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Abstract

Tissue is translucent to shortwave infrared (SWIR) light, rendering optical imaging superior in this 

region. However, the widespread use of optical SWIR imaging has been limited, in part, by the 

lack of bright, biocompatible contrast agents that absorb and emit light above 1000 nm. J-

Aggregation offers a means to transform stable, near-infrared (NIR) fluorophores into red-shifted 

SWIR contrast agents. Here we demonstrate that J-aggregates of NIR fluorophore IR-140 can be 

prepared inside hollow mesoporous silica nanoparticles (HMSNs) to result in nanomaterials that 

absorb and emit SWIR light. The J-aggregates inside PEGylated HMSNs are stable for multiple 

weeks in buffer and enable high resolution imaging in vivo with 980 nm excitation.

Optical imaging with shortwave infrared (SWIR, 1000–2000 nm) light has emerged as a 

powerful method of fluorescence imaging in animals due to the superior resolution and 

contrast one can achieve with low energy light (Figure 1A).1 A primary challenge with 

SWIR imaging is the development of bright, biocompatible, SWIR contrast agents.2 

Originally, the advantageous qualities of imaging in the SWIR region were showcased with 

carbon nanotubes,3 quantum dots,4 and rare earth nanomaterials.5 In efforts to set the stage 

for clinical translation, the past three years have seen a focus on the synthesis of nontoxic, 

SWIR-emissive organic fluorophores.6 This work has significantly expanded the suite of 

fluorophores that emit above 1000 nm; however, challenges remain in the stability, delivery, 
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and brightness of SWIR dyes. Consequently, we looked to explore an alternative avenue to 

create SWIR organic materials: J-aggregation.

J-Aggregation is the slip-stacked alignment of chromophores that leads to constructive 

coupling of the excited state transition dipoles (Figure 1B).7 The photophysical 

consequences of J-aggregation are bathochromically shifted absorption and emission 

spectra, narrow absorption and emission bands with small Stokes shifts, enhanced 

absorbance coeffcients (ε), and shortened fluorescence lifetimes which can result in 

enhanced quantum yields (ΦF) and cycling rates. Many J-aggregate characteristics are 

beneficial qualities for in vivo imaging: red-shifted absorption and emission spectra will 

enable significant depth penetration during both the excitation and image acquisition,2,8 

narrow bands can facilitate multi plexed imaging, and increased ε will result in bright 

materials. Despite the significant photophysical advantages J-aggregates typically have over 

the monomer, there are few reports of employing J-aggregates for in vivo imaging due to the 

diffculty in obtaining and stabilizing the necessary chromophore alignment in complex 

settings.9

Nanostructures can sequester and protect payloads, rendering nanomaterials a promising 

approach toward stabilizing J-aggregates in vivo. In 2016, Zheng and co-workers performed 

image-guided surgery with porphyrin lipids that formed J-aggregates upon self-assembly 

into nanovesicles.10 The following year, Xu and co-workers prepared pyrrolopyr-role 

cyanine J-aggregate-containing polymer micelles, which could be visualized after 

subcutaneous injection.11 In work recently published, Fan and co-workers reported a 

squaraine J-aggregate, stabilized in polymeric micelles, for SWIR image-guided 

photothermal therapy.12 Each of these reports utilizes self-assembled organic nanomaterials,
13 which are prone to disassembly when diluted in the presence of hydrophobic 

biomolecules, leading to destabilization of the J-aggregate.14 Here, we employ robust, 

biocompatible, hollow mesoporous silica nanoparticles to stabilize and protect SWIR-

emissive J-aggregates of IR-140 for in vivo imaging (Figure 1C,D).

Hollow mesoporous silica nanoparticles (HMSNs) have 2–4 nm pores that open into a large, 

10–200 nm cavity, allowing these nanostructures to carry significant cargo.15 The surfaces of 

the HMSNs can be modified to alter the biodistribution of the nanoparticles.16 Consequently, 

there are numerous reports of HMSNs as the core scaffold of multifunctional materials.
15a,16b,17 Included in these studies are the loading or conjugation of visible18 and near-

infrared15a,19 fluorophores and administering the resulting nanomaterials for imaging. 

