA is accompanied by 

reduced inflammation and improved regeneration processes [164–166].

Stroke-associated ischemic damage involves blood-brain barrier dysfunction, microvascular 

injury; post-ischemic inflammation; and, ultimately, the death of neurons, glia, and 

endothelial cells, which directly contributes to cerebral tissue damage and neuronal death 

[167,88,168]. miR-155 is involved in the progression of multiple CNS disorders and 

pathological conditions. Its increased expression is associated with poor prognosis in 

patients with amyotrophic lateral sclerosis [169], epilepsy [170], multiple sclerosis [171], 

and brain tumor [172,173]. miR-155 upregulation was detected in the animal model of 

stroke, while miR-155 inhibition supported post-stroke recovery [63,106]. Cerebral ischemia 

induces a cascade of biological events involving activation and upregulation of specific 

genes and cell signaling pathways, which is an essential component of post-stroke recovery. 

miR-155 and its target genes and proteins might play a significant role in the regeneration 

after stroke. Among predicted and experimentally identified miR-155 targets, with possible 

effect on stroke progression and outcome, are Rheb, Rictor, SMAD-5, SOCS-1, SHIP-1, and 

C/EBP-β [174,106,175,176]. In addition, it has been demonstrated that major TJ protein 

claudin-1 is a direct target of human miR-155 [105,177]. As the essential components of the 

mTOR, TGF-β/BMP, NO, PI3K/Akt, and JAK/STAT signaling pathways, these molecules 

broadly influence vascular function, neuroinflammation, and brain tissue remodeling.

Effect of systemic miR-155 inhibition after the experimental cerebral ischemia

Effect on cerebral vasculature—The in vitro studies identified miR-155 as a potential 

regulator of the endothelial morphogenesis: specific miR-155 antisense inhibitors supported 

capillary-like tube formation by the mouse brain endothelial cells [174]. Further experiments 

revealed that miR-155 inhibition improved HBMEC monolayer integrity and barrier 

function after oxygen glucose deprivation (OGD). In addition, miR-155 inhibition 

significantly increased the levels of major endothelial tight junction (TJ) proteins claudin-1 

and ZO-1. Based on the detected association between ZO-1 and claudin-1 and their 

stabilization at the endothelial membrane, it was concluded that miR-155 inhibition 

strengthens the endothelial TJs after the OGD via stabilization of its direct target protein 

claudin-1.

Intravenous injections of a specific anti-miR-155 inhibitor, initiated at 48 hours after mouse 

distal middle cerebral artery occlusion (dMCAO), lead to a significant improvement of 

cerebrovascular functions, which reflected a significant enhancement of blood flow in the 

peri-infarct area, improvement of vascular integrity, and preservation of the capillary TJs.

Effect on brain damage and post-stroke neuroinflammation—An assessment of 

the brain tissue damage using MRI and electron microscopy (EM) demonstrated that at three 
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weeks after stroke there was a significant (34%) reduction of the infarct size and a 

significant decrease in neuronal damage in miR-155 inhibitor-injected animals, as compared 

to the control group. miR-155 inhibition after dMCAO significantly altered the time course 

and the expression levels of the major cytokines (including IL-10, IL-4, IL-6, MIP-1α, IL-5, 

and IL-17) as well as considerably modified the microglia/macrophage phenotype in the 

peri-infarct area of stroke. Electron microscopy-based quantification detected a decreased 

number of phagocytically active peri-vascular microglia/macrophages in these animals 

[175].

Effect on the overall post-stroke recovery—Assessment of sensorimotor deficits 

(bilateral asymmetry/adhesive removal test) and gait/locomotion recovery (CatWalk system), 

as well as the weight-gain evaluation, indicated that the inhibitor-injected animals regained 

their sensorimotor deficits and recovered faster than controls [106]. Experiments utilizing 

miR-155 inhibition in the rat model of cerebral ischemia also demonstrated the efficacy of 

anti-miR-155 treatment in rats [63].

Molecular mechanisms of miR-155 inhibition-induced support of post-stroke 
recovery—Based on all of the findings described above, it is possible to conclude that 

miR-155 inhibition has a beneficial effect on the regeneration after stroke. Systemic 

inhibition of miR-155 following the experimental cerebral ischemia supports cerebral 

microvasculature and improves cerebral blood supply to the peri-infarct area of stroke. 

