
Resource

A single-cell transcriptome atlas of the adult
human retina
Samuel W Lukowski1,† , Camden Y Lo2,†, Alexei A Sharov3, Quan Nguyen1 , Lyujie Fang4,5,6 ,

Sandy SC Hung4,5, Ling Zhu7 , Ting Zhang7 , Ulrike Grünert7, Tu Nguyen4,5 , Anne Senabouth8,

Jafar S Jabbari9, Emily Welby10, Jane C Sowden10, Hayley S Waugh11, Adrienne Mackey11,

Graeme Pollock11, Trevor D Lamb12, Peng-Yuan Wang13,14, Alex W Hewitt4,5,15, Mark C Gillies7,

Joseph E Powell8,16,‡ & Raymond CB Wong4,5,17,‡,*

Abstract

The retina is a specialized neural tissue that senses light and initiates
image processing. Although the functional organization of specific
retina cells has been well studied, the molecular profile of many cell
types remains unclear in humans. To comprehensively profile the
human retina, we performed single-cell RNA sequencing on 20,009
cells from three donors and compiled a reference transcriptome
atlas. Using unsupervised clustering analysis, we identified 18 tran-
scriptionally distinct cell populations representing all known neural
retinal cells: rod photoreceptors, cone photoreceptors, Müller glia,
bipolar cells, amacrine cells, retinal ganglion cells, horizontal cells,
astrocytes, and microglia. Our data captured molecular profiles for
healthy and putative early degenerating rod photoreceptors, and
revealed the loss of MALAT1 expression with longer post-mortem
time, which potentially suggested a novel role of MALAT1 in rod
photoreceptor degeneration. We have demonstrated the use of this
retina transcriptome atlas to benchmark pluripotent stem cell-
derived cone photoreceptors and an adult Müller glia cell line. This
work provides an important reference with unprecedented insights
into the transcriptional landscape of human retinal cells, which is
fundamental to understanding retinal biology and disease.
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Introduction

The eye is a highly specialized sensory organ in the human body.

Sight is initiated by the conversion of light into an electrical

signal in the photoreceptors of the neurosensory retina. The rod

photoreceptors are responsible for light detection at extremely

low luminance, while the cone photoreceptors are responsible for

color detection and operate at moderate and higher levels.

Following preprocessing, by horizontal, bipolar, and amacrine

cells, the resultant signal is transferred via ganglion cells to the

brain. Neurotransmitter support is provided by Müller glia, retinal

astrocytes, and microglial cells. Inherited retinal diseases are

becoming the leading cause of blindness in working-age adults,

with loci in over 200 genes associated with retinal diseases
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(RetNet: https://sph.uth.edu/retnet/), often involving specific

retinal cell types. Knowledge of the transcriptome profile of indi-

vidual retinal cell types in humans is important to understand the

cellular diversity in the retina, as well as the study of retinal

genes that contribute to disease in individual retinal cell types

(Hornan et al, 2007; Farkas et al, 2013; Whitmore et al, 2014;

Mustafi et al, 2016; Pinelli et al, 2016).

The transcriptome profiles of whole human retina from adults

(Hornan et al, 2007; Farkas et al, 2013; Whitmore et al, 2014;

Mustafi et al, 2016; Pinelli et al, 2016) and during fetal development

(Kozulin et al, 2009; Hoshino et al, 2017) have been previously

described. However, these studies only assayed the averaged tran-

scriptional signatures across all cell types, meaning that information

on the cellular heterogeneity in the retina is lost. As such, the tran-

scriptional pathways that underlie the highly specialized function of

many human retinal cell types remain unclear, including the rod

and cone photoreceptors, Müller glial cells, horizontal cells, and

amacrine cells. Recent advances in RNA sequencing and microflu-

idic platforms have dramatically improved the accessibility of

single-cell transcriptomics, with increased throughput at a lower

cost. Critically, single-cell microfluidics and low-abundance RNA

library chemistries allow accurate profiling of the transcriptome of

individual cell types. This has been demonstrated in the mouse,

where transcriptome profiles of the mouse retina (Macosko et al,

2015) and retinal bipolar cells (Shekhar et al, 2016) have been

described at the single-cell level using the Drop-seq method

(Macosko et al, 2015). These studies provided a molecular classifi-

cation of the mouse retina and identified novel markers for specific

cell types, as well as novel candidate cell types in the retina.

Recently, single-cell transcriptomics was used to analyze the human

retina. Phillips et al (2018) have profiled a total of 139 cells from

adult retina using the C1 Fluidigm platform, but the limited number

of profiled cells presents challenges in the annotation and accurate

identification of individual retinal cell types. Moreover, a flow

cytometry approach was used to isolate 65 human fetal cone

photoreceptors followed by scRNA-seq profiling (Welby et al,

2017). During the preparation of this manuscript, Voigt et al (2019)

reported scRNA-seq profiling of 8,217 cells from human retina

obtained from a mixed pool of donors that included a healthy

patient, a patient with early glaucoma, and one with unknown

ocular history.

Herein, we report the generation of a human neural retina tran-

scriptome atlas using 20,009 single cells collected from three healthy

donors. Our data provide new insights into the transcriptome profile

of major human retinal cell types and establish a high cellular-reso-

lution reference of the human neural retina, which will have impli-

cations for identification of biomarkers and understanding retinal

cell biology and diseases.

