ACSMedicinal

Featured Letter

Chemistry tters @ Cite This: ACS Med. Chem. Lett. 2019, 10, 1253-1259

pubs.acs.org/acsmedchemlett

Cholic Acid-based Delivery System for Vaccine Candidates against

Group A Streptococcus

Armira Azuar,’ Lili Zhao,” Tsui Ting Hei," Reshma J. Nevagi,-z_ Stacey Bartlett,” Waleed M. Hussein, "*

Zeinab G. Khalil,§ Robert J. Capon,

Istvan Toth,*’w’|| and Mariusz Skwarczynski*’T

School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
*Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Egypt
Snstitute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia

IISchool of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia

O Supporting Information

ABSTRACT: Peptide-based subunit vaccines require an
immunostimulant (adjuvant) and/or delivery system to
protect the antigenic peptide from degradation and induce
the desired immunity. Currently available adjuvants are either
too toxic for human use (experimental adjuvants) or they are
limited for use in particular vaccines or licensed countries
(commercial adjuvants). Therefore, there is an immediate
need for novel adjuvants that are both safe and effective.
Herein, we assessed the ability of cholic acid (a major bile
acid) as a nontoxic, biodegradable, human-derived, potent
vaccine delivery system. An antigenic peptide derived from
Group A Streptococcus was conjugated to hydrophobic cholic
acid via solid phase peptide synthesis to produce lipopeptide
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that self-assembled into rod-like nanoparticles under aqueous conditions. Following intranasal immunization in mice, this
lipopeptide was capable of inducing the production of opsonic epitope-specific antibodies on its own and in liposomal
formulation. The cholic acid-based conjugate induced significantly stronger humoral immune responses than cholera toxin-
based adjuvant. Thus, we demonstrated, for the first time, capability of the human-derived lipid to act as a built-in

immunoadjuvant for vaccines.
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Vaccination is one of the most effective medical treatments,
and the practice of immunization can be traced back for
centuries." Although vaccinology has advanced greatly, tradi-
tional vaccination strategies based on attenuated or inactivated
whole microorganisms are still relevant and widely used. These
forms of vaccination can produce long-lasting immunity;
however, they can also elicit autoimmunity, inflammation, or
strong allergic responses, leading to concerns about their
safety. Whole microorganism-based vaccines are often difficult
to manufacture, due to the limited technology available for the
production and purification of human pathogens (e.g., malaria
parasite) in large quantities.” They are also unstable in storage
conditions, and especially during transportation, as consistent
cold temperature is required to maintain vaccine quality and
efficacy. Thus, the emergence of subunit vaccines is an
appealing alternative to the traditional approaches.

Subunit vaccines utilize minimal microbial components
(polysaccharides, proteins, and peptides) to stimulate adaptive
immunity against a pathogen. As a result, many of the adverse
effects of traditional vaccines are eliminated.”* Moreover,
peptide-based subunit vaccines are usually produced by
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chemical synthesis, which eliminates the possibility for
potentially harmful biological contamination. Peptide antigen
is chemically fully defined, making its production customizable,
simple, reproducible, fast and cost-effective. The vaccine
produced is usually water-soluble and more stable, and it can
be freeze-dried, making storage easier. However, subunit
vaccines, especially peptide-based vaccines, require immunos-
timulants (adjuvants), and/or delivery systems to induce
effective immune responses.

Despite extensive research on adjuvants, there is still only a
limited selection of safe and potent adjuvants available for use,
which has hindered the development of subunit vaccines.
Available experimental adjuvants (e.g, complete Freund’s
adjuvant (CFA), incomplete Freund’s adjuvant (IFA), and
lipid A) show excellent immunostimulating ability, but they
also cause adverse effects.”® However, commercial adjuvants
(aluminum salt, liposome-based adjuvant (virosome and
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AS01), recombinant CTB, emulsions (MFS59, AS03, and
AF03), RC-529 synthetic monophosphoryl lipid A, and
Montanide ISA-S1) are not only limited in number, but they
are also approved only for specific vaccines and often only for
use in certain countries.’ Therefore, there is an urgent demand
for the discovery of novel, universal adjuvants that are both
effective and safe for human use. The ideal adjuvant needs to
be inexpensive, stable under storage and in vivo conditions,
nontoxic, and should help to induce a protective response even
against weak antigenic molecules, such as peptides.”®

