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Abstract

Radiotherapy (RT) has become an indispensable part of oncologic treatment protocols for a range 

of malignancies. However, a serious side effect of RT is radiodermatitis; almost 95% of patients 

develop moderate to severe skin reactions following radiation treatment. In the acute setting, these 

can erythema, desquamation, ulceration, and pain. Chronically, soft tissue atrophy, alopecia, and 

stiffness can be noted. Radiodermatitis can delay oncologic treatment protocols and significantly 

impair quality of life. There is currently a paucity of effective treatment options and prevention 

strategies for radiodermatitis. Importantly, recent preclinical and clinical studies have suggested 

that fat grafting may be of therapeutic benefit, reversing detrimental changes to soft tissue 

following radiation therapy. This review outlines the damaging effects of RT on the skin and soft 

tissue as well as discusses currently available treatment options for radiodermatitis. Emerging 

strategies to mitigate detrimental, chronic radiation-induced changes are also presented.

Introduction

Radiation therapy or radiotherapy (RT) has become an essential part of curative as well as 

palliative oncologic treatment protocols for a range of malignancies; currently RT is used as 

an adjunct therapy in over 50% of cancer patients1,2. While delivery methods for RT have 

been developed to combat cancer more effectively, collateral damage to healthy tissue in the 

radiation field surrounding the area of malignancy remains a serious adverse outcome. Skin 

is particularly radiosensitive, and over 95% of patients receiving RT develop moderate to 

severe skin reactions3,4. In the acute phase following radiation exposure, the skin typically 

becomes erythematous and may desquamate or ulcerate. On the molecular level, cytokine 

cascades and fibro-inflammatory pathways are up-regulated due to radiation which can 
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progress for many years leading to substantial fibrosis, the hallmark of chronic RT damage5. 

Cutaneous fibrosis alters form, function, and aesthetic appearance of the skin, and the 

consequences can significantly impact quality of life. Although a number of treatment 

options have been described, none has proven to be effective in preventing or reversing 

radiation-induced fibrosis (RIF) of the skin. Recent clinical and preclinical studies have 

demonstrated the benefit of autologous fat grafting (AFG) in the treatment of RIF6,7. First 

used for reconstructive purposes, fat is increasingly recognized to exert regenerative effects 

upon the tissue into which it is transplanted8–10. In irradiated skin, fat grafts can attenuate 

acute inflammation and slow/reverse the progression of chronic RIF6. The mechanisms by 

which fat regenerates the overlying skin and soft tissue remains to be elucidated but is 

thought to be driven by the adipose derived stromal cells (ASCs) of the stromal vascular 

fraction (SVF) of adipose tissue. ASCs have potent paracrine signaling action and are also 

multipotent and able to differentiate into a number of mesenchymal cell lineages. In this 

review, we outline the current understanding of RIF, the current treatment options, and the 

benefit of AFG within this setting. We also delve into alternative emerging strategies to 

mitigate RIF.

Radiation-induced cell death

Radiation therapy is the process of delivering lethal doses of radiation to areas of 

malignancy to kill cancer cells. Radiation therapy has evolved to allow for more specific 

targeting of cancer cells and reduction of the “bystander response” in neighboring healthy 

tissue11. There are three main ways to deliver RT: 1) External beam radiation therapy directs 

radiation beams from outside of a patient’s body in the direction of the tumor; 2) 

Brachytherapy delivers radiation internally with the insertion of radioactive materials inside 

the body; and 3) Radioisotope therapy systemically circulates radiation throughout the 

bloodstream via injection of a targeted radioisotope12–14 RT can utilized alone or can be 

combined with other treatment modalities–such as chemotherapy or surgery–to treat primary 

malignancies as well as metastatic disease15.

Radiation therapy is based on the concept that malignant cells are more sensitive to radiation 

and cannot repair damage as efficiently as healthy cells. The molecular mechanisms of 

radiation-induced cell death are not completely understood16, and several mechanisms may 

be at play. Within hours of radiation, a number of cytokine signaling and inflammatory 

cascades are initiated. Radiation therapy forms ions that pass through tissues which can 

directly induce double-stranded breaks in genetic material17. Cell death ensues via 

apoptosis, mitotic cell death, necrosis, and/or senescence12 including the release of damage-

associated molecule pattern (DAMP) molecules18,19. Release of DAMPs activates the innate 

and adaptive immune systems that allows for additional antitumor responses20,21. Energy 

from ionizing radiation also acts on other molecules within cells, such as water, to generate 

reactive oxygen species (ROS), such as superoxide, hydrogen peroxide, and hydroxyl 

radical, which indirectly cause further damage of the DNA and other cellular components 

