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SUMMARY

Mxra8 is a recently described receptor for multiple alphaviruses, including Chikungunya 

(CHIKV), Mayaro (MAYV), Ross River (RRV), and O’nyong nyong (ONNV) viruses. To 

determine its role in pathogenesis, we generated mice with mutant Mxra8 alleles: an 8-nucleotide 

deletion that produces a truncated, soluble form (Mxra8Δ8/Δ8) and a 97-nucleotide deletion that 

abolishes Mxra8 expression (Mxra8Δ97/Δ97). Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97 fibroblasts show 

reduced CHIKV infection in culture, and Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97 mice have decreased 

infection of musculoskeletal tissues with CHIKV, MAYV, RRV, or ONNV. Less foot swelling is 

observed in CHIKV-infected Mxra8 mutant mice, which correlated with fewer infiltrating 

neutrophils and cytokines. A recombinant E2-D71A CHIKV with diminished binding to Mxra8 is 

attenuated in vivo in wild-type mice. Ectopic Mxra8 expression is sufficient to enhance CHIKV 
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infection and lethality in transgenic flies. These studies establish a role for Mxra8 in the 

pathogenesis of multiple alphaviruses and suggest that targeting this protein may mitigate 

diseasein humans.

Graphical Abstract

In Brief

Zhang et al. use CRISPR-Cas9 gene editing to generate mice with out-of-frame 8- and 97-

nucleotide deletions in Mxra8. These mice show markedly reduced infection of CHIKV, MAYV, 

RRV, and ONNV during the acute phase. These experiments establish a key role for Mxra8 in the 

pathogenesis of multiple alphaviruses.

INTRODUCTION

Alphaviruses are single-stranded, positive-polarity enveloped RNA viruses that are among 

the most important arthropod-transmitted viruses causing disease in humans and other 

animals (Powers et al., 2001). Alphaviruses are classified into two groups, Old World and 

New World, based on their genetic relatedness and historical boundaries. Old World 

alphaviruses include Chikungunya (CHIKV), Mayaro (MAYV), O’nyong’nyong (ONNV), 

Ross River (RRV), Sindbis (SINV), and Semliki Forest (SFV) viruses, several of which 

cause epidemic debilitating acute and chronic polyarthritis affecting millions of people 

globally. New World viruses, which include Eastern (EEEV), Venezuelan (VEEV), and 

Western (WEEV) equine encephalitis viruses, propagate through enzootic and epizootic 

cycles and can infect neuronal cells in the brain, resulting in encephalitis and death. With 

recent global spread, some Old World alphaviruses (e.g., CHIKV) now circulate in both 

hemispheres. Despite their epidemic potential, there are no licensed therapies or vaccines for 

any alphavirus infection.
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The alphavirus genomes encode four non-structural and five structural proteins using two 

open reading frames and have a 5′ cap and a 3′ poly(A) tail (Strauss et al., 1994). The non-

structural proteins are synthesized from the 49S genomic RNA and are required for virus 

translation, replication, and immune evasion; the structural proteins (capsid [C] and envelope 

[E3-E2-6K-E1]) are synthesized from a 26S subgenomic RNA (Cancedda et al., 1975). 

Among the structural proteins, the E1 envelope glycoprotein contains a hydrophobic peptide 

that participates in pH-dependent endosomal fusion (Lescar et al., 2001). The E2 envelope 

glycoprotein binds to attachment and entry factors (Smith et al., 1995; Zhang et al., 2005), 

which facilitates clathrin-dependent endocytosis (DeTulleo and Kirchhausen, 1998; Lee et 

al., 2013). The E3 protein is necessary for the folding of p62 (precursor to E2) and the 

formation of the E2-E1 heterodimer (Carleton et al., 1997; Mulvey and Brown, 1995) but is 

cleaved during the maturation process in the trans-Golgi network (Heidner et al., 1996). 

Mature alphaviruses form at the plasma membrane and contain a single copy of genomic 

RNA and a lipid bilayer with 240 embedded E2-E1 heterodimers assembled into 80 trimeric 

spikes that have T = 4 icosahedral symmetry (Cheng et al., 1995; Kostyuchenko et al., 2011; 

Paredes et al., 1993; Voss et al., 2010).

Despite studying alphaviruses for >50 years, the basis for their cellular and tissue tropism is 

not fully understood. Attachment factors such as laminin receptor and heparan sulfate have 

been shown to enhance viral infection for certain alphaviruses (Gardner et al., 2011; 

Klimstra et al., 1998; Wang et al., 1992). Natural resistance-associated macrophage protein 

(NRAMP2) has been described as a cellular receptor for SINV but not for CHIKV or RRV 

(Rose et al., 2011). The protein prohibitin has been suggested as a CHIKV receptor 

(Wintachai et al., 2012) but corroborating studies are lacking. In addition, the cell surface 

proteins T cell immunoglobulin (Ig) and mucin-domain containing protein 1 (TIM-1) and 

TAM family member AXL, which engage phosphatidylserine ligands, may promote CHIKV 

infection (Jemielity et al., 2013). We recently used a genome-wide CRISPR-Cas9-based 

screen in mouse cells to identify the two Ig-like domain containing plasma membrane 

molecule Mxra8 (also called DICAM, Asp3, and Limitrin) as a cellular entry receptor for 

multiple arthritogenic alphaviruses, including CHIKV, RRV, MAYV, and ONNV (Zhang et 

al., 2018). The human ortholog MXRA8 also bound to CHIKV and other alphaviruses and 

facilitated the infection of human fibroblasts, skeletal muscle cells, and chondrocytes. Mxra8 

bound directly to CHIKV particles and enhanced attachment and internalization into cells, 

and Mxra8-Fc fusion protein or anti-Mxra8 monoclonal antibodies (mAbs) blocked CHIKV 

infection of both mouse and human cells.

Here, to examine the role of Mxra8 in alphavirus pathogenesis, we used CRISPR-Cas9 gene 

editing to generate mice with out-of-frame 8 (Δ8) and 97 (Δ97) nucleotide (nt) deletions in 

Mxra8. These mice were born in normal Mendelian frequencies and showed no defects in 

development, growth, or fecundity. The Δ8 and Δ97 deletions in Mxra8 produced a 

truncated, soluble form of the ectodomain or no intact protein, respectively. In cell culture, 

murine embryonic fibroblasts (MEFs) from the Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97 mice had 

markedly reduced infection by CHIKV compared to wild-type (WT) MEFs. The inoculation 

of Mxra8Δ8/Δ8 or Mxra8Δ97/Δ97 mice with CHIKV, MAYV, RRV, or ONNV resulted in 

markedly diminished, yet not abolished, infection of musculoskeletal tissues. Thus, cell 

surface expression of Mxar8 is required for optimal infection by multiple alphaviruses in 
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vivo, although alternative cell entry pathways exist. In the context of CHIKV infection, 

mutation and loss of function of Mxra8 were associated with reduced neutrophil infiltration, 

decreased inflammation, diminished joint swelling, and lower levels of viral RNA at 28 days 

post-infection (dpi). Reciprocally, a recombinant mutant CHIKV (D71A), which shows loss 

of binding to Mxra8, specifically showed reduced infection in WT mice compared to the 

parental virus, although the two replicated equally, albeit at lower levels, in Mxra8Δ8/Δ8 

mice. Moreover, in Drosophila, which lack endogenous expression of Mxra8 or any apparent 

ortholog, ectopic expression of Mxra8 transgenes resulted in increased CHIKV infection and 

lethality. Overall, these experiments establish that the entry receptor Mxra8 is required for 

optimal in vivo infection, dissemination, and pathogenesis of multiple alphaviruses.

RESULTS

Generation of Mxra8-Deficient Mice

Since the mouse Mxra8 gene locus has two full-length transcripts and a short putative 

transcript near its 3′ end (Figure 1A), we designed two single guide RNAs (sgRNAs) to 

target a conserved region in all isoforms for CRISPR-Cas9 gene editing (Figures 1A and 

1B). After screening the guide sequences for minimal off-target effects, each sgRNA was 

complexed with the WT Cas9 protein and introduced into day 0.5 C57BL/6J embryos 

(embryonic day [E] 0.5) via electroporation; two out-of-frame deletion variants (Δ8 and Δ97 

nt) were identified by sequencing DNA isolated from pups (Figures 1B and S1A). These 

mice were backcrossed twice to establish germline transmission and bred to either 

heterozygosity (Mxra8+/Δ8) or homozygosity (Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97) for 

experimentation. Both Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97 lines showed normal development, 

growth characteristics, and fecundity.