Most adjuvants are administered as a physical mixture with
an antigen to boost immune responses against the targeted
pathogen. However, it has been observed that the incorpo-
ration of adjuvant and anq%en in the same construct can
greatly improve the efficacy.””® The conjugation ensures that
both adjuvant and antigen are taken up by the same antigen
presenting cells (APCs), thus inducing stronger immune
responses. For instance, the conjugation of acrylic polymer or
lipids to peptide antigens, in contrast to a physical mixture,
provided “self-adjuvanting” properties and the generation of
strong immune responses.g’10 Double copies of 2-amino-D,L-
hexadecanoic acid (C16) conjugated to B-cell peptide epitopes
have been shown to enhance epitope uptake by APCs (e.g.,
dendritic cells (DCs)), their maturation, as well as the
stimulation of antigen-specific antibody responses.'' " In
addition, the lipidation of antigenic peptide can protect the
antigen from enzymatic degradation, give the antigen the
ability to self-assemble to form nanogarticles, and enable the
antigen to be anchored to liposomes.'®™"® A liposomal delivery
system was approved for the protein-based vaccine against
malaria.'”*” The incorporation of self-adjuvanting lipopeptide
into liposome delivery systems has also been proven to
generate long-lasting immunity.”'

Herein, we assessed the ability of cholic acid, a major bile
acid produced from cholesterol in the liver,”* as a liposomal
anchoring moiety and potential adjuvant for vaccine delivery.
We selected cholic acid as potential immunostimulating agent
because bile salts are known to have immunomodulatory
activity. The ability of bile salts to activate neutrophils,
enhance inflammatory monocyte recruitment, and modulate
the phagocytic capability of monocytes has been reported.”
Cholic acid has been used for delivery of anticancer drugs to
overcome drug resistance in tumor cells.”*™** In recent studies,
cholic acid was able to enhance antimicrobial activity of
caragenin (bactericidal agent) against Gram-positive and
Gram-negative bacteria.”” In all of these studies, cholic acid
was found to be safe and well-tolerated by animals. Cholic acid
has not previously been used for antigen delivery despite it can
be easily conjugated to an antigen via its carboxylic group”**°
and incorporated into a liposome, serving as an anchoring
moiety for peptide antigens.

Vaccine candidates (Figure 1) were designed based on
PADRE universal T-helper and J8 conserved B-cell epitope
derived from Group A Streptococcus (GAS) M protein. GAS
is a Gram-positive, cocci bacterium that can cause various
diseases, ranging from noninvasive (e.g., pharyngitis and
pyoderma), to invasive (e.g, cellulitis, erysipelas, and
Streptococcal toxic shock syndrome) and lethal postinfectious
diseases (e.g, rheumatic fever and rheumatic heart dis-
ease).”’ > Peptide 1 bearing PADRE and J8 epitopes was
conjugated to cholic acid to produce lipopeptide 2, which was
then incorporated into cationic liposomes (L2). This system
was compared to classic self-adjuvanting C16-based lip-
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Figure 1. Structures of peptide 1 and lipopeptides 2—3, encapsulated
into liposome delivery systems L1—L3.

opeptide alone (3) and in liposome formulation (L3). The
compounds 1—3 and encapsulated liposomes L1—L3 were
evaluated for their ability to trigger humoral immune responses
following intranasal administration in mice.

Results. Preparation and Characterization of Vaccine
Candidates. Vaccine candidates were designed to incorporate
PADRE universal T-helper and J8 conserved B-cell epitopes,
conjugated to cholic acid (2) and C16 lipid moiety (3) (Figure
1). The epitopes were linked through Lys-Lys spacers. An
additional Ser-Ser spacer was included between the peptide
sequence and the two C16 lipid moieties, following a
previously published design.”> Compounds 1—3 were success-
fully synthesized using Fmoc-SPPS (Figure S1) and self-
assembled to form nanoparticles (2 and 3) in water. In
addition, compounds 1—3 were also incorporated into
liposomes composed of DPPC:CH:DDAB to produce lip-
osomes L1—L3, respectively. The liposomes were extruded via
a 100 nm membrane to form uniform unilamellar vesicles. The
size, size distribution (PDI), surface charge, morphology, and
stability of compounds 2 and 3 and liposomes L1-L3 were
characterized using DLS and TEM (Tables 1 and S1, Figures 2
and S2).