Results

Preparation of human neural retina samples and generation of
single-cell transcriptome atlas

We obtained post-mortem human adult eyes approved for research

purposes following corneal transplantation. As the transcriptome

profile of human retinal pigment epithelial cells has already been

reported (Liao et al, 2010; Strunnikova et al, 2010), we focused

solely on the neural retina layers. In this study, we extracted the

neural retina from 12 donor eyes (Appendix Table S1). We observed

consistent cell viability across retinal tissues retrieved within 15 h

post-mortem (Appendix Fig S1A) and found that donor age does not

impact negatively on cell viability in the extracted neural retina

(Appendix Fig S1B). To minimize potential risk of mRNA degrada-

tion due to reduced cell viability, we selected three donor samples

retrieved within 15 h post-mortem and analyzed them with single-

cell RNA sequencing (scRNA-seq) using the 10X Genomics Chro-

mium platform.

Sequence data from five scRNA-seq libraries derived from the

three neural retinal samples were pooled for processing and analy-

sis. From 23,000 cells, we obtained an average of 40,232 reads per

cell and 1,665 UMIs (unique transcripts) per cell. Following quality

control and filtering using the Seurat package (Butler et al, 2018),

our final dataset contained 20,009 cells, which were taken forward

for further analysis.

The scRNA-seq data were initially analyzed using an unsuper-

vised graph clustering approach implemented in Seurat (version

2.2.1) to classify individual cells into cell populations according to

similarities in their transcriptome profiles. Overall, the cells were

classified into 18 transcriptionally distinct clusters (Appendix Fig

S2). We first assessed the variation between donor samples

(Appendix Table S2). Interestingly, although many of the identified

clusters are well represented in all three donor retinal samples, we

also observed several donor-specific clusters corresponding to rod

photoreceptors (Appendix Fig S3A). In contrast, we observed mini-

mal variation between two different libraries prepared from the

same donor sample, supporting the quality of the scRNA-seq data-

sets in this study (Appendix Fig S3B). The average expression for all

detected genes in each cluster is listed in Dataset EV1.

Identification of major cell types in the human retina
using scRNA-seq

Based on known markers (Blackshaw et al, 2001; Imanishi et al,

2002; Corbo et al, 2007; Soto et al, 2008; Klimova et al, 2015;

Macosko et al, 2015; Shekhar et al, 2016; Vecino et al, 2016), we

were able to assign cell identities to 16 of the 18 clusters (Fig 1A–

D), corresponding to rod photoreceptors (PDE6A, CNGA1, RHO),

cone photoreceptors (ARR3, GNGT2, GUCA1C), Müller glia (RLBP1/

CRALBP), retinal astrocytes (GFAP), microglia (HLA-DPA1, HLA-

DPB1, HLA-DRA), bipolar cells (VSX2, OTX2), retinal ganglion cells

(NEFL, GAP43, SNCG), amacrine cells (GAD1, CALB1, CHAT), and

horizontal cells (ONECUT1, ONECUT2). The expression of selected

marker genes is displayed in t-SNE plots (Fig 1D). Two clusters (C5

and C14) express markers from multiple retinal cell types

(Appendix Fig S4); thus, we were unable to assign cell identities to

these two clusters and they were excluded from further analysis.

Interestingly, our data demonstrated multiple transcriptionally

distinct clusters within the rod photoreceptors (six clusters) and

bipolar cells (three clusters). In contrast, only one cluster was

detected for cone photoreceptors, Müller glia, retinal ganglion cells,

horizontal cells, amacrine cells, retinal astrocytes, and microglia,

respectively. Correlation analysis confirmed the similarity between

clusters within the same cell type (Fig 1E). As expected, we

observed high correlations between the expression levels of
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transcripts within photoreceptor cell types (rod and cones), as well

as glial cells (retinal astrocytes and Müller glia) and other retinal

neurons (bipolar cells, retinal ganglion cells, amacrine cells, and

horizontal cells). The composition of cell populations across our

three donors shows that the majority of the cells in human neural

retina were rod photoreceptors (~74%) followed by bipolar cells

(~10%). These results are similar to those reported in mice, where

rod photoreceptors and bipolar cells form the majority of cells in the

retina (Jeon et al, 1998; Macosko et al, 2015).

To identify genes whose expression was specific to a given cell

type, we performed differential gene expression analysis to identify

marker genes for each cluster (Fig 1F). We subsequently extracted

membrane-related proteins from gene ontology annotations to iden-

tify potential surface markers, which can be used to develop

immuno-based methods to isolate primary culture of individual reti-

nal cell types. Appendix Table S3 lists the identified markers for

individual retinal cell types. We also assessed the gene expression

of a panel of commonly known markers in amacrine cells and bipo-

lar cells (Figs EV1 and EV2), as well as a panel of markers for

subtype identification recently identified in mouse scRNA-seq stud-

ies (Macosko et al, 2015; Shekhar et al, 2016). In particular, the

bipolar clusters can be classified as OFF-bipolar cells (GRIK1+: C6)

and ON-bipolar cells (ISL1+: C8, C11). Further analysis showed that

C8 represents rod bipolar cells based on the marker PRKCA, while

C11 expresses the marker TTR corresponding to a diffuse bipolar

subtype DB4 (Fig EV1). In summary, we profiled the transcriptomes

of all major cell types in the human retina in the presented dataset.

Due to their abundance, for the subsequent analyses we focused on

the photoreceptors and glial cells.

Profiling healthy and degenerating human rod
photoreceptor subpopulations

We profiled 14,759 rod photoreceptors and showed that they can be

classified into six populations with distinct gene expressions (C0,

C1, C2, C3, C4, and C7). We assessed these six clusters with a panel

of seven known rod or pan-photoreceptor markers (Fig 2A). Our

results suggest differential expression patterns among the seven

markers. All seven rod markers are highly abundant, consistent

with previous scRNA-seq studies of mouse and human retina

(Macosko et al, 2015; Phillips et al, 2018). The seven markers

showed differential expression patterns in the six identified rod

photoreceptor clusters. In particular, RHO, GNGT1, and SAG have

the highest levels of rod marker detected, followed by NRL, ROM1,

GNAT1, and CNGA1. We also noted that ROM1 is expressed in both

rod and cone photoreceptors, which is consistent with previous

studies (Boon et al, 2008). Importantly, many rod photoreceptor

clusters consist of a majority of cells from a single donor (> 90% for

C0, C2, and C4 and > 80% for C1 and C7; Fig 2B). It is possible that

this observation is due to the systematic biases such as differences

in tissue retrieval time, age of donors, or other sample preparation

variation. The exception is cluster C3, which is well represented by

all three donors.