The Δ8 and/or Δ97 deletion variants could express truncated, soluble forms of Mxra8 due to 

our targeting of a downstream common exon within the Ig-like domain 2 of Mxra8 (Figure 

1B). Regardless, we hypothesized that they may mitigate alphavirus replication because cell 

surface receptor-dependent internalization is required for infection (Hoornweg et al., 2016). 

To evaluate this possibility, we generated primary MEFs from WT, Mxra8Δ8/Δ8, and 

Mxra8Δ97/Δ97 mice and performed western blotting on the cell lysates and supernatants with 

two anti-Mxra8 mAbs (Zhang et al., 2018). In the cell lysate, a ~52-kDa Mxra8 band was 

apparent in WT cells, and a ~34-kDa band was present in Mxra8Δ8/Δ8 cells; no specific band 

was detected in Mxra8−Δ97/Δ97 cell lysate (Figure 1C). A ~34-kDa band also was detected in 

the Mxra8Δ8/Δ8 MEF supernatant but not in that from WT or Mxra8Δ97/Δ97 cells (Figure 

1D). The western blotting results were consistent with the deletion sites: the Δ8 deletion 

causes a truncation of 12 amino acids C-terminal to the last β strand of domain 2, whereas 

the Δ97 deletion results in a truncation of the G-strand in domain 2, which is predicted to 

compromise the integrity of the Ig-like fold (Basore et al., 2019; Song et al., 2019) (Figure 

1B). Surface expression of Mxra8 was absent in both Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97 cells, as 

determined by flow cytometry (Figure S1B). To assess whether the deletions in Mxra8 

affected CHIKV infectivity in cell culture, we performed multi-step growth analysis with 

WT, Mxra8Δ8/Δ8, and Mxra8Δ97/Δ97 primary MEFs. CHIKV infection was reduced in both 

Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97 MEFs compared to WT cells (Figure 1E), confirming the 
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loss-of-function phenotype in cells expressing a truncated, soluble variant or no Mxra8 

protein at all.

We next examined which cell types and tissues expressed Mxra8 in WT mice. A prior study 

generated a rabbit polyclonal serum against the 192 N-terminal amino acids of DICAM (an 

alias of Mxra8) for immunohistochemistry and reported Mxra8 expression on epithelial, 

myeloid, and mesenchymal cells (Jung et al., 2008). Despite numerous attempts, we were 

unable to reproduce these findings on either fixed or frozen tissue sections with anti-Mxra8 

mAbs, affinity-purified rabbit polyclonal IgG against the Mxra8 ectodomain, or polyclonal 

rabbit serum elicited against the same 192 N-terminal amino acids of Mxra8. In lieu of these 

results, we performed RNA in situ hybridization (ISH) in musculoskeletal-associated tissues, 

a relevant site of arthritogenic alphavirus infection, with Mxra8-specific and -negative 

control probes. Mxra8 mRNA was detected in skin fibroblasts, bone marrow, and synovium 

(Figure S2A), which is consistent with expression patterns observed from mouse RNA Atlas 

data (https://oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/genes). We also 

measured Mxra8 mRNA levels in tissues of uninfected and CHIKV-infected mice using 

qRT-PCR (Figures S2B and S2C). Roughly equivalent expression was detected in 

musculoskeletal tissues and visceral organs, with slightly lower levels measured in lymph 

nodes.

Impact of Mxra8 on Acute CHIKV Infection In Vivo

To begin to define the contribution of Mxra8 in alphavirus pathogenesis, we inoculated 

CHIKV (Asian strain AF15561) subcutaneously in the feet of WT and Mxra8 mutant mice. 

To monitor viral spread at the earliest stages of infection, we measured CHIKV titers in the 

ipsilateral (to the site of virus injection) ankle at 12 h post-infection (hpi) and viremia at 1 

and 2 dpi. Reduced levels of CHIKV infection were observed 12 hpi in the ipsilateral ankle 

of Mxra8Δ8/Δ8 compared to WT mice (5-fold, p < 0.01) (Figure 2A). Consistent with these 

data, lower levels of CHIKV RNA were detected in the serum of Mxra8Δ8/Δ8 mice at 1 and 2 

dpi (5- to 16-fold, p < 0.05) (Figure 2B). Next, we measured the amount of infectious virus 

and foot swelling in WT, Mxra8+/Δ8, Mxra8Δ8/Δ8, and Mxra8Δ97/Δ97 mice at 3 dpi, a time 

point that corresponds to the first peak of clinical disease in mice (Morrison et al., 2011). 

Notably, ipsilateral foot swelling at 3 dpi was nearly abrogated in both Mxra8Δ8/Δ8 and 

Mxra8Δ97/Δ97 mice and reduced in heterozygous Mxra8+/Δ8 compared to the WT mice 

(Figures 2C and 2G). Smaller differences (2- to 4-fold, p < 0.05) in viral titers were 

observed in the ipsilateral ankle of Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97 mice at 3 dpi compared to 

WT mice, and no difference was observed in the Mxra8+/Δ8 mice (Figures 2D and 2H). 

However, larger reductions in viral burden were observed in the ipsilateral calf muscle (11-to 

45-fold, p < 0.001), contralateral ankle (30- to 50-fold, p < 0.001), and contralateral calf 

muscle (5- to 15-fold, p < 0.01) in Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97 mice compared to WT 

mice (Figures 2D, 2E, 2H, and 2I). We observed a trend toward a reduction in virus titers in 

the calf muscles of Mxra8+/Δ8 mice at 3 dpi. We expanded the time course and examined 

viral infection at 7 dpi, which represents the second peak of clinical disease in mice. 

Decreases in CHIKV titers were observed in the ipsilateral ankle of Mxra8Δ8/Δ8 compared to 

WT mice at 7 dpi (18-fold, p < 0.01) (Figure 2F). To define the role of Mxra8 in CHIKV 

tropism, we performed RNA ISH on the ipsilateral and contralateral ankles at 3 dpi. 
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Relatively minor differences were observed with viral RNA ISH in the ipsilateral ankle 

(Figure 2M), which is consistent with the small reduction in viral titers (Figures 2D and 2H). 

However, in the contralateral ankle, CHIKV RNA was detected readily in the dermis, 

synovium, and muscle cells of WT but not Mxra8Δ8/Δ8 mice (Figure 2M).

We also infected WT and Mxra8Δ8/Δ8 mice with CHIKV LR 2006, an East/Central/South 

African strain that showed less dependence on the Mxra8 entry pathway in cell culture 

(Zhang et al., 2018). Nonetheless, we observed similar in vivo results with CHIKV LR 2006 

and AF15561 strains. Decreased swelling and reduced virus titers in the ipsilateral and 

contralateral ankles and calf muscles were observed in CHIKV LR 2006-infected 

Mxra8Δ8/Δ8 mice, and spread to tissues distal from the site of inoculation was greatly 

diminished (Figures 2J–2L). To evaluate whether the soluble, truncated Mxra8 protein 

generated from the 8-nt frameshift deletion had any effect on CHIKV infection, Mxra8Δ8/Δ8 

mice were administered PBS, an isotype control mAb, or two anti-Mxra8 blocking mAbs 

(1G11.E6 + 7F1.D8) (Zhang et al., 2018) 12 h pre-CHIKV inoculation. At 3 dpi, no 

differences in viral load were detected in the ipsilateral and contralateral ankles and calf 

muscles of Mxra8Δ8/Δ8 mice treated with PBS or the control or anti-Mxra8 mAbs (Figure 

S3); these data suggest that soluble Mxra8 did not independently affect CHIKV infection. 

Overall, these experiments establish the following: (1) Mxra8Δ8/Δ8 (truncated, soluble 

protein) and Mxra8Δ97/Δ97 (protein null) mice phenocopy each other in the context of 

CHIKV infection and joint swelling, (2) small differences in CHIKV infection are observed 

with Mxra8 haploinsufficiency, (3) the absence of Mxra8 modulates virus spread to a greater 

extent than replication at the local site of injection, (4) two CHIKV strains with varying 

Mxra8 dependency in cell culture showed similar clinical and virological phenotypes in 

Mxra8 mutant mice.

Our subcutaneous inoculation model suggests that Mxra8 has a greater role in CHIKV 

dissemination than local infection. We speculated this could reflect a cell type-specific 

Mxra8-independent entry pathway in the tissues of the foot or unique growth kinetics of 

CHIKV in the absence of early innate immune responses. To begin to address this question, 

we inoculated intravenously WT and Mxra8Δ8/Δ8 mice with CHIKV-AF15561 and 

monitored infection at 1 and 3 dpi. Notably, reduced virus titers were observed in both the 

ankles and calf muscles of Mxra8Δ8/Δ8 compared to WT mice (Figures 3A and 3B). The 

disparity in infection of ipsilateral and contralateral ankles in WT and Mxra8 mutant mice 

after subcutaneous and intravenous inoculation suggests that additional factors (e.g., local 

innate immunity) may modulate the kinetics of CHIKV growth.