Table 1. Physicochemical Characterization of the
Compounds 2, 3, and Liposomes L1—L3 by Dynamic Light
Scattering (DLS)

Vaccine Zeta potential

construct Particle size (nm) PDI (mV)
2 128+ 2and 9 + 1 0.328 + 0.002 20.8 £ 3.1
3 312 £ 8 0.116 + 0.105 46.1 + 2.0
L1 189 2 0.035 + 0.017 47.7 £ 0.8
L2 163 + 1 0.034 + 0.022 469 £ 0.3
L3 165 + 2 0.033 + 0.017 459 = 09
Blank 161 + 1 0.035 + 0.008 43.6 + 0.5

liposome

Compound 2 self-assembled in water, and DLS size
distribution analysis showed two separate peaks (10 and 130
nm, Table 1). These corresponded to rod-like particles
observed on TEM images, 10 nm thick and 100 nm long
(Figure 2). In contrast, compound 3 produced rather spherical
particles, approximately 300 nm in diameter, as confirmed by
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Figure 2. Particle-imaging and morphology of lipopeptides 2 and 3, blank liposomes, and encapsulated liposomes L1—-L3, captured by TEM (bar

200 nm).

both DLS and TEM. Compounds 2 and 3 were both positively
charged, but compound 2 had a lower zeta potential. However,
it has to be taken into account that DLS does not provide
accurate zeta potential for nonspherical particles (zetasizers
measure free mobility and hydrodynamic size to convert these
characteristics to zeta potential, using theoretical formulas
approximating the nanoparticle as a sphere).”’ Incorporating
peptide 1 into the liposome did not affect the liposome size;
both blank liposome and liposome L1 exhibited an average
diameter of 160 nm. The anchoring of compounds 2 and 3
onto a liposomal surface (L2 and L3) resulted in a minor
increase of the size of liposomes. Both anchoring and
encapsulation of positively charged J8 epitope increased the
zeta potential of liposomes (L1—L3 vs blank liposomes). All of
the liposomes had uniform size distributions (PDI < 0.1) and
unilamellar structure, as observed through TEM images. In
addition, the liposomes were stable for at least 11 weeks at RT
according to DLS analysis (Table S1).

Induction of Antibody Responses. Immunological evalua-
tion of peptide 1 + CTB (positive control), lipopeptides 2—3,
and liposomes L1—L3 was performed in C57BL/6 mice using
the prime-boost vaccination strategy. A negative control group
was treated with PBS and blank liposome. All of the vaccine
candidates were able to induce J8-specific IgG production after
the final boost (Figure 3). Compound 2 and liposome L2
induced the most significant antibody titers when compared to
the positive control group (p < 0.0001). Compound 3 (p <
0.01) and liposome L3 (p < 0.001) also stimulated higher
antibody production than CTB-adjuvanted peptide antigen.
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There was no significant difference in antibody titers generated
by compound 2 and L2. The vaccine candidates did not induce
saliva ]8-specific IgA antibody production, which was
consistent with other peptide vaccine candidates bearing
PADRE T-helper.*”

Antibody Opsonization Assay. Antibodies produced by the
immunized mice were tested for their ability to opsonize
different strains of GAS clinical isolates (Figure 4). Sera
collected from mice immunized with compound 2 and
liposome L2 showed significantly higher levels of opsonization
against all GAS strains when compared to PBS. L2 induced the
production of slightly more opsonic antibodies than compound
2. Sera from mice immunized with compound 3 and liposome
L3 show poor opsonic activity, which might be related to the
general lower level of antibody titers induced by them.

MTT Cytotoxicity Assay. Three cell lines, HEK293, SW620,
and NCIH460, were used to evaluate the cytotoxicity of lead
vaccine candidates (Figure S3). In concentrations of up to 2
mg/mL, compound 2 did not reduce human cell lines viability,
suggesting lack of cholic acid-associated toxicity. However,
slight toxicity was observed for liposome L2 with increased
concentration, which is often reported for cationic lip-
osomes,”** even when used as a vaccine adjuvant.

Discussion. The peptide-based vaccines presented here
were designed to stimulate humoral-mediated adaptive
immunity, utilizing cholic acid as an adjuvant, against GAS
through the incorporation of B-cell epitope J8 and universal T-
helper cell epitope PADRE into peptide antigen 1. J8 was
selected as an antigen as it is derived from the conserved
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J8-specific IgG Titer for
Serum Collected after 3rd Immunization
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Figure 3. J8-specific serum IgG antibody titers from the final bleed
after immunization with peptide 1 + CTB (positive control),
lipopeptides 2—3, and liposomes L1-L3 in CS7BL/6 mice, as
analyzed by ELISA. Each point represents an individual mouse; bars
represent the average antigen-specific serum IgG antibody titers.
Statistical analysis was performed using one-way ANOVA with
Tukey’s multiple comparison test; (*) p < 0.0S, (**) p < 0.01, (**%*)
p < 0.001, (*¥***) p < 0.0001.
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Figure 4. Average opsonization percentage of different GAS strains,
ACM-5199, ACM-5203, GC2 203, D3840, and D2612, by serum
taken on day 60 after the primary immunisation to C57BL/6 mice (n
=3).

