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Abstract

Purpose: Treatment effect or radiation necrosis after stereotactic radiosurgery (SRS) for brain 

metastases is a common phenomenon often indistinguishable from true progression. Radiomics is 

an emerging field that promises to improve on conventional imaging. In this study, we sought to 

apply a radiomics-based prediction model to the problem of diagnosing treatment effect after SRS.

Methods and Materials: We included patients in the Johns Hopkins Health System who were 

treated with SRS for brain metastases who subsequently underwent resection for symptomatic 

growth. We also included cases of likely treatment effect in which lesions grew but subsequently 

regressed spontaneously. Lesions were segmented semiautomatically on preoperative T1 

postcontrast and T2 fluid-attenuated inversion recovery magnetic resonance imaging, and radiomic 

features were extracted with software developed in-house. Top-performing features on univariate 
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logistic regression were entered into a hybrid feature selection/classification model, IsoSVM, with 

parameter optimization and further feature selection performed using leave-one-out cross-

validation. Final model performance was assessed by 10-fold cross-validation with 100 repeats. 

All cases were independently reviewed by a board-certified neuroradiologist for comparison.

Results: We identified 82 treated lesions across 66 patients, with 77 lesions having pathologic 

confirmation. There were 51 radiomic features extracted per segmented lesion on each magnetic 

resonance imaging sequence. An optimized IsoSVM classifier based on top-ranked radiomic 

features had sensitivity and specificity of 65.38% and 86.67%, respectively, with an area under the 

curve of 0.81 on leave-one-out cross-validation. Only 73% of cases were classifiable by the 

neuroradiologist, with a sensitivity of 97% and specificity of 19%.

Conclusions: Radiomics holds promise for differentiating between treatment effect and true 

progression in brain metastases treated with SRS. A predictive model built on radiomic features 

from an institutional cohort performed well on cross-validation testing. These results warrant 

further validation in independent datasets. Such work could prove invaluable for guiding 

management of individual patients and assessing outcomes of novel interventions.

Summary

Treatment effect after stereotactic radiosurgery for brain metastases is a common phenomenon 

often indistinguishable from true progression. We applied a radiomics-based prediction model to 

discriminate treatment effect from true progression after stereotactic radiosurgery in an 

institutional cohort, with excellent performance on leave-one-out cross-validation. With further 

validation in independent datasets, such work could prove invaluable for guiding management of 

individual patients and assessing outcomes of novel interventions.

Introduction

Because of its excellent efficacy, short treatment time, and favorable toxicity profile 

compared with whole brain radiation (WBRT), stereotactic radiosurgery (SRS) is 

increasingly favored for patients with a limited number of brain metastases (1). There 

remains, however, a significant minority of cases in which brain metastases may appear to 

progress despite treatment, with local failure rates upward of 27% to 33% in some 

randomized trials (2–4). However, many lesions grow only transiently after SRS, and 

increasing tumor size is not always consistent with local progression (5). Treatment effects 

in irradiated brain tumors have been well described and involve a range of effects including 

inflammation, vascular injury, and necrosis (6). For SRS, necrosis may play a particularly 

prominent role, with radionecrosis rates after SRS as high as 26% (7).

At this time, the gold standard for distinguishing true progression from necrosis after SRS 

remains pathologic determination with surgery; conventional magnetic resonance imaging 

(MRI) is largely unhelpful in such cases (Fig. 1).

Radiomics involves extracting quantitative texture features from medical images. Texture 

features are used as potential biomarkers for incorporation with other clinical markers for 

improved decision-making (8, 9). Radiomic features include a collection of shape and first- 

or higher order features describing gray-level textures that may not be readily recognized by 
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conventional visual inspection. These types of radiomic features create high-dimensional 

information that can be analyzed and leveraged using machine learning algorithms for 

improved diagnostic accuracy.

In this study, we investigated whether a predictive model, based on radiomic features 

extracted from conventional brain MRI, could distinguish true progression from treatment 

effect in an institutional cohort of patients treated with SRS for brain metastases.