Impact of Mxra8 on Other Arthritogenic Alphavirus Infections In Vivo

We next evaluated MAYV, RRV, and ONNV infection in Mxra8 mutant mice. Similar to 

results observed with CHIKV, reductions in MAYV-induced foot swelling were observed in 

Mxra8Δ8/Δ8 compared to WT mice at 3 dpi (Figure 4A). We also observed a phenotype with 

MAYV spread, as there was a significant decrease in virus titers in the ipsilateral calf muscle 

(14-fold, p < 0.0001), draining lymph node (9-fold, p < 0.01), contralateral ankle (10-fold, p 

< 0.05), and contralateral calf muscle (4-fold, p < 0.01), but not in the ipsilateral ankle (4-

fold, p > 0.05) at 3 dpi (Figures 4B–4D). In an RRV infection model, which does not cause 
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joint swelling (Morrison et al., 2006), we observed reduced virus titers in the ipsilateral 

ankle (15-fold, p < 0.0001), ipsilateral calf muscle (6-fold, p < 0.01), contralateral ankle (11-

fold, p < 0.0001), and contralateral calf muscle (4-fold, p < 0.01) of Mxra8Δ8/Δ8 mice at 3 

dpi (Figures 4E and 4F). In an ONNV infection model, virus titers in the ipsilateral ankle 

were reduced (7-fold, p < 0.01) in Mxra8Δ8/Δ8 compared to WT mice at 1 dpi (Figure 4G); 

later time points and other tissues were not analyzed, as ONNV infection is rapidly 

controlled by interferon (IFN) responses in immunocompetent mice (Fox et al., 2015; 

Seymour et al., 2013).

Impact of Mxra8 on Subacute Alphavirus Infection and Persistence

Subcutaneous CHIKV infection in mice results in prolonged foot swelling lasting 2-3 weeks 

and persistent viral RNA in joint-associated tissues for months, which is associated with the 

histopathological evidence of synovitis, arthritis, and tendonitis (Hawman et al., 2013). We 

tested the impact of Mxra8 on ankle swelling during the first month of infection. Compared 

to WT animals, Mxra8Δ8/Δ8 mice inoculated with CHIKV-AF15561 showed markedly 

reduced foot swelling during the first two peaks of swelling at 2–3 dpi and 6–8 dpi, 

respectively (Figure 5A). At 28 dpi, lower levels (12-fold, p < 0.0001) of CHIKV RNA were 

detected in the ipsilateral ankle of Mxra8Δ8/Δ8 mice (Figure 5B). To corroborate these 

results, anti-Mxra8-blocking mAbs (Zhang et al., 2018) were administered via an 

intraperitoneal route to WT mice at 12 h pre- (Figure 5C) or post- (Figure 5D) infection and 

subsequently every 4 days. Similar to results with Mxra8Δ8/Δ8 mice, reduced foot swelling 

was also observed with either prophylactic or therapeutic administration of anti-Mxra8 

mAbs.

CHIKV-Induced Inflammation in Mxra8Δ8/Δ8 Mice

Given the reduction in swelling of the ipsilateral ankles of Mxra8Δ8/Δ8 mice, we analyzed 

the impact of Mxra8 on immune cell accumulation at 3 and 7 dpi, which corresponds to the 

infiltration of myeloid cells (monocytes and neutrophils) and pathogenic CD4+ T cells (Haist 

et al., 2017; Poo et al., 2014; Teo et al., 2013), respectively, in mice (Figure 6). In uninfected 

mice (day 0), as expected, relatively few CD45+ leukocytes were present in the joint 

homogenates; however, we did observe small reductions in some cell types (e.g., 

neutrophils, macrophages, dendritic cells) at baseline in Mxra8Δ8/Δ8 mice compared to WT 

mice (Figure 6B). At 3 dpi, despite the large differences in tissue swelling and edema 

(Figure 6A), the numbers of most immune cell populations had increased and were similar 

between WT and Mxra8-mutant mice (Figures 6C and S4); however, differences were 

observed in the number of neutrophils (2-fold decrease, p < 0.05) and dendritic cells (3-fold 

increase, p < 0.001) in Mxra8Δ8/Δ8 mice. At 7 dpi, similar results were observe with a 

decrease in neutrophils (5-fold, p < 0.0001) and an increase in dendritic cells (2-fold, p < 

0.05) in Mxra8Δ8/Δ8 mice (Figure 6D).

To gain further insight into the effect of Mxra8 on CHIKV-induced joint inflammation, we 

profiled cytokines and chemokines in ipsilateral ankles at 3 and 7 dpi in WT and Mxra8Δ8/Δ8 

mice. Although many were undetectable (e.g., interleukin-2 [IL-2], IL-3, IL-4, IL-5, IL-13, 

and IL-17), several pro-inflammatory cytokines and chemokines were reduced in the joint 

homogenates of Mxra8Δ8/Δ8 mice, including IL-1β (7 dpi), IL-6 (3 dpi), IL-12 (p40) (7 dpi), 

Zhang et al. Page 7

Cell Rep. Author manuscript; available in PMC 2019 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IFN-γ (7 dpi), tumor necrosis factor α (TNF-α) (7 dpi), granulocyte colony-stimulating 

factor (G-CSF) (3 and 7 dpi), granulocyte-macrophage CSF (GM-CSF) (3 and 7 dpi), 

monocyte chemoattractant protein 1 (MCP-1) (7 dpi), macrophage inflammatory protein 1α 
(MIP-1α) (7 dpi), MIP-1β (3 and 7 dpi), RANTES (7 dpi), and CXCL1 (7 dpi) (Figures 6E 

and S5). Thus, even the moderate reductions in CHIKV virus titers in the ipsilateral foot at 3 

and 7 dpi were associated with marked decreases in levels of multiple pro-inflammatory 

mediators, which likely affected the clinical swelling phenotype.

A Mutant CHIKV with Diminished Mxra8 Binding Is Attenuated Specifically in WT Mice

Two groups recently showed that Mxra8 binds to CHIKV by wedging into a cleft created by 

two adjacent E2-E1 heterodimers within a trimeric spike (Basore et al., 2019; Song et al., 

2019). Several solvent-exposed residues in the A domain of E2 (e.g., D71) were predicted to 

form key contacts with Mxra8 directly (Figure 7A), and E2-6K-E1 expression constructs 

with these mutations decreased Mxra8 binding in transfection experiments in cells (Zhang et 

al., 2018). As an independent method of determining the contribution of Mxra8 to CHIKV 

pathogenesis, we generated the D71A mutation in CHIKV (AF15561 strain background). 

We confirmed that the mutant D71A CHIKV had a diminished ability to bind Mxra8 in a 

modified virus capture ELISA (Figure 7B). Subsequently, we inoculated WT and D71A 

CHIKV into WT and Mxra8Δ8/Δ8 mice. At 3 dpi, compared to the parental WT virus, D71A 

CHIKV showed reduced infection in the ipsilateral and contralateral ankles (5- to 14-fold, p 

< 0.01) and the ipsilateral and contralateral (12- to 13-fold, p < 0.05) calf muscles in WT 

mice (Figure 7C). However, no difference in infection between the WT and D71A CHIKV 

was detected in the ankles of Mxra8Δ8/Δ8 mice, although the levels of parental virus were 

lower than in WT mice. Thus, a loss-of-Mxra8-binding mutant CHIKV is attenuated 

compared to the WT virus only in animals expressing intact forms of Mxra8.