However, the controlled assembly of J-aggregates in HMSNs has yet to be demonstrated.

To realize SWIR-emissive J-aggregates inside HMSNs, we utilized the heptamethine dye 

IR-140 (1). IR-140 is a commercially available NIR fluorophore (λmax,abs = 826 nm, 

λmax,em = 875 nm) that has been applied as a photo-polymerization initiator,20 fluorescent 

payload,21 component of plasmonic arrays,22 as well as a Raman23 and two-photon24 

imaging agent. In 2016, Wang and Weiss reported that introduction of IR-140 to glutathione-

coated quantum dots results in J-aggregate formation with two aggregates observed: J1, 

(λmax,abs = 965 nm, nonemissive) and J2 (λmax,abs = 1040 nm, λ = 1047 nm).25 We 

envisioned that similar IR-140 J-aggregates could be formed on the negatively charged pores 
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and inner surface of HMSNs. Further, once the aggregates were assembled inside the 

particles, the hydrophobic nature of IR-140 would make them unlikely to disassemble in 

aqueous environments, rendering J-aggregates stable in vivo.

We prepared HMSNs by synthesizing a mesoporous silica coating on a Stöber sphere core 

that was subsequently removed via etching with sodium carbonate (Scheme S1, Figure S1). 

The HMSNs were treated with varying amounts of IR-140 in different solvents (Figure 2A). 

J-Aggregate formation was assayed by UV/vis/NIR spectroscopy evaluating loss of 

monomeric IR-140 at 826 nm and formation of the J-aggregates at 965 nm (J1) and 1040 nm 

(J2). Upon optimization, we found that SWIR J-aggregates could be obtained when IR-140 

dissolved in dimethyl sulfoxide (DMSO) was combined with HMSNs and washed. The 

washing procedure proved essential for obtaining the desired J2 aggregate formation 

(Figures 2B and S2), with gentle PBS washes yielding the largest amount of the desired J2 

aggregate (dark blue, Figure 2B). When these optimized conditions were repeated on Stöber 

spheres that did not have pores or an inner surface for IR-140 to associate with, only a small 

J-band was observed (Figure 2B, gray line, Figure S3). Similar results were obtained when 

loading was performed on mesoporous silica coated Stöber spheres (Figure S2). These 

control experiments (Figure S5) suggest that the majority of IR-140 is protected inside the 

HMSN cavity. Through analysis of IR-140 collected after the washing procedures, we 

calculated the loading of IR-140 to be ~103 molecules/particle (Figure S6, Note S1).

The HMSNs were further characterized through transmission electron microscopy (TEM), 

which showed ~85 nm particles with a distinct cavity and pores (Figure 2C). The pore size 

was quantified to be 3.2 nm through nitrogen adsorption experiments (Figure S4). While the 

pores are clearly visible in the TEM of the empty HMSNs, they are darkened after treatment 

with IR-140 (Figure 2D), suggesting the presence of IR-140. Control experiments in which 

HMSNs were subjected to PBS washing procedures but no IR-140 show no change in 

contrast of the pores upon TEM analysis (Figure S7).

After confirming that the HMSNs could facilitate J-aggregation of IR-140, we modified the 

surface with poly-(ethylene glycol) (PEG) such that they could be suspended in aqueous 

media. This was accomplished by loading HMSNs that had undergone surface silanization 

with (3-aminopropyl)-triethoxysilane (APTS) prior to Stöber sphere and surfactant removal 

(Scheme S2). This procedure resulted in HMSNs that were positively charged on the outside 

but still contained a negatively charged interior to associate with the cationic IR-140.26 

Nitrogen adsorption data (Figure S4) also suggests that the pores are not modified with 

APTS.27 The introduction of IR-140 into the HMSNs-APTS proceeded similarly to the 

HMSNs, yielding analogous loading of IR-140 and a higher ratio of J2:J1 (Figure S8). 