region of GAS M protein and is able to provide immune
protection against the majority of GAS serotypes M
. 3536 . . . .
proteins. Vaccine candidates that incorporate J8 epitope
successfully completed phase 1 clinical trials as a vaccine
candidate against GAS and no complications or side effects
were reported.”’ Synthetic universal T-helper cell epitope
PADRE was selected due to its high efficiency and safety

profile in human clinical trials.”*® PADRE was able to bind
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strongly with 15 of the 16 HLA-DR types, which could
overcome issues associated with high polymorphism of HLA-
DR in the human population.*®

Peptide-based vaccines need to be incorporated into
appropriate delivery systems or coadministered with an
adjuvant as peptides are poor immunogens and susceptible
to enzymatic degradation.”*” Delivery systems enhance
antigen recognition by mimicking pathogens based on their
size, shape, surface, and morphological and physiochemical
properties. Ideal adjuvants and delivery systems should be
stable under storage and in vivo conditions and nontoxic. They
also need to be able to help to induce strong immune
responses against poor antigens such as peptides.

We designed compounds 2 and 3 and liposomes L2 and L3
to compare the potential adjuvanting properties of cholic acid
with classic lipopeptide. Lipidation of antigenic peptide with
Ser-Ser-C16-C16- (a well-recognized self-adjuvanting lipid
moiety”) produced compounds that were able to induce
strong immune responses and antibody production upon
intranasal administration.”” Lipopeptides 2—3 were incorpo-
rated into liposomal delivery systems, which have self-
adjuvanting properties and are often used for antigen
delivery.'”*"*' Both C16 and cholic acid, as a cholesterol
derivative and bile salt, can be easily incorporated into
liposomes.'"** Large liposomes (>400 nm) are less potent in
inducing humoral immune responses;43 therefore, liposomes
L1-L3 were extruded through a 100 nm membrane. Being a
bile salt, there was a chance that cholic acid could disrupt the
liposomal membrane and reduce stability; therefore, the
stability of L1—L3 was monitored over 11 weeks. The
anchoring of lipopeptides 2—3 did not affect liposomes
stability (Table S1).

Liposomes boost protective immunity by inducing both
innate and adaptive immunity against carried antigens.**™*°
Liposomes also enable intranasal delivery of vaccines, relating
to better patient compliance and improved safety profile in
comparison to traditional injection routes.*’ Intranasal
vaccines are more easily administered, especially in developing
countries, where medical skills and facilities are less efficient
but the prevalence of GAS infection is higher."® Therefore,
intranasal administration has been chosen as a preferable
delivery route for compounds 1—-3 and liposomes L1-L3.
Similar to our previous observations,” liposomes bearing
lipidated antigen (L3) were more effective in inducing immune
responses than liposomes carrying entrapped antigen (L1).
Remarkably, L2 induced significantly higher immune responses
than CTB-adjuvanted antigenic peptide 1 and other liposomes
(L1 and L3), proving the capability of cholic acid to act as an
efficient anchoring moiety with potential self-adjuvanting
properties. Moreover, cholic acid conjugate 2 stimulated
similar immune responses even without the presence of
liposomes. The higher antibody titers stimulated by lip-
opeptide 2 compared to 3 can be correlated to its ability to
self-assemble into rod-like particles, compared to the larger,
cluster-like nanoparticles formed by peptide 3. Cells recognize
rod-like structures by their thickness, not their length,‘”’5 and
smaller nanoparticles (20—50 nm) are generally more efficient
in inducing immune responses than larger particles (>100
nm).>" Thus, compound 2 was more efficient in antigen
delivery than 3, most likely because of its size/shape
properties.

Finally, in opsonization assays, only the sera from mice
immunized with compound 2 and liposome L2 were able to
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kill clinical GAS isolates. However, liposome L2 showed signs
of toxicity in examined cells (Figure S3). Therefore, despite the
stronger opsonic capabilities of L2, compound 2 might be a
more promising vaccine candidate for further development.

Overall, the lipidation of antigenic peptide with cholic acid
enhanced the immune response of targeted peptide antigen
and showed stronger adjuvating capacity than traditional self-
adjuvating lipids.

Conclusion. We demonstrated that cholic acid conjugated
to peptide antigen can be self-assembled into nanoparticles or
incorporated into liposomes. Both liposomes and conjugate
alone were able to induce high antibody titers that were
opsonic against GAS clinical isolates. Thus, we have shown for
the first time that human-derived lipid, cholic acid, can act as a
built-in immunoadjuvant for vaccines.
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