Ectopic Expression of Mxra8 in Drosophila Enhances CHIKV Pathogenicity

A BLAST alignment of Mxra8 revealed orthologs in mammals, birds, reptiles, and fish but 

none in invertebrate animals (Zhang et al 2018) even though the transmission of 

arthritogenic alphaviruses requires an amplification stage in mosquito hosts. Although our 

experiments in mice establish that Mxra8 expression is necessary for optimal infection and 

pathogenesis, we set out to determine whether it would be sufficient to enhance infection in 
vivo. To test this, we created transgenic flies that ectopically express mouse Mxra8 (Figure 

7D). Uninfected flies expressing Mxra8 showed no difference in survival rates compared to 

transgenic control flies. As in mosquitoes, infection of WT flies with arboviruses such as 

CHIKV (strain 181/25) have no impact on mortality (Figure 7E). In comparison, Mxra8-

expressing flies infected with CHIKV showed greater mortality rates, and this phenotype 

was associated with higher levels in viral RNA in whole flies (Figures 7E and 7F). Thus, 

ectopic expression of Mxra8 in flies is sufficient to enhance infection and disease in 

invertebrate animals that do not normally succumb to infection and lack this alphavirus 

receptor.
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DISCUSSION

In a prior study, we defined the cell surface protein Mxra8 as an entry receptor for CHIKV 

and other related arthritogenic alphaviruses (Zhang et al., 2018). Here, we assessed the role 

of Mxra8 in alphavirus infection using genetically engineered Mxra8 mutant mice to study 

tissue tropism, viral pathogenesis, and the ensuing immune response. Introduction of either 

8- or 97-nt frameshift deletions in domain 2 of mouse Mxra8, which generated a soluble 

protein or no protein at all, resulted in markedly reduced foot swelling and dissemination of 

CHIKV. Haploinsufficiency was observed, as less swelling and reduced viral burden 

occurred in CHIKV-infected Mxra8+/Δ8 mice. Associated with the reductions in CHIKV 

infection were diminished accumulation of neutrophils and lower levels of pro-inflammatory 

cytokines in musculoskeletal-associated tissues. Loss of cell surface Mxra8 expression also 

mitigated CHIKV persistence and resulted in the reduced infection of MAYV, RRV, and 

ONNV, three additional emerging arthritogenic alphaviruses. Compared to a parental WT 

virus, a recombinant CHIKV (D71A) encoding a loss-of-Mxra8-binding substitution was 

attenuated specifically in WT but not Mxra8Δ8/Δ8 mice. Moreover, ectopic expression of 

Mxra8 in transgenic Drosophila was sufficient to increase CHIKV replication and mortality. 

Overall, these experiments establish a key role for Mxra8 in the infection, dissemination, 

and pathogenesis of multiple related arthritogenic alphaviruses in vivo.

The physiological function of Mxra8 is not fully understood. Mxra8 was first called 

adipocyte-specific protein 3 (ASP3), as it is upregulated during adipocyte differentiation and 

expressed in mesenchymally derived cells (Jung et al., 2004). High levels of mRNA 

expression of its bovine ortholog were observed in skeletal muscle tissue with high marbling 

and fat content (Clark et al., 2011). Mxra8 was also called limitrin, because of its expression 

in the glia limitans and speculated function in maintaining the blood-brain barrier 

(Yonezawa et al., 2003). Given its predicted Ig-like domains and cell surface expression 

pattern, Mxra8 was called DICAM (Jung et al., 2008) and shown in vitro to bind to the 

αVβ3 integrin, resulting in attenuated αVβ3 signaling and suppression of osteoclast 

differentiation and angiogenesis (Han et al., 2013; Jung et al., 2008, 2012). Mxra8 also has 

been shown to promote the proliferation and maturation of chondrocytes (Han et al., 2018). 

More recently, in a study with independently generated Mxra8-deficient mice, Mxra8 

(DICAM) exhibited a protective role in experimental colitis by stabilizing the integrity of 

junctional complexes in the intestinal mucosal barrier (Han et al., 2019). Although our 

experiments do not directly address the physiological function of Mxra8, the generation of 

viable and fertile protein null gene-edited mice by us and others (Han et al., 2019) is 

consistent with a non-essential role in cell survival, development, and homeostasis. The 

human ortholog of Mxra8 was not identified as an essential gene in several cell types 

subjected to genome-wide CRISPR editing and survival analysis (Wang et al., 2015). Our in 
situ hybridization analysis identified Mxra8 RNA in fibroblasts and cells in the synovium, 

which is consistent with the targets and tropism of arthritogenic alphavirus infection in 

musculoskeletal-associated tissues (Morrison et al., 2006, 2011; Sourisseau et al., 2007). 

Nonetheless, despite repeated attempts with multiple monoclonal and polyclonal antibodies, 

we were unable to detect reliably the Mxra8 protein expression pattern in tissues that one 

group has reported (Jung et al., 2008, 2012). The generation of Mxra8 reporter gene mice 
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may be required to fully delineate its expression pattern and elucidate its possible functions 

in connective tissues and other sites.

One prominent phenotype we observed was the nearly abolished joint swelling despite rather 

modest reductions in CHIKV burden at day 3 in the ipsilateral ankle of Mxra8-deficient 

mice when the virus was administered in the foot at a proximal site. These results are 

consistent with our prior study using function-blocking mAbs against Mxra8 (Zhang et al., 

2018). At this early time point in CHIKV pathogenesis in mice, the host innate immune 

response exerts a dominant function in modulating inflammation, and this is mediated in part 

by vasoactive cytokines and infiltrating monocytes and neutrophils (Fox et al., 2019; Poo et 

al., 2014). In joint-associated tissues of CHIKV-infected Mxra8-deficient mice, we detected 

reduced numbers of neutrophils and increased dendritic cells, the latter of which express 

regulatory receptors that can mitigate CHIKV-induced arthritis and edema (Long et al., 

2013); some of this difference in foot swelling after CHIKV infection could have been 

affected by the slight differences in immune cell numbers in musculoskeletal tissues 

observed at baseline between WT and Mxra8-deficient mice. Associated with this were 

reduced tissue homogenate levels of several pro-inflammatory mediators, including IL-6, G-

CSF, GM-CSF, and MIP-1β, in Mxra8-deflicient compared to WT mice. The basis for the 

ostensible discrepancy between the marked effect of Mxra8 expression on foot swelling and 

the smaller effect on CHIKV infection warrants further study. Possible explanations include 

a non-linear relation between infection and joint inflammation; an independent effect of 

Mxra8 signaling on inflammation; or local interactions between CHIKV, Mxra8, and the 

innate immune response in the foot. However, when we inoculated CHIKV via an 

intravenous route, equivalent reductions in viral burden were observed in both ankles, 

suggesting that the tropism of the virus in the foot and associated musculoskeletal tissues 

can vary, depending on the pathogenesis sequence.

Our prior studies in cell culture with CHIKV suggested that while Mxra8 was a dominant 

receptor for entry and infection, a second, Mxra8-independent pathway must exist because 

low levels of infection were observed in gene-edited fibroblasts for Mxra8 or in other cell 

types that endogenously do not express Mxra8 (Zhang et al., 2018). Our infection studies in 

Mxra8Δ8/Δ8 or Mxra8Δ97/Δ97 mice are consistent with this observation. Although markedly 

reduced infection was measured in the gene-edited mice, alphavirus replication clearly 

occurred in the absence of Mxra8 expression. Both strains of CHIKV (Asian AF15561 and 

East/Central/South African LR 2006) showed equivalent loss-of-infection phenotypes in 
vivo, even though we previously observed a differential Mxra8 dependence in NIH 3T3 

cells. The basis for this apparent discrepancy between cell culture and mouse data remains 

uncertain, although it could be due to differences in the cell type-specific expression of the 

Mxra8-independent ligand in culture and in vivo. The identity of the alternative, Mxra8-

independent entry ligand also remains unknown, and the precise function of Mxra8 in 

attachment, entry, and trafficking of alphavirus virions remains to be established. Possible 

alternative binding ligands that require future investigation include heparan sulfate 

proteoglycans (Gardner et al., 2011; Klimstra et al., 1998; Silva et al., 2014), prohibitin 

(Wintachai et al., 2012), NRAMP2 (Rose et al., 2011), and TIM and TAM family members 

proteins that bind phosphatidylserine moieties (Jemielity et al., 2013). The ability to cross 

putative ligand-deficient mice onto a Mxra8-deficient background or treat such animals with 
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Mxra8 function blocking mAbs may help to elucidate the residual entry pathway of CHIKV 

and possibly other alphaviruses. Alternatively, genetic screens (small interfering RNA 

[siRNA], small hairpin RNA [shRNA], or CRISPR-based) can be performed in Mxra8-

deficient cells with a loss-of-CHIKV infection readout to define the residual pathway of 

entry.

The existence of a second entry pathway for CHIKV in mammals is consistent with the 

observation that lower organisms, such as mosquitoes, which do not encode an Mxra8 

ortholog, transmit this virus in nature. The identity of this secondary entry receptor for 

CHIKV in mammals and its possible relation to the one in insects remains to be defined. 