Control experiments performed with Stöber spheres treated with APTS support that IR-140 

is protected on the interior of the HMSNs (Figures S3 and S5). After loading, a 23 kDa 

PEG-carboxylate was conjugated to the amines present on the outer surface of the HMSNs-

APTS using carbodiimide chemistry (Scheme S2). Successful PEG conjugation was verified 

by changes in hydrodynamic diameter and ζ-potential (Figures S9 and S10).

We evaluated the photophysical properties of the PEGylated HMSNs (HMSNs-PEG) 

containing IR-140 in comparison to IR-140 in solution as the monomer and J-aggregate 
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(Figure 3A). Monomeric IR-140 has been well-characterized;28 however, the solution J-

aggregate of IR-140 had previously not been reported.29 After screening numerous 

conditions (Figure S11), we found that 35% DMSO/0.9% NaCl in water afforded formation 

of the desired SWIR J-aggregate with a λmax,abs = 1042 nm, λmax,em = 1043 nm, ε = 3.9 × 

105 M−1 cm−1, and ΦF = 0.01% (Table S1, Notes S2 and S3). The IR-140-containing 

HMSNs-PEG had similar spectral properties with a λmax,abs = 1038 nm, λmax,em = 1047 

nm, although the absorbance was considerably broader, which we attribute to the presence of 

other nonemissive aggregate states. When solutions of IR-140 in DMSO, IR-140 in 35% 

DMSO/0.9% NaCl in water, and IR-140 loaded HMSNs-PEG in PBS were excited with a 

980 nm laser, the wavelength to be used for in vivo imaging experiments, the IR-140 J-

aggregate in solution and in the particles were similarly emissive, while the monomer was 

not excited by 980 nm light (Figures 3B and S12).30 Thus, J-aggregation is essential for 

SWIR imaging with low energy excitation.

Next, we analyzed the role of the HMSNs in stabilizing IR-140 J-aggregates. Over 2 weeks 

in PBS at room temperature, we observed only a ~10% decrease in absorbance from the 

IR-140 loaded HMSNs-PEG and no evidence that the packing of the IR-140 within the 

nanoparticles was changing (Figures 3C, blue; S13). Comparatively, only ~8% of the J-

aggregate in solution remained after 1 day (Figures 3C, red; S13). Not only do the HMSNs 

stabilize the assembly of the J-aggregate, but they also enhance the photostability. The 

fluorescence of solutions containing IR-140 J-aggregate in 35% DMSO/0.9% NaCl in water 

and HMSNs-PEG containing IR-140 J-aggregate in PBS were continually irradiated with a 

980 nm laser (97 mW/cm2) and the fluorescence intensity was measured with an InGaAs 

camera. The photostability of monomeric IR-140 in DMSO was also evaluated via excitation 

at 785 nm (97 mW/cm2). As shown in Figure 3D, the J-aggregates within the HMSNs-PEG 

are 4-fold more stable than the J-aggregates in solution and ~60-fold more stable than the 

monomer (Table S2, Note S4). This result is consistent with the use of silica shells to 

overcome the poor photostability that is characteristic of J-aggregates by limiting the amount 

of reactive oxygen species that can access the aggregate.31 Photobleaching experiments in 

deoxygenated solvents support that the HMSNs protect the IR-140 J-aggregate from reactive 

oxygen species (Figure S14). Taken together, our data show that the HMSNs are critical for 

stabilizing J-aggregates to light and solution.