Next, we set out to further define and classify heterogeneity in

rod photoreceptors. We observed that MALAT1, a long non-coding

RNA that plays a role in retinal homeostasis and disease (Wan et al,

2017), was robustly expressed in ~66% of the identified rod

photoreceptors (9,750 cells), while the rest had little to no expres-

sion (5,009 cells; Fig 2C). As such, we utilized MALAT1 expression

as a discriminator and investigated differences between rod photore-

ceptors with high expression (MALAT1-hi; > 4.68 normalized tran-

scripts per cell) or low expression (MALAT1-lo; < 4.68 normalized

transcripts per cell). MALAT1-hi and MALAT1-lo rod photoreceptors

were consistently found in each donor and library samples, with

MALAT1-hi accounting for ~66, 90, and 36% of the rods in donors

#1, #2, and #3, respectively (Fig 2D). To further validate this

finding, we performed RNA in situ hybridization in another three

donor retinal samples. We consistently observed the presence of

MALAT1-hi and MALAT1-lo subpopulations of rod photoreceptors

in all retinal samples (Figs 2E and EV3A). Together, these results

showed the presence of heterogeneity within rod photoreceptors

that can be distinguished by MALAT1 expression.

To rule out the possibility that the presence of MALAT1 rod

subpopulations was due to donor sample variations, we applied

canonical correlation analysis (CCA) to correct for technical and

batch artifacts. We found that CCA effectively corrected the donor-

specific effect on rod photoreceptor clusters (Fig 3A and B). The

average expression for all detected genes in each cluster is listed in

Dataset EV2. Following CCA correction, we identified three rod

photoreceptor clusters (CCA0, CCA1, and CCA10), which expressed

a panel of seven rod photoreceptor markers and were well repre-

sented in all donor samples (Fig 3C). Notably, the majority of cells

in CCA0 were low in MALAT1 expression, while CCA1 and CCA10

represented MALAT1-hi rod subpopulations (Fig 3D and E). This is

consistent with our RNA in situ hybridization analysis, where we

consistently observed MALAT1-hi and MALAT1-lo subpopulations

of rod photoreceptors in all retinal samples (Fig EV3A). Collectively,

these results provide evidence that MALAT1 heterogeneity in rod

photoreceptors is not due to inter-individual variability.

We also considered the possibility that MALAT1-lo rod subpopu-

lations may represent an artifact of “low-quality cells” in scRNA-seq

data, due to a low number of sequencing reads or broken cell

▸Figure 1. Single-cell transcriptome atlas for human neural retina.

A, B t-SNE visualization of 20,009 human retinal cells colored by (A) annotation of 18 transcriptionally distinct clusters (C0-C17) and (B) their distribution in three donor
retina samples.

C Feature expression heatmap showing expression patterns of major retinal class markers across 16 retinal cell clusters. The size of each circle depicts the percentage
of cells expressing the marker within the cluster. Brown color indicates ≥ 10 nTrans (number of transcripts).

D t-SNE plots showing expression of a set of selected marker genes for major retinal classes.
E Correlation matrix for the identified 18 clusters. The upper triangle depicts the z-value for correlation, and the lower triangle depicts the correlation coefficient for

gene expression in clusters.
F Heatmap of differentially expressed genes used to classify cell types for each cluster compared to all other clusters for the 18 retinal cell clusters. The rows

correspond to the top 10 genes most selectively upregulated in individual clusters (P < 0.01, Benjamini–Hochberg correction), and the columns show individual
cells ordered by cluster (C0-C17).
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membrane. In this regard, upregulated levels of mitochondrial-

encoded genes and ribosomal proteins can be used to identify such

low-quality cells in scRNA-seq data (Ilicic et al, 2016). For our

scRNA-seq dataset, we did not observe upregulation in gene expres-

sion for a panel of ribosomal proteins (RPL41, RPLP1, RPL21,

RPS27, RPL13A, RPL36, RPL39, and RPS28; Fig 3F). However, the

rod cluster CCA10, representing 1.4% of rod photoreceptor cells,

showed markedly increased levels of mitochondrial-encoded genes

(MT-CO2, MT-ND5, MT-ND3, MT-CYB, MT-ND1, MT-ND2, MT-CO3,

MT-ATP6, MT-CO1, and MT-ND4; Fig 3G), suggesting that CCA10

represented a low-quality MALAT1-hi rod cluster and was excluded

from further analysis.

As we utilized post-mortem retinal samples in this study, we

reasoned that MALAT1-lo subpopulations may potentially reflect the

early stages of post-mortem degeneration in rod photoreceptors. To

determine this, we extracted retinal samples from the same donor at

different time points of progressive post-mortem degeneration,

with longer time points predicted to have more stressed/dying

photoreceptors. Our results showed that there were a high propor-

tion of MALAT1-hi rod photoreceptors at 7 h post-mortem (Fig 4,

~95%). However, we observed a marked decrease in MALAT1

expression in rod photoreceptors at 13 h post-mortem. Similar

results were observed for the three retinal samples processed for

scRNA-seq (Fig EV3B). Together, these results demonstrated that

MALAT1 is a novel marker for healthy photoreceptors with loss of

expression potentially preceding putative cell degeneration. In

summary, we showed that scRNA-seq can be used to profile

healthy (CCA1) and degenerating rod photoreceptors (CCA0),

which can be distinguished by high or low MALAT1 expression

levels, respectively.