Nevertheless, ectopic expression of Mxra8 rendered flies more susceptible to infection with 

increased replication and mortality. For mosquito transmission, arboviruses must replicate to 

high enough titers for efficient transfer to vertebrates during a blood meal, but not so high 

that pathogenesis occurs in the infected mosquito. The loss of innate immune control of 

arboviruses in insects leads to increased replication and mortality (Liu et al., 2018; Merkling 

and van Rij, 2013). Our data suggest that higher levels or ectopic expression of receptors in 

insects also can shift this balance away from controlled levels of arbovirus infection.

In summary, we generated Mxra8 mutant mice by introducing out-of-frame deletions within 

and adjacent to the second Ig-like domain. Where the 8-nt deletion resulted in a truncated, 

soluble Mxra8, the 97-nt deletion was a protein null. Both mice showed marked reductions 

in CHIKV infection and swelling and appeared to phenocopy each other. Similar results 

were observed in the Mxra8Δ8/Δ8 mice after inoculation with three other arthritogenic 

alphaviruses, MAYV, RRV, and ONNV. No obvious developmental or growth defects were 

observed in our two founder lines, which is consistent with an Mxra8-deficient mouse 

generated by another laboratory studying experimental colitis (Han et al., 2019). Although 

future studies are required to define fully the endogenous functions of Mxra8, its transient 

blockade with antibodies or small molecules could represent a plausible therapeutic strategy 

to prevent or treat infections by multiple globally emerging arthritogenic alphaviruses with 

epidemic potential.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact author Michael S. Diamond (diamond@wusm.wustl.edu). All 

plasmids, antibodies, cells, viruses, and mouse lines developed for this study are available 

under Material Transfer Agreements from Washington University.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Viruses—The following viruses were used in the study: CHIKV (LR 2006, AF15561, and 

181/25), RRV (T48), MAYV (BeH407), and ONNV (MP30). All viruses were propagated in 

Vero cells and titrated by focus-forming assays, as described previously (Zhang et al., 2018). 

The CHIKV AF15561 D71A mutant was generated by overlapping PCR. The genomic RNA 

was transcribed in vitro from cDNA using the mMESSAGE mMACHINE SP6 Transcription 
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Kit (ThermoFisher scientific, AM1340), purified, and electroporated into BHK21 cells to 

rescue the virus. The mutant virus was passaged once in Vero cells and titrated by focus-

forming assay (Zhang et al., 2018). The region encompassing the structural genes (C-E3-

E2-6K-E1) was confirmed by sequencing before use.

Generation of Mxra8 deficient mice—The sequence of Mxra8 locus (NC_000070.6) 

was obtained from NCBI, and two sgRNAs targeting the common exon were designed based 

on the RefSeq annotations, which have two nearly identical transcripts and one short, 

putative transcript. The two sgRNAs also were selected based on their low off-target profile 

and absence of single nucleotide polymorphisms: sgRNA-1, 5′-

GGAAGACTCGGCGCTCGTGG-3′; sgRNA-2, 5′-CTGTGACCAGACCCATTGCC-3′. 

The two gRNAs containing the scaffold were generated by in vitro synthesis (HiScribe T7 In 
Vitro Transcription Kit, New England BioLabs) followed by cleanup purification 

(MEGAclear Transcription Clean-Up Kit, Thermo Fisher). Guide RNAs and Cas9 protein 

were complexed and electroporated into C57BL/6 zygotes simultaneously in C57BL/6J 

mice. After genotyping and two rounds of backcrossing, founder lines with 8- or 97-nt 

frameshift deletions within Mxra8 were generated. The homozygous and heterozygous mice 

were used for experiments. The generation of deleted mice was accomplished with the aid of 

the Genome Engineering and iPSC center and Department of Pathology Micro-Injection 

Core (Washington University School of Medicine).

Mouse experiments—Experiments were carried out in accordance with the 

recommendations in the Guide for the Care and Use of Laboratory Animals of the National 

Institutes of Health after approval by the Institutional Animal Care and Use Committee at 

the Washington University School of Medicine (Assurance number A3381-01). Four week-

old WT, Mxra8+/Δ8, Mxra8Δ8/Δ8, and Mxra8Δ97/Δ97 male or female C57BL/6J mice were 

inoculated subcutaneously in the footpad with 103 FFU of CHIKV (AF15561 or LR 2006 

strains), MAYV, RRV, or ONNV. At 12 h, day 1, 2, 3, or 7 post-infection, animals were 

euthanized, and after extensive perfusion with PBS, indicated tissues were collected. 

Ipsilateral ankle joint swelling (width × height) was monitored using digital calipers as 

previously described (Hawman et al., 2013). To assess the long-term effect of CHIKV 

infection, the ipsilateral feet were collected for viral RNA quantification. Similarly, for 

antibody pre- or post-treatment experiments, 300 mg of purified Armenian hamster mAbs 

(1G11.E6 + 7F1.D8) or isotype control (Bio X Cell # BE0260) in PBS were administered 

via an intraperitoneal route to four week-old WT male C57BL/6 mice either 12 h before or 

after subcutaneous inoculation in the footpad with 103 FFU of CHIKV-AF15561. The mice 

also were administered mAbs at 4 and 8 dpi, and joint swelling was measured for 12 days. 

For intravenous inoculation experiments, mice were injected via the tail vein with 103 FFU 

of CHIKV AF15561, and tissues were harvested at 1 and 3 dpi for viral burden analysis. 

Blinding and randomization were not performed.

Fly infections—Mouse Mxra8 (NM_024263) gene sequences was codon-optimized for 

Drosophila, synthesized with a Drosophila Kozak-like sequence (CAAA) and a 3′ FLAG 

tag, and inserted into a NotI and XhoI digested pUASTattB vector using In-Fusion Cloning. 

Transgenic flies were generated after integrating the Mxra8 transgene into Chromosome 2 
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attB (Rainbow Transgenics). Flies were verified, and homozygous males or WT males were 

crossed to female flies expressing Actin-GAL4 to drive ubiquitous expression of the 

transgenes. Groups of ~20 adult 7 to 10 day-old male flies (control (Actin > +) or expressing 

the transgene (Actin > Mxra8)) were inoculated with 3 × 103 PFU of CHIKV (strain 

181/25). Survival was monitored daily in three independent experiments. Groups of 15 adult 

7 to 10 day-old female flies were inoculated with 3 × 103 PFU of CHIKV (181/25) and were 

subsequently crushed in TRIzol (Thermo Fisher) at 7 dpi. Total RNA was purified, and RT-

qPCR was performed using virus-specific primers (5′-Forward: 

GGCAGTGGTCCCAGATAATTCAAG, 5′-Reverse: 

ACTGTCTAGATCCACCCCATACATG) and normalized to the housekeeping gene rp49 

(5′-Forward: AAGAAGCGCACCAAACACTTCATC, 5′-Reverse: 

TCTGTTGTCGATACCCTTCGGCTT).

METHOD DETAILS

Viral growth kinetics analysis—Primary MEFs (sex unknown) were generated from 

E15 to E16 mouse embryos and maintained in DMEM supplemented with 10% FBS, non-

essential amino acids, and penicillin and streptomycin. Cells in 12-well plates were 

inoculated with CHIKV AF15561 at a multiplicity of infection (MOI) of 0.01 for 1 h, 

washed twice and maintained in culture medium supplemented with 2% FBS. Supernatants 

were collected at specific times after infection for virus titration on Vero cells by focus-

forming assay (Pal et al., 2013).

Mxra8 ELISA binding assay—Maxisorp ELISA plates were coated with 2 μg/ml of anti-

CHIKV mAbs CHK-152 and CHK-166 (Pal et al., 2013) overnight in sodium bicarbonate 

buffer (pH 9.3). Plates were washed four times with 1X PBS and blocked for 1 h at 25°C 

with 4% BSA. CHIKV AF15561 wild-type and D71A mutant viruses were diluted to 106 

FFU/ml in 2% BSA and added to plates (50 μl/well) for 1 h at 25°C. Plates were washed five 

times with PBS and incubated with 10 μg/ml of Mxra8-Fc (mouse Mxra8 fused to human 

IgG1 Fc region), humanized CHK-152, or humanized anti-WNV E16 (negative control) 

(Oliphant et al., 2005; Pal et al., 2013). Plates were washed, incubated with horseradish 

peroxide conjugated goat anti-human IgG (H + L) (1:5000 dilution, Jackson 

ImmunoResearch #109-035-088) for 1 h at 25°C, and washed again. Plates then were 

developed with 3,3′-5,5′ tetramethylbenzidine substrate (Thermo Fisher) and 2N H2SO4 

and read at 450 nM using a TriStar Microplate Reader (Berthold).