Finally, with bright SWIR-emissive nanoparticles prepared and characterized, we evaluated 

their biocompatibility and in vivo imaging performance. In vitro studies showed no 

cytotoxicity of the IR-140 loaded HMSNs-PEG over 6 h at concentrations up to 200 μg/mL 

(Figure S15). These data are consistent with other studies regarding mesoporous silica, 

which is generally considered nontoxic to animals.26,32 We performed in vivo imaging 

experiments using the IR-140 loaded HMSNs-PEG with excitation at 980 nm and collection 

from 1000–1700 nm. The SWIR-emissive HMSNs-PEG were intravenously injected into 

nude mice and the mice were immediately imaged (Figure 4). The HMSNs-PEG rapidly 

clear from the bloodstream and intense signal can be seen in the lungs, liver, and spleen. 

Fifty minutes after injection, the signal intensity within these organs remained constant 

(Figure S16).
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In summary, we have presented J-aggregation as an approach to prepare biocompatible, 

SWIR contrast agents and demonstrated this concept by stabilizing J-aggregates of the NIR 

fluorophore IR-140 inside HMSNs. The bathochromically shifted absorption and emission 

and small Stokes shifts of the IR-140 J-aggregate allow imaging with 980 nm excitation and 

1000–1700 nm acquisition, providing high resolution in vivo images. The modularity of the 

HMSNs will enable facile exchange of the imaging agent as well as the addition of targeting 

agents and/or therapeutics, poising these materials to become SWIR theranostics.33 While 

we did not observe an enhanced ΦF with the IR-140 J-aggregate, likely due to disorder or 

intermolecular vibrations,34 work is ongoing to access a SWIR J-aggregate that exhibits the 

superradience phenomena predicted by Kasha.35 Collectively, the use of J-aggregates 

stabilized in HMSNs as SWIR imaging agents has the potential to overcome the stability, 

toxicity, and brightness challenges of contrast agents for this compelling region of the 

electromagnetic spectrum.
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Figure 1. 
(A) Regions of the electromagnetic spectrum employed for optical imaging. For further 

details on contrast and resolution within regions of the SWIR, see references 1b, 1c, 8b, 8c. 

(B) J-Aggregation and characteristic photophysical properties. (C) IR-140. (D) Work 

reported herein: the stabilization of IR-140 J-aggregates in hollow mesoporous silica 

nanoparticles (HMSNs) to result in biocompatible SWIR-emissive contrast agents.
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Figure 2. 
(A) Schematic of loading IR-140 into HMSNs. (B) Washing conditions facilitate J-

aggregation. 10 mg/mL HMSNs were combined with 10 mM IR-140 in DMSO and washed 

with PBS with (green) and without (dark blue) sonication. Prewash spectrum, diluted 1:350 

is shown in orange. Loading control for solid, nonporous Stöber spheres is shown in gray. 

(C,D) TEM images of HMSNs with (D) and without (C) IR-140 treatment.
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Figure 3. 
(A) Normalized absorption and emission of IR-140 J-aggregate in HMSNs-PEG (blue), J-

aggregate in solution (red), and monomer (yellow). (B) Emission (1000–1700 nm) of IR-140 

monomer (left), J-aggregate in solution (middle) and J-aggregate in HMSNs-PEG (right) 

upon 980 nm excitation. (C) Normalized relative absorption of IR-140 J-aggregate in 35% 

DMSO/0.9% NaCl in water (red) and in HMSNs-PEG in PBS (blue) on day zero (solid) and 

day 1 or 14 (dotted). (D) Photostability under laser irradiation (97 mW/cm2) at 980 nm for 

IR-140 J-aggregate in HMSNs-PEG (blue) and IR-140 J-aggregate in 35% DMSO/0.9–% 

NaCl in water (red), and at 785 nm for monomer in DMSO (yellow).

Chen et al. Page 12

J Am Chem Soc. Author manuscript; available in PMC 2019 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Whole-mouse imaging at 16 fps (980 nm, 91 mW/cm2 excitation; 1000–1700 nm collection) 

upon i.v. delivery of IR-140 HMSNs-PEG. Background subtracted stills were averaged over 

5 frames at 3 s (A), 8 s (B), 25 s (C), and 120 s (D) postinjection. Scale bar represents 1 cm. 

Data are representative of two replicate experiments.
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