A B

C

D E

Figure 2. Identification of MALAT1-hi and MALAT1-lo subpopulations of rod photoreceptors.

A Feature expression heatmap of a panel of known marker genes for rod photoreceptors across the identified 16 retinal cell clusters. Brown color indicates ≥ 100
nTrans (number of transcripts).

B Representation of the three donor retina samples in the six rod photoreceptor clusters.
C Violin plot showing high or low expression levels of MALAT1 in rod photoreceptor clusters.
D Distribution of rod photoreceptor populations with high MALAT1 expression (MALAT1-hi) or low MALAT1 expression (MALAT1-lo) in three donor retina samples.
E Fluorescent in situ hybridization analysis of human peripheral retina showing heterogeneous levels of MALAT1 expression in the rod photoreceptors located in the

outer nuclear layer (ONL). INL, inner nuclear layer; OPL, outer plexiform layer. Scale bar = 20 lm.
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Transcriptome profile of cone subtypes in the human retina

We detected 564 cone photoreceptor cells in our scRNA-seq data,

which are distinguishable from the other cell types by the expres-

sion of the cone marker genes ARR3, CNBG3, GNAT2, GNGT2,

GRK7, GUCA1C, PDE6C, PDE6H, OPN1LW, RXRG, and THRB

(Fig 5A). All 11 marker genes analyzed show specific expression

patterns in the cone cluster (C10). We set out to further assess the

composition of the cone cluster. In humans, there are three identi-

fied subtypes of cone photoreceptor, which can be distinguished by

expression of a sole opsin gene: OPN1SW-positive S-cones,

OPN1MW-positive M-cones, and OPN1LW-positive L-cones respond

preferentially to shorter, medium, and longer wavelengths responsi-

ble for color vision (Roorda & Williams, 1999). Notably, OPN1LW

◀ Figure 3. MALAT1 subpopulations of rod photoreceptors are not due to donor variation.

Canonical correlation analysis was used to effectively correct donor-specific variations in rod photoreceptors.

A, B (A) t-SNE visualization of human retinal cells colored by annotation of 13 transcriptionally distinct clusters (CCA0-CCA12) and (B) their distribution in three donor
retina samples.

C Feature expression heatmap showing expression patterns of seven rod photoreceptor markers across 12 retinal cell clusters. The size of each circle depicts the
percentage of cells expressing the marker within the cluster. Brown color indicates ≥ 50 nTrans (number of transcripts).

D t-SNE plots showing expression of MALAT1.
E Expression pattern of MALAT1 in the rod photoreceptor showing MALAT1-hi (CCA1, CCA10) and MALAT1-lo (CCA0) subpopulations. The x-axis depicts normalized

transcript levels.
F t-SNE plots showing expression of major ribosomal genes.
G Heatmap of differentially expressed genes between the two MALAT1-hi clusters CCA1 and CCA10. The rows correspond to top 10 genes most selectively upregulated

in individual clusters (P < 0.01, Benjamini–Hochberg correction), and the columns show individual cells ordered in CCA1 and CCA10.

Figure 4. Loss of MALAT1 expression in rod photoreceptors with longer post-mortem time.

Fluorescent in situ hybridization analysis of the same donor human peripheral retina at different time points post-mortem (7 and 13 h, Retina 7), showing decreases in
MALAT1-hi rod subpopulations in the outer nuclear layer (ONL) at later time point. INL, inner nuclear layer; OPL, outer plexiform layer. Scale bar = 20 lm. White arrows
indicated MALAT1-hi rod photoreceptors.
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and OPN1MW exhibit ~98% sequence homology and are unable to

be distinguished by 30 sequencing utilized in this study. By quantify-

ing the number of cells that express the opsin genes, our results

showed that the majority of the cone cluster are L/M-cones

(73.22%) and S-cones in much lower proportion (3.19%; Fig 5B), at

levels consistent with those estimated by a previous adaptive optics

and photobleaching study (Roorda & Williams, 1999). As expected,

the identified cone photoreceptors only express either OPN1SW or

OPN1LW/MW (Fig 3C).

To further study the molecular differences and identify molecular

markers for the cone subtypes, we performed differential gene

expression analysis to determine genes that can distinguish the cone

subtypes. Our results identified a panel of genes that differentially

marked S-cones (e.g., CCDC136, RAMP1, LY75, CADM3, TFPI2,

CRHBP, RAB17, UPB1, RRAD, and SLC12A1) and L/M-cones (e.g.,

THRB, KIF2A, LBH, PGP, CHRNA3, AHI1, and LIMA1; Fig 3D). We

compared this list of cone subtype genes to those identified in

scRNA-seq studies of the macaque and mouse retina, and showed

that a number of the cone subtype genes in humans are conserved in

macaque and mouse (Macosko et al, 2015; Peng et al, 2019), includ-

ing S-cone marker CCDC136 and L/M-cone marker THRB. Interest-

ingly, CCDC136 is located next to the OPN1SW locus in humans and

could possibly be co-regulated at the transcriptional level. The

thyroid hormone receptor THRB is required for the development of

M-cones in mice (Ng et al, 2001) and L/M-cones in humans as deter-

mined by a pluripotent stem cell model (Eldred et al, 2018). Notably,

there are two known receptor isoforms for THRB (TRb1 and TRb2)
and further research to determine the precise roles of THRB isoforms

in subtype specification of human cones would be of great interest.