Western blotting—Primary MEFs (106 cells, sex unknown) were harvested using TrypLE 

(Thermo Fisher #12605010) and lysed in 45 μL of RIPA buffer (Cell Signaling #9806S) 

containing protease inhibitors (Sigma Aldrich #S8830). Samples were prepared in LDS 

buffer (Life Technologies) under reducing (50 mM dithiothreitol) conditions. After a 70°C 

incubation for 10 min, samples were electrophoresed using 12% Bis-Tris gels in MOPS 

running buffer (Life Technologies). Proteins were transferred to PVDF membranes using an 

iBlot2 Dry Blotting System (Life Technologies). Membranes were blocked with 5% non-fat 

dry powdered milk, and probed with hamster anti-Mxra8 mAbs (3G2.F5 or 9G2.D6, 0.5 μg/

ml). Western blots were incubated with Peroxidase AffiniPure goat anti-Armenian hamster 

IgG (H+L) (Jackson ImmunoResearch #127-035-160), and developed using SuperSignal 
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West Pico Chemiluminescent Substrate or SuperSignal West Femto Maximum Sensitivity 

Substrate (Life Technologies). To detect the truncated, soluble form of Mxra8 in the culture 

supernatant, MEFs were maintained in DMEM supplemented with 1% FBS in T150 flasks. 

One day later, supernatants were harvested and concentrated using Amicon Ultra-15 

Centrifugal Filter Units (EMD Millipore #UFC900324). Concentrated supernatants were 

added to RIPA buffer (1X final) for western blotting analysis as described above.

Histology and RNA in situ hybridization—Four week-old WT and Mxra8Δ8/Δ8 male 

mice were inoculated subcutaneously in the foot with 103 FFU of CHIKV AF15561. At 3 

dpi, animals were euthanized and perfused extensively with PBS. Ipsilateral and 

contralateral feet were harvested and fixed in 4% paraformaldehyde (PFA) for 24 h. Tissues 

were decalcified in 14% EDTA free acid for two weeks and embedded in paraffin. Tissue 

sections were stained with hematoxylin and eosin to assess tissue morphology. To determine 

sites of CHIKV infection, RNA in situ hybridization was performed using the RNAscope 2.5 

HD Assay (Brown Kit) according to the manufacturer’s instructions (Advanced Cell 

Diagnostics). Briefly, sections were deparaffinized, treated with H2O2 and Protease Plus 

prior to probe hybridization. A probe specifically targeting the CHIKV RNA (strain 

AF15561) (Advanced Cell Diagnostics, #481891) was custom-designed and used for ISH 

experiments. Tissues were counterstained with Gill’s hematoxylin. To assess the cell types 

that express Mxra8 RNA in naive mice, in situ hybridization was performed using the 

RNAscope 2.5 HD Assay (Red Kit). A probe specifically targeting Mxra8 (NM_024263.4) 

(Advanced Cell Diagnostics, #520711) was custom-designed. A negative control probe 

(#320751) was used in parallel. Tissue sections were visualized using a Nikon Eclipse 

microscope equipped with an Olympus DP71 color camera.

qRT-PCR—RNA from serum and tissues was extracted with the Viral RNA Mini Kit and 

RNeasy Mini Kit (QIAGEN), respectively. Viral RNA levels were determined using the 

TaqMan® RNA-to-Ct 1-Step Kit (Thermo Fisher #4392938) on QuantStudio 6 Flex 

instrument. A standard curve was produced using serial 10-fold dilutions of CHIKV RNA 

extracted from the viral stock. Viral burden was expressed on a log10 scale as viral focus-

forming unit (FFU) equivalents per g of tissue or ml of serum. Primers and probes used are 

as follows: CHK181/AF Fwd: 5′-TCGACGCGCCATCTTTAA-3′; CHK181/AF Rev: 5′-

ATCGAATGCACCGCACACT-3′; CHK181/AF Probe: 5′-/56-FAM/ACCAGCCTG/ZEN/

CACCCACTCCTCAGAC/3IABkFQ/-3′; GAPDH (Mm.PT.39a.1 predesigned set, IDT); 

and Mxra8 (Mm.PT.58.42796673, predesigned set, IDT).

Flow cytometry—To analyze immune cells in the musculoskeletal tissues at 3 and 7 dpi, 

ipsilateral feet were perfused extensively, skinned, disjointed from the tibia, and digested in 

RPM11640 medium supplemented with 10% FBS, 15 mM HEPES, 0.5 mg/ml of 

collagenase (Sigma, C0130) and 10 ug/ml of DNase I (Sigma, D5025) for 1 h at 37°C. 

Digested tissue was passed through a 70 μm strainer, and cells were separated by 

centrifugation and washed with PBS supplemented with 2% FBS and 2 mM EDTA. Cells 

were stained with a Fixable Viability Dye eFluor 506 (eBioscience, 65-0866-14) and 

incubated with the following antibodies for 1 h at 4°C: CD16/32 (Biolegend, 101301, 1:200) 

CD11b PE-Dazzle 594 (BioLegend, 101256, 1:200), Ly6G PerCP-Cy5.5 (Biolegend, 
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127616, 1:400), Ly6C Pacific Blue (BioLegend, 128014, 1:200), F4/80 APC (Thermo 

Fisher, 17-4801-82, 1:200), CD11c PE-Cy7 (BD Biosciences, 558079, 1:200), I-A/I-E 

(MHC class II) Alexa Fluor 700 (BioLegend, 107622, 1:200), NK-1.1 PE (BioLegend, 

108708, 1:200), CD3 BUV737 (BD Biosciences, 564380, 1:200), CD8 PerCP-Cy5.5 

(BioLegend, 100734, 1:200), CD4 BV786 (BioLegend, 100552, 1:200), B220 BV711 

(BioLegend, 103255, 1:200). Cells were analyzed using a BD X20 Fortessa flow cytometer, 

and all data were processed using FlowJo software (FlowJo, LLC).

Structural analysis of Mxra8 truncation mutants and CHIKV E2-D71 residue—
The truncated forms of Mxra8 generated by the 8- or 97-bp frameshift deletions were 

modeled from the atomic coordinates of mouse Mxra8 (PDB 6NK3 ((Basore et al., 2019)) 

using PyMOL (Version 2.1.0, Schrodinger). The CHIKV E2-D71 residue was visualized on 

the Mxra8-bound CHIKV VLP cryo-EM model (PDB 6NK6) using PyMOL.

Cytokine and chemokine analysis—Mice were inoculated subcutaneously with 103 

FFU of CHIKV, and the ipsilateral feet were collected at 3 and 7 dpi. Tissues were 

homogenized in DMEM supplemented with 2% FBS with a MagNA lyser (Roche) and 

analyzed for cytokine and chemokine levels using a Bio-Plex Pro Mouse Cytokine 23-plex 

Assay kit (Bio-Rad, #m60009rdpd) according to the manufacturer’s instructions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis—Statistical significance was assigned when p values were < 0.05 using 

Prism Version 8 (GraphPad). Analysis of levels of joint swelling, viral burden, cytokines and 

chemokines, and immune cell infiltration was determined by Mann-Whitney, one-way 

ANOVA, Kruskal-Wallis ANOVA, or unpaired t test depending on the data distribution and 

the number of comparison groups. The specific tests and numbers of experiments are 

indicated in the Figure legends.

DATA AND CODE AVAILABILITY

The published article includes all data generated or analyzed during this study. Original 

source data for Figures in the paper are available upon request to the Lead Contact author. 

No proprietary software was used in the data analysis.
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Highlights

• Reduced infection of four different alphaviruses is seen in Mxra8-deficient 

mice

• Reduced CHIKV-induced joint swelling is observed in Mxra8-deficient mice

• D71A mutant CHIKV that lacks binding to Mxra8 is attenuated in wild-type 

mice

• Ectopic Mxra8 expression is sufficient to enhance CHIKV infection in 

Drosophila
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Figure 1. Generation of Mxra8-Deficient Mice by CRISPR-Cas9 Gene Targeting
(A) Scheme of Mxra8 gene locus with sgRNA targeting sites. Annotated transcripts are 

shown in gray and encoded proteins in purple. Two green arrows indicate the sgRNA 

targeting sites.

(B) Location of Mxra8 proteins (8- and 97-nt frameshift deletions) on the X-ray crystal 

structure of mouse Mxra8 (PDB: 6NK3). The structurally unsolved regions adjacent to the 

plasma membrane are shown as circled amino acids, and the ends of Mxra8 proteins 

generated by the gene-editing deletions are indicated by arrows. TM, transmembrane; tail, 

cytoplasmic domain.

(C and D) Western blotting of cell lysates (C) or culture supernatants (D) of primary MEFs 

from WT, Mxra8Δ8/Δ8, and Mxra8Δ97/Δ97 mice using two different anti-Mxra8 mAbs. Data 

are representative of two experiments.