These improvements are achieved via direct preservation of TJ integrity and suppression of 

early stage post-stroke inflammation. This recovery mechanism is facilitated by: 1) the 

initial preservation of vascular integrity, which prevents the propagation of the ischemic 

damage into the peri-infarct area; 2) the activation of IL-10-mediated neuroprotective 

mechanisms; and 3) transition from harmful phenotype toward the neuroprotective and 

reparative microglia/macrophage phenotype. All these support mechanisms could be 

mediated via the activation of miR-155 direct target proteins, including Rheb, SMAD-1, 

SMAD-2, SMAD-5, Rictor, eNOS, SOCS-1, SHIP-1, and C/EBP-β (Figure 2).

miRNAs as the markers and therapeutic targets for CNS regeneration

The expression profiles of the miRNAs circulating in cerebrospinal fluid and blood reflect 

the molecular pathophysiology associated with CNS damage, thus making them promising 

biomarkers in diagnosis and prognosis of CNS trauma, diseases, and pathological 

conditions. There is an intensive search for the biomarkers of CNS damage focused on 

miRNA expression changes in blood, CSF, and saliva. The results are however characterized 

by significant variations, as they critically depend on methodology, timing of sample 

collection, and the disease form and stage (acute, subacute, chronic, etc.). To avoid these 

variable factors, the standardized protocols for circulating miRNA are needed for future 

studies [178]. Among the wide range of identified miRNAs, some are now considered as 

biomarkers for severity and prognosis for patients with Parkinson’s disease (miR-30b, 

miR-30c, miR-26a, miR-133b, and miR-126 [179,180]), acute ischemic stroke (let-7b, 

miR-16, miR-21, miR-106b, miR-320d, and miR-1246 [181]), Alzheimer’s disease 

(miR-29b-1, miR-29a, and miR-9 [182], spinal cord injury (miR-21, miR-133b, miR-9–3p, 

miR-219, miR-384–5p, mir-204–5p, mir-519d-3p, mir-20b-5p, and mir-6838–5p, 
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[183,184]), and TBI (miR-1255b, miR-151–5p, miR-194, miR-195, miR-199a-3p, miR-20a, 

and miR-27a among others [185]). Please see the complete lists of miRNAs considered 

potentially to be used as biomarkers of CNS aberrations in previously published reviews 

[178],[186],[187].

As the changes in miRNA profiles strongly correlate with different CNS pathologies, a 

number of these small RNAs are considered to be used for targeted therapeutic approaches 

to enhance the regeneration processes in the future. Several miRNA-based therapies, 

focusing on targeted inhibition of specific miRNAs, have been recently introduced and 

supported by the leading RNA-therapeutic companies [188]. While several of these 

investigations remain in the pre-clinical stage, some of them, involving miR-122 inhibitor 

miravirsen or miR-34a inhibitor MRX34, have already entered into a phase II clinical trial 

for hepatitis C, and a phase I clinical study for cancer treatments, respectively. The studies 

demonstrate a substantial, prolonged, and highly specific decrease in plasma miR-122 levels 

in patients receiving subcutaneous injections of miravirsen [189]. MRX34 treatment 

demonstrated an acceptable safety and antitumor activity in patients with solid tumors [190]. 

Antagomir-based therapeutics have been potentially indicated for various human diseases 

and pathological conditions, including kidney disease (targeting miR-21), diabetes/obesity 

(using anti-miR-208), erythrocyte deficiency (anti-miR-451), and myocardial infarction 

(anti-miR-15) [188]. Despite the intense interest in the innovative miRNA targeting 

therapies, there are currently no trials related to CNS damage and repair. However, the 

emerging role of miRNAs as therapeutic agents for treatment of CNS pathologies has been 

proposed by numerous researchers and summarized in several recent reviews [191,178].

One of the major challenges of miRNA-based therapy is to achieve specific, safe, and 

efficient modulation of miRNAs. While the oral administration of miRNA inhibitors (or 

mimics) is inefficient, subcutaneous and intravenous delivery of oligonucleotides is also 

problematic because of their instability and limited bioavailability. Therefore, lipid-based 

delivery vehicles, viral vectors, nanoparticle-conjugated oligonucleotides, and biodegradable 

polymers are utilized for the introduction of synthetic miRNA inhibitors and mimics. 