(e.g. proteins, lipids)22,23. Generation of ROS are thought to account for more than 60% of 

the total radiation induced damage24,25.
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To improve targeting of malignant cells with radiation therapy, Begg and colleagues have 

described several approaches to modulate cellular response to radiation. These include 

inhibiting additional DNA repair mechanisms, cell cycle checkpoints, and signal 

transduction pathways26. For example, breast cancer cells with BRCA1 or BRCA2 

mutations already have an impaired ability to repair double-stranded breaks in DNA via 

homologous recombination and rely on other mechanisms of DNA repair, such as base 

excision repair and single-strand break repair, to survive26. Farmer et al. found that exposure 

of BRCA1- or BRCA2-deficient embryonic stem cells to an inhibitor of poly(ADP-ribose) 

polymerase–an enzyme involved in base excision repair–resulted in cell cycle arrest and 

apoptosis27. Inhibition of alternative survival and signaling pathways would thus render 

cancer cells more vulnerable to radiation-induced DNA damage while sparing normal cells 

that retain other mechanisms of repair.

Radiodermatitis

While it is the aim of RT to deliver sufficient levels of radiation to induce death of cancer 

cells, damaging effects on surrounding healthy cells should be minimized. Substantial 

progress has been made towards this goal, but damage to healthy soft tissue within the 

radiation field remains a significant problem. The proliferative nature, high oxygen 

requirement, and superficial nature of the skin make it the most frequently damaged tissue 

following RT28,29. Collectively, damage to the skin following RT is known as 

radiodermatitis and is typically categorized into acute and chronic stages. In the early phase 

following radiation exposure, the skin appears discolored, erythematous, and inflamed. 

Severely damaged skin may desquamate, atrophy and/or ulcerate30–32. The chronic phase of 

radiation damage is marked by radiation-induced fibrosis–the final common pathology 

across multiple tissue types. Skin RIF involves substantial dermal and epidermal induration, 

scarring and retraction, with histological evidence of extensive hyalinization of reticular 

collagen. There may be associated permanent scarring alopecia or loss of hair 

pigmentation33–38, suggesting an irreversible loss of hair follicle stem cells and melanocyte 

stem cells. The epidermis may be hyperplastic or atrophic and develop chronic ulcers and/or 

skin tumors.39,40 Chronic radiation-induced fibrosis typically develops within 4 to 12 

months after therapy but may continue for many years in a progressive fashion40.

The same mechanisms at play in killing cancer cells are also responsible for causing 

radiodermatitis (Fig. 1). Immediately following exposure there is an inflammatory response, 

and neutrophils are attracted to the site of irradiation by cytokines that are released by 

damaged skin and endothelial cells. Upon entry to the irradiated area, neutrophils are 

stimulated further and release pro-inflammatory cytokines, such as tumor necrosis factor 

(TNF)-α, interleukin (IL)-1, and IL-6, which perpetuate inflammation and increase 

formation of ROS. Monocytes and lymphocytes subsequently migrate to irradiated skin. 

Upon entry into irradiated tissue, monocytes differentiate into macrophages, and release 

platelet-derived growth factor (PDGF) which stimulates angiogenesis and the migration of 

fibroblasts41. Finally, macrophages, along with the native endothelial cells, fibroblasts, and 

epidermal cells, secrete transforming growth factor-beta (TGF-β)5,42, a potent pro-fibrotic 

factor which is elevated in the early phases of radiation damage5 and heavily implicated in 

the pathogenesis of RIF. TGF-β binds the TGβRI receptor and thus induces phosphorylation, 
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and activation of the intracellular receptor-associated Smads (R-Smads). Activated R-Smads 

form heteromeric complexes with a co-Smad (Smad4), translocate to the nucleus, and induce 

pro-fibrotic gene transcription, either by directly binding DNA or by associating with other 

transcription factors43–45.

TGF-β activates a number of pro-fibrotic pathways that drive the pathogenesis of 

radiodermatitis. Following radiation, TGF-β stimulates the differentiation of fibroblasts into 

myofibroblasts46, which in turn secrete excessive amounts of ECM proteins including 

collagen, fibronectin, and proteoglycans47. Increased ECM production is further 

compounded by impaired matrix degradation. TGF-β decreases the activity of matrix 

metalloproteinase (MMP) activity, specifically MMP-2, MMP-9, and MMP-1, within 

fibroblasts30,31,48. Consequently, there is net gain of ECM that amounts to increased tissue 

stiffness and thickness, characteristic of chronic RIF. TGF-β in radiation also activates the 

process of epithelial to mesenchymal transition (EMT) and the interferon (IFN)-γ 
response49 which can also contribute to soft tissue fibrosis. Chronic activation of many of 

these fibrotic pathways is thought to persist for years after initial exposure. Indeed, elevated 

levels of collagen type I, collagen type III, and TGFβ1 are detectable in breast biopsies even 

20 years post-radiotherapy5.