Methods and Materials

Patient data

The study was approved by the Johns Hopkins institutional review board. Electronic medical 

records of patients with brain metastases who underwent SRS or fractionated stereotactic 

radiation in 1 to 5 fractions at a single institution from June 2003 through September 2017 

were reviewed to identify patients in whom treated lesions grew on imaging to the point of 

requiring surgical resection for symptom relief. We also identified patients without 

pathologic confirmation in whom treated lesions grew to a concerning extent after SRS but 

subsequently regressed, as well as patients who stabilized spontaneously without further 

intervention. For patients who underwent resection, we retrieved images from the 

preprocedure brain MRI performed at our institution, typically 1 day before or the morning 

of surgery. For the small set of patients without pathologic confirmation but with presumed 

treatment effect on imaging, we retrieved images from the study that showed the maximum 

size of the treated lesion. We excluded patients for whom the acquired MRI had substantial 

motion artifact or did not include T1 postcontrast (T1c) and T2 fluid-attenuated inversion 

recovery (FLAIR) sequences. MRI acquisition parameters varied across studies because of 

the long timespan over which patients were treated and followed in this study (Table E1; 

available online at https://doi.org/10.1016/jAjrobp.2018.05.041). For patients who 

underwent resection, surgical pathology was used to determine whether the lesion 

represented true malignant progression. Samples with a mix of tumor and necrosis were 

uniformly labeled as true progression to match our institutional practice of proceeding with 

adjuvant treatment (typically reirradiation or brachytherapy) if any component of active 

tumor were found.

Image segmentation, registration, and radiomic feature extraction

A pictorial schema of the steps required for creation of the prediction model based on 

radiomic features is shown in Fig. 2. As an initial step, the T2 FLAIR sequence for each 

lesion was rigidly registered to the T1c sequence based on bony anatomy, using the Velocity 

AI commercial software platform (Version 3.2.1, Varian Medical Systems, Palo Alto, CA).

Semiautomatic segmentation of the single largest-diameter axial slice of each lesion on T1c 

sequence was applied using a multiparametric, deep learning, tissue signature model built 

using stacked sparse autoencoders (10). For a random subset of 10 cases, multiparametric, 

deep learning, tissue signature model segmentation showed high similarity (mean Dice 

similarity index = 0.86) compared with fully manual segmentations of the same cases. The 
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single largest-diameter slice was chosen to correspond with standard clinical analysis using 

criteria from Response Evaluation Criteria in Solid Tumors.

The resulting regions of interest and associated T1c and T2 FLAIR images were exported as 

files in Digital Imaging and Communications in Medicine format for radiomic feature 

extraction using in-house software developed with MATLAB (The MathWorks, Natick, 

MA). We extracted 51 radiomic features from each T1c or FLAIR imaging sequence, 

divided into 5 categories: (1) first-order statistics (14 features), (2) gray level co-occurrence 

matrix (GLCM, 18 features), (3) gray level run length matrix (GLRLM, 11 features), (4) 

neighborhood gray tone difference matrix (NGTDM, 5 features), and (5) morphologic 

features (3 features). A comprehensive listing of extracted features is provided in Table E2 

(available online at https://doi.org/10.1016/j.ijrobp.2018.05.041).

In broad terms, first-order features describe the statistics of voxel intensity distributions 

within the regions of interest, whereas second-order features, such as GLCM, GLRLM, and 

NGTDM, seek to quantify textural features (9). GLCM and GLRLM were evaluated in 4 

directions (0°, 45°, 90°, and 135°) with values averaged to achieve rotational invariance, and 

the GLCM parameter, d, was set to 1 voxel in all directions. We used 64 equally sized bins 

for first-order statistics, and gray levels were quantized into 64 levels for GLCM, GLRLM, 

and NGTDM calculations. Both binning and gray levels were systematically varied between 

8 and 512 (specifically 8, 16, 32, 64, 128, 256, and 512), and 64 was empirically chosen in 

each case. Of note, to preserve the maximal amount of information from original source 

data, images were not normalized before processing.

Feature selection and prediction modeling

As a next step, summary statistics for the radiomic values (mean and standard error of the 

mean) were computed for the 2 outcome classes and compared using an unpaired Student t 

test. Associations between the radiomic metrics and the final diagnosis were assessed on 

univariate logistic regression analysis, with radomic features ranked according to predictive 

performance using logistic regression as assessed by the area under the curve (AUC) for the 

receiver operating characteristic curve.

Further feature selection and prediction modeling were performed using the IsoSVM 

algorithm as applied to the top-performing radiomic features from univariate logistic 

regression (11). IsoSVM is a hybrid feature selection and classification algorithm based on 

the Isomap and Support Vector Machine (SVM) algorithms. By definition, SVM trains a 

classification model that creates a linear hyperplane to best separate the 2 groups in 

question. This concept can be extended for linearly inseparable data using kernel methods 

that map the data into a linearly separable space. We implemented IsoSVM to use the 

Isomap kernel to perform this nonlinear transformation because it has been shown that 

Isomap outperforms radial basis function, linear, quadratic, and cubic kernels (11).