Recently developed locked nucleic acid (LNA)-based technology greatly increased the 

pharmacokinetic properties of the miRNA inhibitors/mimics, improved their resistance to 

enzymatic degradation, and minimized off-target effects. As a future development, miRNA-

based technology is expected to establish more sophisticated delivery systems targeting 

specific cells in human organisms. One of the novel approaches in miRNA-based therapy 

involves the exosome-mediated delivery of specific functional miRNAs. It has been 

proposed that administration of specific miRNA-enriched exosomes could be used as a 

therapy for stroke, TBI and other CNS pathologies [192–194]. Among the miRNAs involved 

in the beneficial effect of treatment with mesenchymal stromal cell-derived exosomes, are 

miR-133b and miR-17–92 cluster [195–197].

Besides the direct inhibition/overexpression of miRNAs using synthetic oligonucleotides or 

miRNA-enriched exosomes, a different approach could be pursued focusing on certain 

known drugs with a modulatory effect on certain miRNAs. In addition to the earlier 

described pharmaceutical compounds [178], several more drugs have demonstrated a strong 

and prolonged effect on specific miRNA expression in damaged CNS. Among them are: 
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acetylbritannilactone (suppresses miR-155 expression), which reduces neuroinflammation 

after ischemia in mice [198]; resolvin D1 (targets miR-146b and miR-219a), which 

promotes recovery after the focal brain damage in rats [199]; dexmedetomidine (suppresses 

miR-124, −132, −134, and −155 [200]) and hesperidin (upregulates miR-132 [201]), which 

reduce neuroinflammation in LPS-treated rat brain; arctigenin (upregulates miR-16 and 

miR-199a), which provides neuroprotection against mechanical trauma injury in human 

neural cells [202]; amikacin (inhibits miR-497 maturation), which provides neuroprotection 

after the in vitro ischemia [203]; calycosin (upregulates miR-375) with a protective effect 

following ischemia/reperfusion in rats [204]; and finally, lithium, which was found to 

promote miR-124 expression and have a neuroprotective effect in the mouse model of stroke 

[205]. In addition, a number of natural agents have been found to have a strong modulatory 

effect on miRNAs. Interestingly, miR-155 is suppressed by turmeric, a polyphenolic 

compound derived from the dietary spice turmeric, known to have anti-inflammatory and 

anti-tumorigenic properties [206]. Natural compounds, including resveratrol, genistein, 

epigallocatechin-3-gallate, indole-3-carbinol, and other agents regulating miRNA expression 

are discussed in detail in recently published reviews [207,208].

Conclusion

Dysregulated miRNA functions following CNS damage have profound effects on their target 

genes, which are involved in both the progression of the CNS injury and the subsequent 

recovery process. Numerous studies have identified a number of miRNAs and their target 

genes, which are involved in the CNS repair process, promoting neuroprotection, 

neurogenesis, axon regeneration, neuronal plasticity, angiogenesis, and vasculogenesis. The 

associated changes in miRNA profiles provide evidence that many of them could be 

considered as markers for CNS damage and/or repair, and that their modulation could be 

beneficial for recovery. Thus, miRNAs represent an important class of molecules, which 

offer an understanding of CNS damage and repair, and represent the ideal biomarkers for 

diagnosis and prognosis. Most importantly, a targeted modulation of specific miRNA 

expression has promising potential as a strategy for treatment of CNS injuries. Despite the 

current challenges, miRNA-based therapy is expected to become an effective and innovative 

pharmaceutical approach in the future.

Funding

This work was supported by the National Institute of Neurological Disorders and Stroke -NIH R01NS082225 grant.

Abbreviations:

NogoA neurite outgrowth inhibitor

TGF-β Transforming growth factor beta

VEGF vascular endothelial growth factor

VE-cadherin vascular endothelial cadherin

TBI traumatic brain injury

Roitbak Page 11

Neurochem Res. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rheb Ras homolog enriched in brain

mTOR mammalian target of rapamycin

Rictor Rapamycin-insensitive companion of mammalian target of 

rapamycin

C/EBP-β CCAAT/enhancer-binding protein beta

BMP Bone morphogenetic protein

NO nitric oxide

JAK Janus kinase

STAT signal transducers and activators of transcription

SOCS suppressor of cytokine signaling

SHIP Src homology 2 (SH2) domain-containing protein-tyrosine 

phosphatase

LPS Lipopolysaccharide
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Figure 1: Canonical pathway of miRNA biogenesis.
The microRNAs are transcribed in the nucleus, the miRNA precursor is exported into the 

cytoplasm, and further modification/maturation is mediated by an endoribonuclease Dicer. A 