The fibrotic changes in skin are also accompanied by damage to the vasculature. 

Histologically there is evidence of decreased microvascular network density and alterations 

to the morphology of blood vessels50. Acutely following radiation exposure, the vessels of 

mice become plugged with fibrin and leukocytes, with evidence of endothelial swelling and 

hyperplasia and perivascular fibrosis.46,51 These changes decrease blood supply to the tissue 

and lower oxygen tension, which further stimulates fibrosis by increasing expression of 

collagen type 1 alpha 1 (COL1A1)52.

The consequences of RIF are profound, and up to 30% of patients that receive RT to the 

breast or chest wall experience severe RIF53–58. RIF reduces tissue perfusion and further 

worsens the quality and function of the irradiated skin50. Tissue fibrosis can disrupt 

lymphatic and vascular drainage, which produces hypoxia and predisposes to ulceration and 

impaired wound healing59,60. This often results in severe soft tissue defects that may require 

coverage with vascularized tissue. Furthermore, implant-based breast reconstructions in the 

irradiated setting show significantly higher complication rates such as capsular contracture 

or infection necessitating implant removal or replacement61. As increasing numbers of 

individuals are surviving cancer, more patients are living with the long-term effects of 

radiation treatment62. Radiation-induced fibrosis is therefore especially undesirable for 

patients with malignancies where treatment can be curative63.

Current treatment options

Although some therapies have been shown to delay the onset or reduce the risk of 

developing RIF, a key step of prevention is to minimize radiation doses to areas of exposed 

healthy skin. Current treatment options, while limited, range from physical therapy to oral 

and topical medications. Recent advances in surgical treatment options with autologous fat 
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grafting have also been reported, with some success noted in reversing detrimental changes 

seen in chronically damaged skin and soft tissue64.

Physical therapy with massage is a non-medical option that, in two studies, has been shown 

to have some promising results. In one study, twenty patients who had been treated for breast 

cancer with surgery and radiotherapy were enrolled in a randomized control trial that 

assessed mechanical massage compared with medical observation alone. Mechanical 

massage was found to be superior at reducing erythema, pain, pruritus, skin induration, and 

skin softening65. In a second study, deep friction massage was found to reduce RT-

associated muscle spasms, though it did not have any effect on skin appearance66. Massage 

may have the potential to break down fibrotic tissues, particularly in the thoracic region 

following breast cancer radiation therapy, interrupting the progressive nature of radiation-

induced fibrosis. However, larger, more rigorous studies have yet to be performed to confirm 

these findings.

Antioxidants have also been studied for their preventative and therapeutic effects in 

protecting healthy cells from radiation-induced DNA damage67. Silymarin, an extract from 

milk thistle with antioxidant and anti-inflammatory effects, was noted to delay the onset of 

radiodermatitis in a randomized trial of forty breast cancer patients when applied topically as 

a gel for five weeks at the onset of RT68. In a prospective, nonrandomized study of 112 

patients post-mastectomy, daily subcutaneous administration of the antioxidant amifostine 

throughout radiation treatment was associated with reduced erythema, edema, and moist 

skin desquamation compared with patients who did not receive antioxidant treatment68. 

Finally, the hemorrheologic agent pentoxifylline has also been shown to have antioxidant 

effects. Along with improving blood flow, this medication may also inhibit fibroblast 

proliferation and has been shown to both prevent and treat RIF69. Randomized control trials 

have shown that the combination of oral pentoxifylline with alpha-tocopherol (vitamin E) 

improves tissue compliance in breast cancer patients when taken daily for six months post-

RT and reduces the RIF surface area even when administered years after RT for breast or 

head and neck cancer70,71. However, recent studies have found compliance with 

pentoxifylline and vitamin E therapy to be poor in almost 40% of patients, with nausea the 

most frequently reported indication for treatment dose reduction or discontinuation of 

therapy72.