Moreover, the transcription factor TBX2 has been implicated in

subtype specification of Sws1-cones in zebrafish and chicken

(Alvarez-Delfin et al, 2009; Enright et al, 2015). In support of these

studies, our data showed that TBX2 marks the S-cones in humans,

which is also conserved in macaque (Peng et al, 2019). Together,

these results detailed the molecular profiles and identified marker

genes that can distinguish the cone subtypes in humans.

Assessment of glial cells in human retina

Next, we focused on two related glial cell types in the human retina,

the Müller glia, and the retinal astrocytes. Our scRNA-seq data have

profiled a total of 2,723 Müller glial cells, which classified into a

single cluster (C9), and 49 retinal astrocytes, which form a single

cluster (C16). Figure 5E shows the expression of a panel of 9

commonly used markers for Müller glia and retinal astrocytes. Our

results demonstrated that many of these markers are present in both

Müller glia and retinal astrocytes at differential expression levels.

VIM, GLUL, and S100A1 marked both Müller glia and retinal

astrocytes at high expression levels. GFAP represents a reliable

marker for retinal astrocytes, and its expression is consistent with a

previous report (Vecino et al, 2016). Notably, Müller glia are low in

GFAP expression, indicating they are not in an activated state

commonly caused by stresses and reactive gliosis (Fernández-

Sánchez et al, 2015). The S100B is also expressed in retinal astro-

cytes at varying levels but absent in Müller glia. Conversely, Müller

glia can be distinguished from retinal astrocytes by high expression

levels of RLBP1, and RGR to a lesser extent. Together, these results

provide insights into the differential expression patterns of known

glial markers in Müller glia and retinal astrocytes in humans.

As glial cell proliferation has been linked to a range of pathologi-

cal conditions including retinal gliosis and retinal injury (Subirada

et al, 2018), this provides a means of assessing the health of the

profiled retinas. We assigned a cell cycle phase score to each cell

using gene expression signatures for the G1, S, G2, and G2/M

phases (Kowalczyk et al, 2015; Fig EV4). We determined that most

of the Müller glial cells expressed genes indicative of cells in G1

phase (75%), suggesting they are not proliferative. These results

demonstrated the absence of hallmarks of gliosis/retinal injury and

support the quality of the donor retinas profiled.

Using the human neural retina transcriptome atlas
for benchmarking

To demonstrate the use of our dataset as a benchmarking reference,

we compared the scRNA-seq profiles of distinct cell types generated

using alternative methods, including fetal human cone photorecep-

tors, human-induced pluripotent stem cell-derived cone photorecep-

tors (hiPSC-cone; Welby et al, 2017), and a sample of adult human

retina with 139 cells (Phillips et al, 2018). Correlation analysis

demonstrated that the adult human retina sample showed highest

similarity to rod photoreceptor (0.63; Fig EV5), which is expected as

rod photoreceptors represent the majority of the cells in the retina.

Interestingly, our results also showed that the transcriptome of hiPSC-

cone after 15 weeks of differentiation exhibited the highest similarity

to cone photoreceptors, and low similarities to all other retinal cell

types (Figs 6A and EV5). In particular, hiPSC-cone showed high simi-

larities to fetal cone photoreceptors and adult cone photoreceptors

(0.71 and 0.61, respectively), and a much lower similarity to adult

rod photoreceptors (0.33). In support of this, principal component

analysis demonstrated that the hiPSC-cone are closer to fetal cone

photoreceptors, rather than the adult counterpart (Fig 6B). These

results confirmed direct differentiation of hiPSCs to cone photorecep-

tors with good quality, and the hiPSC-derived cone photoreceptors

are closer to fetal origin compared to their adult counterpart.

In another benchmarking example, we set out to assess the poten-

tial differences between in vitro cell lines compared to adult cells

▸Figure 5. Assessment of cone photoreceptor and glial cell types in human retina.

A Feature expression heatmap showing the expression of 11 known cone photoreceptor markers across 16 retinal cell clusters. Brown color indicates ≥ 10 nTrans
(number of transcripts).

B The proportion of cone photoreceptor subtypes identified in population C10, based on expression of OPN1LW/OPN1MW (L/M-cones) and OPN1SW (S-cones).
C Scatter plots showing expression of OPN1LW/OPN1MW or OPN1SW in individual cone photoreceptors for population C10. The color depicts expression level for

OPN1LW/OPN1MW in individual cells.
D Heatmap of top 20 differentially expressed genes between L/M-cones and S-cones. The color depicts normalized gene expression (z-score capped at 2.5).
E Expression pattern of glial markers in Muller glia (C9) and retinal astrocytes (C16). The x-axis depicts normalized transcript levels.
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in vivo. In this regard, we compared the spontaneously immortalized

human Müller glia cell line MIO-M1 (Limb et al, 2002; Lawrence

et al, 2007) to all the retinal cell types identified in our dataset. Using

scRNA-seq, we profiled 7,150 MIO-M1 cells with 23,987 reads per

cell post-normalization corresponding to 3,421 detected genes. Unsu-

pervised clustering and t-SNE analysis showed that the MIO-M1 cells

formed one cluster that is transcriptionally distinct from all retina

cell types identified in the human neural retina dataset (Fig 6C).

Correlation analysis showed that MIO-M1 displayed similarities to

retinal glial cells, with higher similarity to astrocytes compared to

Müller glia (0.63 and 0.46, respectively; Fig 6D). In particular, we

identified that MIO-M1 cells express high levels of the thymosin beta

4 gene (TMSB4X), which has been linked to glioma malignancy

(Wirsching et al, 2013), and the calcyclin gene (S100A6), which is

implicated in macular or cone-associated diseases (Yoshida et al,

2004; Fig 5E). Together, our results highlight the similarities and dif-

ferences in MIO-M1 to adult retinal glial cells in humans.