small RNA duplex generated by Dicer associates with the Argonaut family proteins (AGO) 

which form a so-called RNA-induced silencing complex (miRISC). RISC effector complex 

assembly involves the unwinding of the AGO-loaded duplex and generation of single-

stranded mature miRNA. During the mRNA silencing, miRNA serves as a guide to target a 

complimentary mRNA, while miRNA-guided RISC effector protein complex mediates 

translational repression and/or mRNA degradation.
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Figure 2: Possible molecular mechanisms mediating functional recovery supported by in vivo 
miR-155 inhibition after stroke.
miR-155 inhibition results in the increased expression of miR-155 target proteins SMAD-1 

and SMAD5 (components of BMP signaling pathway), Rictor (mTOR pathway), eNOS (NO 

pathway), Rheb (activates Akt/ZO-1 pathway), which support microvascular function and 

strengthen the BBB integrity. Upregulation of other miR-155 targets, such as SOCS-1 and 

SHIP-1 (which suppress JAK/STAT-mediated cytokine signaling), and C/EBP (which 

activates anti-inflammatory IL-10), regulate post-stroke neuroinflammation and thus, 

support vascular integrity and neuronal survival. As a result, miR-155 inhibitor-induced 

support of BBB integrity leads to the reduction of brain edema, restoration blood flow in the 

peri-infarct area of stroke, and prevents delayed neuronal death in the peri-infarct area. This 

results in the reduced brain infarct, neuroprotection and improved functional recovery. Red 

font/arrow indicate upregulation/activation; blue - downregulation/inhibition.
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Table 1:
In vivo inhibition or overexpression of specific microRNAs supports neuroprotection in 
the animal models of CNS injury.

Table 1 summarizes the list of regulatory microRNAs and their targets, which, after the experimental 

intervention using miRNA inhibitors and mimics, support neuronal survival and facilitate recovery in the 

animal models of CNS injury. The process is mediated via the experimentally verified direct target genes/

proteins.

miRNA Animal model of CNS injury Treatment Involved direct miRNA targets

miR-210 Stroke Overexpression mBDNF/proBDNF [51]

miR-124 Stroke Overexpression Bcl-2 and Bcl-xl [52]; Usp14 [53]

miR-216a Stroke Overexpression JAK2 [54]

miR-29b Stroke Overexpression Aquaporin-4 [55]

miR-29c Stroke Overexpression Birc2 [56]

miR-128–3p Stroke Overexpression p38α [57]

miR-93 Stroke Overexpression Nrf2 [58]

miR-223 Stroke Overexpression GluR2 and NR2B [59]

miR-378 Stroke Overexpression Caspase-3 [60]

miR-181 Stroke Inhibition BCL2 and XIAP [61]

miR-181b Stroke Inhibition HSPA5 and UCHL1 [62]

miR-155 Stroke Inhibition Rheb [63]

miR-30a Stroke Inhibition HSPA5 [64]

miR-27a TBI Overexpression FoxO3a [50]

miR-144 TBI Inhibition ADAM-10 [65]

miR-124 Parkinson’s disease Overexpression Bim [66]

miR-7 Parkinson’s disease Overexpression α-Synuclein [67]

miR-210 CSI Overexpression PTP1B and ephrin-A3 [68]

miR-125b CSI Overexpression Sema4D [69]

miR-486 CSI Inhibition NeuroD6 [70]

miR-20a CSI Inhibition Ngn1 [71]
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Table 2:
In vivo inhibition or overexpression of specific microRNAs alters neuroinflammation in 
the animal models of CNS injury.

Table 2 summarizes the list of regulatory microRNAs and their targets, which, after the experimental 

intervention using miRNA inhibitors and mimics, modified the inflammation and supported recovery in the 

animal models of CNS injury. The process is mediated via the experimentally verified direct target genes/

proteins.

miRNA Animal model of CNS injury Treatment Involved direct miRNA targets

miR-200b TBI Overexpression c-Jun [115]

miR-3473b Stroke Inhibition SOCS3 [116]

miR-155 Stroke Inhibition SOCS-1, SHIP-1, and C/EBP-β [106]

miR-let-7c TBI Overexpression Caspase-3 [117]

miR-27a LPS-induced neuroinflammation (animal model of AD, PD, and 
ALS) Overexpression TLR4 and IRAK4 [118]

miR-367 Intracerebral hemorrhage Overexpression IRAK4 [119]

miR-21 EAE Inhibition SMAD-7 [120]
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