Topical treatments including steroids, gels, and creams have also been studied extensively in 

randomized trials for treatment of radiation-induced fibrosis. Use of a topical corticosteroid 

(0.1% methylprednisolone) in concert with 0.5% dexpanthenol, a derivative of pantothenic 

acid which is an essential component of normally functioning epithelium, delayed the 

emergence of clinical and functional symptoms of radiation dermatitis by one week in 15 

breast cancer patients compared with untreated controls.73 Similarly, a randomized trial of 

51 breast cancer patients revealed that topical 0.1% betamethasone delayed, but did not 

prevent, the occurrence of radiation dermatitis74. Daily use of topical 0.1% mometasone 

furoate reduced symptoms of radiation-induced skin toxicity, which included assessments of 

pruritis, irritation, and burning, compared with placebo cream in 176 patients treated with 

breast or chest wall RT75. Furthermore, creams containing hyaluronic acid or urea may delay 

or reduce the severity of RT-induced skin effects. In a prospective observational study, 98 
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breast cancer patients received treatment with lotion containing 3% urea, polidocanol, and 

hyaluronic acid two to three weeks prior to starting RT. Fewer developed radiodermatitis and 

of those that did, skin toxicity was reduced compared with controls who did not receive the 

lotion76. Finally, in a randomized, double-blind, placebo-controlled study, 152 patients with 

head and neck, breast, or pelvic cancer who received treatment with hyaluronic acid cream 

for six weeks had delayed and reduced skin reactions to the radiation therapy77.

Fat grafting

The challenges presented by the treatment of RIF have popularized the view that RIF is 

irreversible. Recently, this concept has been questioned with increasing attention turned to 

autologous fat grafting and its ability to improve post-irradiated, fibrotic skin7,78. Originally 

used for volume restoration in reconstructive surgery, fat has become increasingly 

recognized for its ability to regenerate damaged tissue7,50,79,80. Autologous fat grafting has 

also been reported to potentially antagonize the effects of aging8–10. In 2007, Rigotti and 

colleagues7 first demonstrated that fat grafting resulted in visible and symptomatic 

improvements in 20 patients with RIF following previous radiation treatment for breast 

cancer. One year after grafting, tissue biopsies showed well vascularized tissue and evidence 

of fibrosis regression. Since this landmark finding, AFG has been used by more surgeons to 

reconstruct previously irradiated tissue8,50,81–83. Salgarello et al. reported that fat grafting 

reduced the radiation-related complications in two patients undergoing breast 

reconstruction79, and subsequently in a retrospective review of 16 patients84. In a large 

prospective clinical study, 65 previously irradiated post-mastectomy patients received tissue 

expanders and AFG as part of their breast reconstruction. With this approach, patients were 

found to have improved skin quality of the reconstructed breast with reduced capsular 

contracture (Baker grade ≤1) at 6 months, and this was accompanied by high patient and 

surgeon satisfaction85. Similarly, Phulpin et al. reported functional and aesthetic benefits in 

10 out of 11 patients in whom AFG was used for head and neck reconstruction after RT. 

Specifically, patients had improved phonation, swallowing, and breathing, with histologic 

evidence of increased vascularization and normal tissue composition without areas of 

necrosis50. These reports have been supported by multiple preclinical studies, showing that 

fat grafting in the irradiated mouse decreases disordered collagen content and thickening of 

the overlying dermis6, and can increase skin perfusion, as measured by Laser Doppler and 

immunofluorescence staining51.

While the mechanisms driving these beneficial clinical findings with AFG remain to be 

elucidated, it is believed that cells within the SVF of adipose tissue, in particular the ASCs, 

are largely responsible. Adipose tissue is rich in ASCs, which possess multi-lineage 

potential and the ability to release potent proangiogenic and anti-apoptotic growth 

factors8,86,87. ASCs may promote angiogenesis by releasing pro-angiogenic growth factors 

in the recipient site. Consistent with this hypothesis, grafted fat in the irradiated skin of mice 

was found to increase expression of pro-angiogenic growth factors, such as vascular 

endothelial growth factor and stromal cell-derived factor 1, and decrease expression of 

COL1A1 and TGFβ51. Alternatively, ASCs may directly differentiate along various 

mesenchymal lineages forming endothelial cells which can integrate themselves into newly 

formed vessels88. Interestingly, a recent study performed whole genome expression analyses 
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on human adipose tissue biopsies harvested from the irradiated and non-irradiated breasts of 

10 patients before and 1-year after AFG49. The results indicated that RT causes dysregulated 

expression of fibrosis-related pathways in human adipose tissue including two canonical 

pathways: interferon-γ response and hypoxia response. Macrophages were also recruited to 

the irradiated tissue. Importantly, the dysregulated genes returned to nearly normal 

expression levels following AFG, supporting the use of AFG in the use of RIF.