Discussion

The data presented here describe the generation of a detailed refer-

ence transcriptome atlas of the human neural retina at the single-cell

level. The establishment of reference transcriptome maps for individ-

ual cell types in the retina provides unprecedented insights into the

signals that define retinal cell identity and advance our understand-

ing of the retina. This human neural retina transcriptome data can be

used as a benchmark to assess the quality and maturity of pluripotent

stem cell-derived retinal cells, such as retinal ganglion cells (Sluch

et al, 2015; Gill et al, 2016; Kobayashi et al, 2018) and photorecep-

tors (Lakowski et al, 2018). We obtained a mean sequencing depth

of 40,232 reads per cell across 23,000 cells, which enabled us to con-

fidently classify the majority of cell types in a complex tissue like the

retina. We confirmed that this sequencing depth is sufficient to iden-

tify the major cell types. For less transcriptionally distinct cell types,

including amacrine and retinal ganglion cells, the ability to resolve

subtypes might be improved by increased sample size, greater cell

numbers, or ultra-deep sequencing of those populations. Also,

regarding post-mortem time for the donor retina, we found that at

the transcriptome levels there are no obvious variations in all major

cell types in neural retina retrieved from 6 to 14 h post-mortem, with

the exception of rod photoreceptors. This potentially suggested that

the rod photoreceptors are more sensitive to putative post-mortem

degeneration compared to other retinal cell types. Further studies to

optimize methods to preserve donor retinal tissues will help to mini-

mize post-mortem effects prior to scRNA-seq processing.

One of the most interesting observations is the presence of hetero-

geneous subpopulations within known retinal cell types. This high-

lights the sensitivity of using a scRNA-seq approach to capture and

classify retinal cell types in an unbiased manner. In particular, our

results revealed the presence of two rod photoreceptor subpopula-

tions in post-mortem retina that display differential expression of

MALAT1. Notably, the presence of MALAT1-hi and MALAT1-lo rod

subpopulations was consistently observed in all post-mortem

samples analyzed (n = 7). We further showed that MALAT1-lo

subpopulations represent putative early degenerating rod photore-

ceptors, a finding that has not previously been reported in humans or

any other species. We also noted some heterogeneous MALAT1

expression in other retinal cell types in humans, albeit to a lesser

extent compared to rod photoreceptors. Previous studies have

demonstrated a role of MALAT1 in regulating the survival of retinal

ganglion cells (Li et al, 2017) and in pathogenesis of retinal pigment

epithelial cells (Yang et al, 2016). However, the functional role of

MALAT1 in photoreceptors remained unclear. Our results demon-

strated the loss of MALAT1 expression in rod photoreceptors follow-

ing longer post-mortem time with putative degeneration, and suggest

MALAT1 as a potential target to enhance rod photoreceptor survival

and retinal preservation. Future studies are warranted to investigate

the functional role of MALAT1 in photoreceptors, and other retinal

cell types in humans. Our transcriptome data also revealed rod

photoreceptor clusters specific to particular donor retinas, and we

showed that application of the CCA method could effectively correct

for these donor/batch variations in rod photoreceptors. Further stud-

ies with a larger number of donor samples will allow testing of the

feasibility of using scRNA-seq to comprehensively analyze the retina

in different individuals, such as assessment of the effects of aging or

degenerative retinal diseases.

Another outcome of this study is the assessment of biomarkers

that allow identification of major retinal cell types and subtypes.

Our results provide new insights into the cone photoreceptor

subtypes in humans. The cone subtypes are traditionally categorized

based on expression of different opsins that allowed for cellular

detection of light at various wavelengths. While the S-cones are

structurally different from the other two cone subtypes, the L-cones

and M-cones are structurally similar and difficult to distinguish from

each other, except for the opsin they expressed (Viets et al, 2016).

We report the first description of the transcriptome profiles of S-

cones in adult humans and highlight novel marker genes that can

be used to distinguish them. We also identified the transcriptome

and novel marker genes for L/M-cones; however, given the high

sequence homology, particularly at the 30 end, of OPN1MW and

OPN1LW, we could not confidently separate L-cones and M-cones.

In addition, we show that many of the known Müller glial markers

are often expressed in retinal astrocytes, and we also provide a

detailed assessment of commonly used retinal glial markers show-

ing the differential expression pattern between Müller glia and reti-

nal astrocytes. Furthermore, we determined that multiple genetic

markers, based on binary and/or gradient expression profiles, were

▸Figure 6. Benchmarking retinal cells using the human neural retina atlas.

A Correlation analysis of scRNA-seq data of hiPSC-derived cone photoreceptors (week 15) against fetal cone photoreceptors (Welby et al, 2017), as well as adult cone
and rod photoreceptors from this human neural retina atlas.

B Principal component analysis to assess transcriptome similarity of hiPSC-derived cone photoreceptors to fetal and adult photoreceptors.
C t-SNE analysis of the human Müller glia cell line MIO-M1 with the retinal cell types identified in this human neural retina atlas.
D Correlation analysis of MIO-M1 with all major human retinal cell types.
E Top ranked differentially expressed genes identified in MIO-M1 compared to other retinal cell types based on logistic regression score.
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required to improve the classification of clustered cell populations.

More detailed classification of highly similar cell types may be possi-

ble through the combination of single-cell mRNA and protein

measurements using barcoded antibodies, as implemented in the

CITE-seq method (Stoeckius et al, 2017).

Finally, our results highlighted the use of this neural retina tran-

scriptome atlas to benchmark retinal cells derived from stem cells or

primary cultures. A major goal of pluripotent stem cell research is to

derive cells that are similar to those in adults in vivo, which is

important for development of stem cell disease models and regener-

ative medicine (Hung et al, 2017). Our analysis shows that hiPSC-

derived cone photoreceptors are highly similar to both fetal and

adult cones in comparison with all other major retinal cell types.