(E) Growth kinetic analysis of CHIKV-AF15561 (MOI 0.01) in primary MEFs from WT, 

Mxra8Δ8/Δ8, and Mxra8Δ97/Δ97 mice. Data are pooled from two experiments (n = 6).

See also Figures S1 and S2.
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Figure 2. CHIKV Infection in Mxra8-Deficient Mice during the Acute Phase after Subcutaneous 
Inoculation
(A and B) WT and Mxra8Δ8/Δ8 mice were inoculated subcutaneously in the foot with 103 

focus-forming units (FFU) of CHIKV-AF15561. (A) At 12 h post-infection, the ipsilateral 

ankle were harvested for virus titration by FFU assay (two experiments; n = 8; two-tailed 

Mann-Whitney test; **p < 0.01; ns, not significant). (B) At 1 and 2 dpi, serum was collected 

for viral RNA quantification by qRT-PCR (two experiments; n = 9–10; two-tailed Mann-

Whitney test; *p < 0.05 and **p < 0.01).

(C–F) WT, Mxra8+/Δ8, or Mxra8Δ8/Δ8 mice were inoculated subcutaneously in the foot with 

103 FFU of CHIKV-AF15561. At 3 (C–E) or 7 dpi (F), foot swelling (C) was measured (two 

experiments; n = 8–18; one-way ANOVA with Tukey’s test; ***p < 0.001 and ****p < 

0.0001), and ipsilateral and contralateral ankles and calf muscles (D–F) were harvested for 

virus titration by FFU assay (two experiments; n = 8–18; (D), one-way ANOVA with 

Tukey’s test; (E) Kruskal-Wallis with Dunn’s test; (F) two-tailed Mann-Whitney test; *p < 

0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001; ns, not significant).

(G–L) WT and Mxra8Δ97/Δ97 (G–I) or WT and Mxra8Δ8/Δ8 (J–L) mice were inoculated 

subcutaneously in the foot with 103 FFU of CHIKV-AF15561 (G–I) or CHIKV-LR 2006 (J–

L). At 3 dpi, foot swelling (G and J) was measured (two experiments; n = 9–12; two-tailed 
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unpaired t test; ****p < 0.0001), and ipsilateral and contralateral ankles and calf muscles (H, 

I, K, and L) were harvested for virus titration by FFU assay (two experiments; n = 9–12; 

two-tailed Mann-Whitney test; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).

(M) RNA in situ hybridization of ipsilateral and contralateral feet using a CHIKV-specific 

probe from WT and Mxra8Δ8/Δ8 mice at 3 dpi. CHIKV RNA+ foci in the contralateral ankles 

of WT mice are boxed and shown below as higher-magnification images. Scale bar, 100 βm; 

representative images are shown from n = 4 mice from two experiments.

See also Figure S3.
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Figure 3. CHIKV Infection in Mxra8-Deficient Mice during the Acute Phase after Intravenous 
Inoculation
WT and Mxra8Δ8/Δ8 mice were inoculated intravenously via the tail vein with 103 FFU of 

CHIKV-AF15561. At 1 and 3 dpi, ankle and calf muscle from both left (A) and right (B) 

sides were collected for virus titration by FFU assay (two experiments, n = 9–10; two-tailed 

Mann-Whitney test;**p <0.01, ***p < 0.001, and ****p < 0.0001; ns, not significant).
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Figure 4. Diminished Infection of MAYV, RRV, and ONNV in Mxra8Δ8/Δ8 Mice
WT and Mxra8Δ8/Δ8 mice were inoculated subcutaneously in the foot with 103 FFU of 

MAYV (A–D), 103 FFU of RRV (E and F), or 103 FFU of ONNV (G). Foot swelling of 

MAYV infection (A) at 3 dpi was measured (two experiments; n = 14–15; two--tailed 

unpaired t test; ***p < 0.001). Ipsilateral and contralateral ankles and calf muscles at 12 h 

(G) and 3 dpi (B–F) were harvested for virus titration by FFU assay (two experiments; n = 

9–15; two-tailed Mann-Whitney test; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 

0.0001; ns, not significant).
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Figure 5. CHIKV Infection and Disease in Mxra8Δ8/Δ8 Mice or WT Mice Treated with Blocking 
Anti-Mxra8 mAbs
(A and B) WT and Mxra8Δ8/Δ8 mice were inoculated subcutaneously in the foot with 103 

FFU of CHIKV-AF15561. (A) Foot swelling was measured daily for 28 days (two 

experiments; n = 11–13; means ± SEMs; two-way ANOVA with Sidak’s test; ****p < 

0.0001). (B) Ipsilateral ankles were collected at 28 dpi, and viral RNA levels were measured 

by qRT-PCR (two experiments; n = 11–13; two-tailed Mann-Whitney test; ****p< 0.0001).

(C and D) WT mice were inoculated subcutaneously in the foot with 103 FFU of CHIKV-

AF15561 and then administered either anti-Mxra8 mAbs (1G11.E6 + 7F1.D8; 300 μg total) 

or isotype control hamster mAb (300 μg) via an intraperitoneal injection at −12 h (C) or +12 

h (D) post-infection. Subsequent doses of mAbs were administered at 4 and 8 dpi. Foot 

swelling was measured daily for 12 days (two experiments; n = 8; means ± SEMs; two-way 

ANOVA with Sidak’s test; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).

Zhang et al. Page 26

Cell Rep. Author manuscript; available in PMC 2019 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Analysis of Inflammation in the Musculoskeletal Tissues of Mxra8Δ8/Δ8 Mice after 
CHIKV Infection
(A–D) WT and Mxra8Δ8/Δ8 mice were inoculated subcutaneously in the foot with 103 FFU 

of CHIKV-AF15561.

(A) At 3 dpi, ipsilateral feet were collected, fixed, decalcified, paraffin embedded, sectioned, 

and stained with H&E. Scale bar, 100 μm; representative images are shown from n = 4 mice 

from two experiments. Arrows indicate tissue edema. At days 0 (B) (uninfected), 3 (C), and 

7 (D) post-infection, cells from ipsilateral feet were harvested and analyzed for numbers of 

leukocytes (CD45+), monocytes (CD11b+CD11c−Ly6G−Ly6C+), neutrophils (CD11b
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+CD11c−Ly6G+), natural killer(NK) cells (CD3−NK1.1+), macrophages (CD11b+CD11c
−Ly6G−Ly6C−F4/80+), monocyte-derived dendritic cells (DCs) (CD11b+CD11c+Ly6G
−Ly6C+MHCII+), CD4+ T cells (CD3+CD4+), and CD8+ T cells (CD3+CD8+) by flow 

cytometry (see Figure S4 for gating scheme, two experiments; n = 8–10; two-tailed Mann-

Whitney test; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001; ns, not significant).

(E) At 3 and 7 dpi, ipsilateral ankles from WT and Mxra8Δ8/Δ8 mice were harvested, 

homogenized, and the indicated cytokines or chemokines were measured (two experiments; 

n = 8–10, mean ± SD; two-way ANOVA with Sidak’s test; *p < 0.05; **p < 0.01; ****p < 

0.0001; ns, not significant).

See also Figures S4 and S5.
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Figure 7. Loss- and Gain-of-Function Effects of Mxra8 in Mice and Drosophila
(A) Structural representation of the CHIKV E2-D71 residue (red) on the cryoelectron 

microscopy (cryo-EM) model of Mxra8 bound to CHIKV (PDB 6NK6). Color scheme: 

Mxra8, purple; CHIKV E2, cyan; and CHIKV E1, gray. Inset: magnified view of the Mxra8-

CHIKV E2-D71 interface.

(B) Loss of binding to Mxra8 by D71A mutation in CHIKV. WT and D71A CHIKV were 

captured with mouse CHK-152 (anti-E2) and CHK-166 mAb (anti-E1). After washing, 

Mxra8-Fc(human IgG1 Fc)was added and binding was measured. Equivalent amounts of 
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WT and D71A CHIKV were captured on the microtiter plate as determined by the binding 

of humanized CHK-152. Humanized E16 (anti-West Nile virus [WNV] E) served as a 

negative control. Results are the mean of three experiments performed in triplicate (Mann-

Whitney test: ****p < 0.0001).

(C) WT and Mxra8Δ8/Δ8 mice were inoculated subcutaneously in the foot with 103 FFU of 

CHIKV-AF15561 (WT or D71A mutant). At 3 dpi, tissues were harvested for virus titration 

by FFU assay(two experiments; n = 8; two-tailed Mann-Whitney test; *p < 0.05, **p < 0.01, 

and ***p < 0.001; ns, not significant).