Overcoming the challenges of fat-grafting in irradiated tissue

Though fat grafting has shown incredible promise with treatment of radiation-induced soft 

tissue injury, there remains a number of challenges to address, particularly with grafting into 

hostile irradiated tissue. Fat retention is already variable even at non-irradiated recipient 

sites, and resorption rates may range between 40 and 60%89,90. Delivery of small aliquots of 

adipose tissue into well-vascularized sites can increase survival91–93, but irradiated tissue is 

hypovascular, inflamed, and fibrotic51,78. This can lead to fat necrosis and stimulate an 

inflammatory reaction resulting in fibrosis, cyst formation, calcification, or local 

infection94–97. When used for breast reconstruction, AFG has been reported to show 

increased rates of fat necrosis and infection in the irradiated compared to non-irradiated 

breast79,9899. However, several strategies have been recently developed to help overcome 

some of the limitations of fat-grafting into irradiated tissue as related to the processing of 

harvested fat and preconditioning of the recipient site.

A variant of fat grafting called cell-assisted lipotransfer (CAL) involves the enrichment of 

fat graft with cells from the SVF or with culture-expanded ASCs. CAL has been clinically 

shown to have improved fat retention and cosmetic outcomes100–102. In support of this, 

recent animal studies have also reported improvement in histologic metrics of fat, as well as 

decreased dermal thickness, improved structural quality, and greater vascularization with 

supplemented compared to non-supplemented grafts78. Furthermore, CAL was found to 

significantly improve stiffness of irradiated mouse skin when compared unenriched fat grafts 

alone. However, while these results are promising, ASCs are increasingly recognized to be a 

heterogeneous mix of cells comprised of multiple subpopulations with distinct functions. 

For example, BMPR-1A+ ASCs have enhanced capacity for adipogenesis103, CD248+ ASCs 

have augmented angiogenic potential104, and CD105- (endoglin) have enhanced osteogenic 

capacity105. Future outcomes of fat grafting, especially in the irradiated setting, may thus be 

potentially enhanced by enrichment for specific subpopulations with increased angiogenic, 

adipogenic, or antifibrotic qualities.

Fat survival may also be increased by improving the quality of the recipient site prior to 

transplantation. Deferoxamine (DFO) is an iron chelator that has been FDA-approved for 

use in iron overload syndrome. This chelating action, however, also stabilizes and thus 

increases hypoxia-inducible factor-1 alpha which can induce the local expression of 

angiogenic growth factors106,107. Furthermore, DFO has been shown to possess antioxidant 

properties, and topical application has been found to reduce reactive oxygen species within 

the skin106. These properties are thought to mediate the improved vascularization of 

ischemic wound flaps and enhance wound healing in mice treated with DFO108,109. 

Deferoxamine may thus also be of benefit in promoting vascularization and reducing ROS-
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mediated cellular injury following radiation therapy. Indeed, local administration of DFO 

into irradiated mouse skin has been found to enhance vascularization and subsequent fat 

graft retention while also reducing dermal thickness110. Furthermore, transdermal delivery 

of DFO to irradiated rat skin has been shown to reduce collagen fibril disorganization by 

atomic force microscopy111. These findings highlight an emerging strategy with DFO to 

mitigate, and possibly prevent, the debilitating soft tissue changes associated with radiation 

therapy.

Conclusions

Over 1.5 million new cancer cases are diagnosed every year112, and over half of these 

patients will receive RT. While RT is immensely beneficial, an enhanced understanding of 

the mechanisms of RIF-induced changes is essential for the development of effective 

strategies to prevent long-term disability and discomfort following radiation therapy. This 

has led to emerging strategies including autologous fat grafting and deferoxamine which 

hold great promise for improving the quality of life in patients suffering from the debilitating 

sequelae of radiation treatment.
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Fig. 1. The proposed mechanism underlying radiation-induced fibrosis (RIF).
A) RT delivers ions that directly induces DNA damage and generates reactive oxygen 

species (ROS). Damaged cells in the skin and endothelium (colored purple) release 

cytokines, leading to activation of the innate and adaptive immune systems and recruitment 

of inflammatory cells. B) Once recruited to the irradiated area, neutrophils release additional 

inflammatory mediators to sustain inflammation. Lymphocytes and monocytes also migrate 

to the location of injury, the latter of which differentiate into macrophages. Macrophages, 

fibroblasts, native endothelial cells, and epidermal cells release transforming growth factor-

beta (TGF-β) which stimulates fibroblasts to differentiate into myofibroblasts. C) 
Myofibroblasts secrete excess amounts of extracellular matrix proteins, leading to increased 

tissue stiffness and thickness. Over time, RIF ensues and may persist even decades after 

radiation therapy.
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