We show that hiPSC-derived cells are more fetal-like than adult-like,

which is consistent with other studies (Baxter et al, 2015; Handel

et al, 2016). We also benchmark a commonly used Müller glia cell

line MIO-M1 (Limb et al, 2002; Lawrence et al, 2007). Our results

showed that while this cell line exhibits similarities to adult retinal

glial cells, there are also some differences between MIO-M1 and

adult Müller glia, such as high expression of the glioma-related gene

thymosin beta 4 (TMSB4X) in MIO-M1. Previous reports have also

described differences in gene expression in MIO-M1 to Müller glia

and showed that MIO-M1 cells express markers for post-mitotic reti-

nal neurons and neural stem cells (Lawrence et al, 2007; Hollborn

et al, 2011). Our results and others highlighted the potential effects

of prolonged in vitro culture of primary retinal cells. Collectively,

we showed that the human neural retina transcriptome atlas

provides an important benchmarking resource to assess the quality

of derived retinal cells, which would have implications for stem cell

and neuroscience research.

One of the limitations of this study is the finite number of pro-

filed cell types less frequently represented in the retina such as the

amacrine cells and the retinal ganglion cells, which are known to be

highly complex. The presented dataset is limited in power to accu-

rately identify differences in the transcriptomes of the subtypes in

amacrine and retinal ganglion cells. With the identification of

surface markers for these retinal cell types in this study, this work

lays the foundation for future research using selection and enrich-

ment (Shekhar et al, 2016) of these and other retinal cell types to

improve the resolution of the human neural retina transcriptome

atlas. Two recent studies have reported the use of surface markers

to preselect or enrich for microglia (Masuda et al, 2019) and bipolar

cells (Peng et al, 2019) in human tissues prior to scRNA-seq, which

provided a feasible strategy to increase sensitivity to profile cell

types less frequently represented. Another limitation is the use of 30

gene expression profiling, which presents a challenge for distin-

guishing L-cones and M-cones. Given the high sequence homology

of OPN1LW and OPN1MW (98%), future studies using full-length

mRNA sequencing of single-cone photoreceptor cells would provide

greater distinction and classification accuracy of the OPN1MW- and

OPN1LW-positive cells. Future studies to increase the donor sample

size and number of profiled cells with improved capture technolo-

gies will further improve the resolution of this human retina tran-

scriptome atlas, allowing more accurate cell type classification and

greater statistical power to determine molecular differences between

cell populations.

This study describes the transcriptome of human neural retina

at a single-cell level, which identified the transcriptome of all

major human retinal cell types. Our findings shed light on the

molecular differences between subpopulations within the rod

photoreceptors and the cone photoreceptors. The presented dataset

provides an important roadmap to define the genetic signals in

major cell types in the human retina and can be used as a bench-

mark to assess the quality of stem cell-derived cells or primary reti-

nal cells.

Materials and Methods

Human retina collection

Collection of donor samples was approved by the Human Research

Ethics Committee of the Royal Victorian Eye and Ear Hospital

(HREC13/1151H) and University of Sydney (16/282) and carried out

in accordance with the approved guidelines. Informed consent was

obtained from all donors, and the experiments conformed to the

principles set out in the WMA Declaration of Helsinki and the

Department of Health and Human Services Belmont Report. For

scRNA-seq, post-mortem eye globes were collected by the Lions Eye

Donation Service (Royal Victorian Eye and Ear Hospital) for donor

cornea transplantation. The remaining eye globes were used for

dissection to extract the neural retina. The lens, iris, and vitreous

were removed, and the choroid/RPE layers were excluded from the

sample collection. Following extraction, the neural retinal samples

were dissociated and processed for scRNA-seq right away. Neural

retina samples were dissociated into single cells in dissociation solu-

tion (2 mg/ml papain, 120 Units/ml DNase I) for 15 min. The disso-

ciated neural retina was filtered to ensure single-cell suspension

using a 30 lm MACS Smart Strainer (Miltenyi). For the sample from

Patient SC, the Dead Cell Removal Kit (Miltenyi) was utilized to

remove dead cells prior to scRNA-seq. However, in our hands we

found that the Dead Cell Removal Kit only had a modest improve-

ment in the cell viability (~8% improvement, data not shown). For

FISH analysis, post-mortem eyes were collected by the Lions NSW

eye bank and Australian Ocular Biobank.

Single-cell RNA sequencing (scRNA-seq)

Single cells from three independent neural retina samples were

captured in five batches using the 10X Chromium system (10X

Genomics). The cells were partitioned into Gel Bead‑In‑Emulsions

and barcoded cDNA libraries, then prepared using the single-cell 30

mRNA kit (V2; 10X Genomics). Single-cell libraries were sequenced

in 100 bp paired-end configuration using an Illumina Hi-Seq 2500

at the Australian Genome Research Facility.

Bioinformatics processing

The 10X Genomics cellranger pipeline (version 2.1.0; Zheng et al,

2017) was used to generate fastq files from raw Illumina BCL files

(mkfastq). To generate read count matrices from the fastq files, we

used cellranger count, which uses the STAR aligner (Dobin et al,

2013), to map high-quality reads to the transcriptome (GRCh38),

and performs UMI counting. To overcome the stringent threshold

implemented in cellranger that discards real cells under certain

conditions, such as populations of cells with a low RNA content, the
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–force-cells parameter was set to 3,000 for the donor 1 library and

5,000 for donor 2 and 3 libraries. Using the barcode rank plots

produced by cellranger, these parameters were selected to increase

the number of detected cells for further analysis. The cellranger

aggregation function (aggr) was used to combine the five libraries

and normalize the between-sample library size differences.