(D–F) Transgenic flies expressing mouse Mxra8 have increased susceptibility to CHIKV 

infection.(D) Flies of the indicated genotypes were analyzed for the ectopic expression of 

Mxra8 by western blotting. (E) The indicated flies were either uninfected or challenged with 

CHIKV (strain 181/25) and monitored daily for mortality. Data are pooled from three 

experiments and the number of flies are indicated (log rank test; **p < 0.01). (F) Groups of 

15 flies of the indicated genotype were inoculated with CHIKV, and total RNA was 

collected at 7 dpi. Viral RNA was quantified by qRT-PCR, normalized to the housekeeping 

gene rp49, and shown relative to control (Act > +). Means ± SEMs are shown for four 

experiments (unpaired t test; *p < 0.05).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Mxra8 1G11.E6 Zhang et al., 2018; PMID 29769725 N/A

Anti-Mxra8 3G2.F5 Zhang et al., 2018; PMID 29769725 N/A

Anti-Mxra8 7F1.D8 Zhang et a., 2018; PMID 29769725 N/A

Anti-Mxra8 9G2.D6 Zhang et al., 2018; PMID 29769725 N/A

Armenian Hamster IgG Isotype Control Bio X Cell BE0260

CHK-152 Pal et al., 2013; PMID 24829346 N/A

CHK-166 Pal et al., 2013; PMID 24829346 N/A

Humanized CHK-152 Pal et al., 2013; PMID 24829346 N/A

Humanized CHK-166 Pal et al., 2013; PMID 24829346 N/A

Humanized E16 Oliphant et al., 2005; PMID 15852016 N/A

Peroxidase AffiniPure Goat Anti-Human IgG (H+L) Jackson ImmunoResearch 109-035-088

Peroxidase AffiniPure Goat Anti-Armenian Hamster IgG (H+L) Jackson ImmunoResearch 127-035-160

Alexa Fluor 647 Goat Anti-Armenian Hamster IgG H&L Abcam ab173004

Anti-Mouse CD16/32 Antibody BioLegend 101301

PE/Dazzle 594 Anti-Mouse/Human CD11b Antibody BioLegend 101256

PerCP/Cy5.5 Anti-Mouse Ly-6G Antibody BioLegend 127616

Pacific Blue Anti-Mouse Ly-6C Antibody BioLegend 128014

APC F4/80 Monoclonal Antibody (BM8) Thermo Fisher 17-4801-82

PE-Cy7 Hamster Anti-Mouse CD11c Antibody BD Biosciences 558079

Alexa Fluor 700 Anti-Mouse I-A/I-E Antibody BioLegend 107622

PE Anti-Mouse NK-1.1 Antibody BioLegend 108708

BUV737 Rat Anti-Mouse CD3 Antibody BD Biosciences 564380

PerCP/Cyanine5.5 Anti-Mouse CD8a Antibody BioLegend 100734

Brilliant Violet 785 Anti-Mouse CD4 Antibody BioLegend 100552

Brilliant Violet 711 Anti-Mouse/Human CD45R/B220 Antibody BioLegend 103255

Bacterial and Virus Strains

Chikungunya virus (strain LR 2006) Tsetsarkin et al., 2006; PMID 
17187566

GenBank Accession No: 
KY575571

Chikungunya virus (strain AF15561) Hawman et al., 2016; PMID 
27452455

GenBank Accession No: 
EF452493

Chikungunya virus E2-D71A mutant (strain AF15561) This study N/A

Chikungunya virus (strain 181/25) Levitt et al., 1986; PMID 3020820 GenBank Accession No: 
AF192908

Ross River virus (strain T48) World Reference Center for Emerging 
Viruses and Arboviruses

GenBank Accession 
number ACV67002

Mayaro virus (strain BeH407) World Reference Center for Emerging 
Viruses and Arboviruses

GenBank Accession 
number AAY45742

O’nyong nyong virus (strain MP30) World Reference Center for Emerging 
Viruses and Arboviruses

GenBank Accession 
number AAC97207
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Mammalian-expressed, codon-optimized mouse Mxra8 fused to human 
IgG1 Fc region

This study N/A

Fixable Viability Dye eFluor 506 eBioscience 65-0866-14

Collagenase Sigma-Aldrich C0130

Deoxyribonuclease I Sigma-Aldrich D5025

Critical Commercial Assays

MEGAscript T7 Transcription Kit Thermo Fisher AM1334

MEGAclear Transcription Clean-Up Kit Thermo Fisher AM1908

mMESSAGE mMACHINE SP6 Transcription Kit Thermo Fisher AM1340

In-Fusion HD Cloning Plus Takara 638910

RNAscope 2.5 HD Assay (Brown Kit) Advanced Cell Diagnostics 322310

RNAscope 2.5 HD Assay (Red Kit) Advanced Cell Diagnostics 322360

TaqMan RNA-to-Ct 1-Step Kit Thermo Fisher 4392938

Bio-Plex Pro Mouse Cytokine 23-plex Assay Kit Bio-Rad m60009rdpd

Deposited Data

X-ray crystal structure of murine Mxra8 Basore et al., 2019 PDB 6NK3

Electron Cryo-Microscopy of Chikungunya VLP in complex with 
mouse Mxra8 receptor

Basore et al., 2019 PDB 6NK6; EMD-9394

Experimental Models: Cell Lines

BHK-21 ATCC CCL-10

Vero ATCC CCL-81

C57BL/6J primary MEF This study N/A

C57BL/6J Mxra8Δ8/Δ8 primary MEF This study N/A

C57BL/6J Mxra8Δ97/Δ97 primary MEF This study N/A

Experimental Models: Organisms/Strains

Mouse: C57BL/6J The Jackson Laboratory 000664

Mouse: C57BL/6J Mxra8+/Δ8 This study N/A

Mouse: C57BL/6J Mxra8Δ8/Δ8 This study N/A

Mouse: C57BL/6J Mxra8Δ97/Δ97 This study N/A

D. melanogaster: Actin-Gal4 Bloomington Drosophila Stock Center BDSC:4414; FlyBase: 
FBst0004414

D. melanogaster: Actin-Mxra8 Rainbow Transgenic Flies; This study N/A

Oligonucleotides

Mxra8_sgRNA-1: 5′-GGAAGACTCGGCGCT CGTGG-3′ Genome Engineering and iPSC 
Center, Washington University in St. 
Louis

N/A

Mxra8_sgRNA-2: 5′-CTGTGACCAGACCCA TTGCC-3′ Genome Engineering and iPSC 
Center, Washington University in St. 
Louis

N/A

CHIKV FOR: GGCAGTGGTCCCAGATAATTCAAG This study N/A

CHIKV FOR: ACTGTCTAGATCCACCCCATACATG This study
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REAGENT or RESOURCE SOURCE IDENTIFIER

Drosophila rp49 FOR: AAGAAGCGCACCAAACACTTCATC Liu et al., 2018 PMID:29934091 N/A

Drosophila rp49 REV: TCTGTTGTCGATACCCTTCGGCTT Liu et al., 2018 PMID:29934091 N/A

CHK181/AF Fwd: 5′-TCGACGCGCCATCTTTAA-3′ IDT N/A

CHK181/AF Rev: 5′-ATCGAATGCACCGCACACT-3′ IDT N/A

CHK181/AF Probe: 5′-/56-FAM/ACCAGCCTG/ZEN/
CACCCACTCCTCAGAC/3IABkFQ/-3′

IDT N/A

GAPDH TaqMan Primer/Probe set IDT Mm.PT.39a.1

Mxra8 TaqMan Primer/Probe set IDT Mm.PT.58.42796673

CHIKV RNA ISH probe Advanced Cell Diagnostics 481891

Mxra8 RNA ISH probe Advanced Cell Diagnostics 520711

Control RNA ISH probe Advanced Cell Diagnostics 320751

Recombinant DNA

pUASTattB vector Bischof et al., 2007 PMID:17360644 N/A

Codon-optimized mouse Mxra8 cloned into pUASTattB vector This study N/A

CHIKV AF15561 plasmid Ashbrook et al., 2014; PMID 
25142598

CHIKV AF15561 E2-D71A plasmid This study N/A

Codon-optimized mouse Mxra8 and human IgG1 Fc cloned into 
pCDNA3.4 vector

This study N/A

Software and Algorithms

FlowJo FlowJo, LLC Version 10

PyMOL Schrodinger Version 2.1.0

GraphPad Prism GraphPad Version 8.1.1
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