Count data were imported into the Seurat single-cell analysis

software (v2.2.1; https://github.com/satijalab/seurat), and quality

control of sequenced libraries was performed to remove outlier cells

and genes. Cells with 200–2,500 detected genes and expressing

< 10% mitochondrial genes were retained. Genes were retained in

the data if they were expressed in ≥ 3 cells. Additional cell–cell

normalization was performed using the LogNormalize method, and

inherent variation caused by mitochondrial gene expression and the

number of unique molecular identifiers (UMIs) per cell was

regressed out.

Clustering at a resolution of 0.6 was performed on PCA-reduced

expression data for the top 20 principal components using the

graph-based shared nearest neighbor method (SNN), which calcu-

lates the neighborhood overlap (Jaccard index) between every cell

and its nearest neighbors. Clustering results were visualized using t-

distributed stochastic neighbor embedding (t-SNE). Individual

samples and sample groups were also visualized using t-SNE.

Prediction of the cell cycle phase of individual retinal cells was

performed in Seurat using cell-cycle-specific expression data

(Kowalczyk et al, 2015). Briefly, genetic markers associated with

G2/M and S phase were used to assign cell scores, and cells express-

ing neither of the G2/M or S phase markers were classified as being

in G1 phase.

Sequencing data for fetal (scRNA-seq) and hiPSC-derived cone

photoreceptors (bulk RNA-seq) were obtained from ArrayExpress

using the accession numbers E-MTAB-6057 and E-MTAB-6058

(Welby et al, 2017). Gene expression matrices were generated from

the fastq files using the STAR aligner software. scRNA-seq data from

72 cells were quality-controlled, filtered, and then normalized with

the scran algorithm (Lun et al, 2016) as described (Welby et al,

2017), using the ascend (https://github.com/powellgenomicslab/

ascend) package in R, which resulted in 63 high-quality single-cell

transcriptomes. Bulk RNA-seq data generated from 6 hiPSC-derived

cone photoreceptor cultures were filtered such that each gene was

represented by at least 10 counts in all samples, and normalization

was performed in edgeR using the trimmed mean of M method

(Robinson & Oshlack, 2010). Preprocessed scRNA-seq data gener-

ated from adult retina (Phillips et al, 2018) were obtained from the

Gene Expression Omnibus (GSE98556).

Canonical correlation analysis

Canonical correlation analysis (CCA) was applied to correct donor-

specific effects observed in the rod photoreceptor populations. This

was achieved by separating the raw data into five sample-specific

datasets, which were then used as inputs for the RunMultiCCA

function in Seurat. For the CCA, we used the most highly variable

genes that were shared by all five samples and the recombined

data were aligned using the first 20 CC dimensions, selected by

biweight midcorrelation (bicor) analysis. Aligned cells were reclus-

tered in Seurat using the first 20 aligned CC dimensions at a resolu-

tion of 0.6.

Identification of retinal cell types

Cell types were classified using differential expression analysis,

which compared each cluster to all others combined using the

Wilcoxon method in Seurat to identify cluster-specific marker genes.

Each retained marker gene was expressed in a minimum of 25% of

cells and at a minimum log fold change threshold of 0.25.

In paired cluster analyses, differentially expressed genes were

considered significant if the adjusted P-value was less than 0.01

(Benjamini–Hochberg correction for multiple testing) and the abso-

lute log expression fold change was ≥ 0.5.

Mapping cells between subpopulations in different samples

To compare subpopulations identified in the merged dataset (five

samples), we applied scGPS (single-cell Global Projection between

Subpopulations), a machine learning procedure to select optimal

gene predictors and to build prediction models that can estimate

between-subpopulation transition scores. The transition scores are

the probability of cells from one subpopulation that are in the same

class with the cells in the other subpopulation. The scores, there-

fore, estimate the similarity between any two subpopulations. Here,

we compared three main subpopulations from sample Retina 2A

with all subpopulations in the sample Retina 2B. The source code of

the scGPS method is available with open access (https://github.c

om/IMB-Computational-Genomics-Lab/scGPS).

Correlation of scRNA-seq data with retinal cell types

The mean expression levels of cells in each cluster were calculated

and used to calculate Pearson’s correlations in a pairwise manner

with each of the other clusters, and results were deemed significant

if the correlation P-value was less than 0.01.

Pathway analysis

Enrichment analysis for significant differentially expressed genes

detected per cluster was performed using Enrichr (Kuleshov et al,

2016). The combined score, computed by taking the log of P-value

from the Fisher exact test and multiplying by the z-score of the devi-

ation of the expected rank, was used to determine the enrichment

ranking for pathways, ontologies, transcription factor network, and

protein network analysis.

Fluorescent in situ hybridization

Donor retinas were first dissected from the eye cup. The retinal

tissues were subjected to 30% sucrose cryoprotection and were then

frozen in �80°C. Sections were cut on a cryostat (Leica CM3050S)

and mounted on glass slides (SuperFrost Plus). The retinal samples

were fixed in 3.7% (vol/vol) formaldehyde and hybridized with

Stellaris RNA FISH Probes (Biosearch Technologies) against

MALAT1 labeled with Quasar 570, following the manufacturer’s

instructions. Briefly, samples were incubated with Quasar 570-

labeled probes at 125 nM in hybridization buffer and hybridized 5 h

at 37°C, followed by nuclear counterstain using DAPI. The samples

are imaged using a ZEISS confocal laser scanning microscope

(ZEISS, LSM700).
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Data availability

The raw and processed scRNA-seq files for this analysis are avail-

able at ArrayExpress under the accession number E-MTAB-7316

(http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7316).

Expanded View for this article is available online.
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