Imbalance in the number of true progression and treatment effect cases was overcome by 

setting a separate misclassification penalty for the 2 classes. The optimal ratio of the 

misclassification penalty along with other IsoSVM parameters (nearest neighborhood and 

dimensionality) were optimized along with final selection of radiomic features for the model 
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using grid search and leave-one-out cross-validation (LOOCV). Finally, 10-fold cross-

validation was performed to assess the overall performance of the optimized IsoSVM model 

by AUC. To avoid bias resulting from unfortunate partitioning of the data, 10-fold cross-

validation was performed 100 times with random initiali-zation of 10 disjoint groups. 

Statistical significance was set at P ≤ .05.

Neuroradiologist interpretation

All cases and associated clinical reports were reviewed by a board-certified neuroradiologist 

(D.L.) with 16 years of postfellowship experience; the neuroradiologist classified the lesions 

as representing either treatment effect or cancer progression based on imaging description 

and clinical interpretation but was blinded to final histopathologic and clinical outcome. 

Lesions with a high degree of diagnostic uncertainty were classified as indeterminate or 

mixed. Interpretation of other MRI sequences, such as perfusion, was permitted when 

available, but for conventional images, classification was mainly based on lesion growth 

over time.

Results

We identified 82 individual brain metastases with apparent progression after SRS across 66 

patients who met our inclusion criteria. Of the 82 lesions, 77 underwent surgical resection 

for histopathologic diagnosis, but 5 lesions (in 5 different patients) were presumed to be a 

treatment effect based on subsequent spontaneous regression. Of 82 lesions, 52 (63%) were 

confirmed to be true progression based on surgical pathology, and the remaining 30 (37%) 

were labeled as treatment effect.

Patient and radiation treatment characteristics are summarized in Table 1. The most common 

primary histology was non-small cell lung cancer, followed by melanoma, breast, and small 

cell lung cancer. Other primary histologies included renal cell, endometrial, ovarian, thyroid, 

colorectal, and sarcoma. SRS was delivered using a range of treatment machines, including 

Gamma Knife, Cyber-Knife, and linear accelerator—based systems. Consistent with our 

institutional practice, brain metastases were most commonly treated to 18 to 20 Gy in 1 

fraction. For larger tumors or sensitive locations, a hypofractionated fractionated stereotactic 

radiation approach was used, often 24 Gy in 3 fractions or 25 Gy in 5 fractions. For lesions 

that had undergone some form of reirradiation by the time of resection, there were 3 

instances of prior SRS to the same location, 11 cases of prior/additional WBRT, and 4 cases 

of both WBRT and prior SRS. The great majority of lesions (64 of 82 [78%]) experienced 

only a single course of SRS before resection.

The 10 top-ranked radiomic features according to univariate logistic regression performance 

(AUC) are listed in Table 2. These included 6 features from T1c and 4 from T2 FLAIR.

The optimal set of hyperparameters for the IsoSVM feature transformation and classification 

model, obtained using an LOOCV-based grid search, were Isomap neigh-borhood parameter 

k = 45, dimensionality d = 9, and misclassification ratio = 4:1 (treatment effect:true 

progression). The grid search for radiomic feature subsets (Top 5, 10, 15, .All) ultimately 

selected only the top 5 radiomic features (first 5 features in Table 2) for input into the 
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optimal IsoSVM model. The optimized IsoSVM classifier had sensitivity and specificity of 

65.38% and 86.67%, respectively, with an AUC of 0.81 on LOOCV (Fig. 3). On 10-fold 

cross-validation, the optimal IsoSVM model had sensitivity and specificity of 60.48% and 

86.97%, respectively, with an AUC of 0.79. We also explored the value of combining 

radiomic features with a set of clinical features, including age, sex, and tumor or treatment 

characteristics (Table E3; available online at https://doi.org/10.1016/j-ijrobp.2018.05.041), 

but the clinical features ranked poorly on univariate logistic regression, and the performance 

of IsoSVM on LOOCV remained at 0.81. No clinical features were selected for use in 

classification.

On neuroradiology review, 22 of 82 cases (27%) were classified as indeterminate or mixed. 

For the remaining 60 cases, 55 (92%) were classified by radiologic interpretation as 

malignant progression, with a sensitivity of 97% and specificity of 19%.

Discussion

We have demonstrated that advanced machine learning, coupled with radiomic feature 

extraction using brain MRI, improved differentiation between true progression and treatment 

effect. In particular, our model substantially increased specificity as compared to the 

neuroradiologist’s interpretation, suggesting that machine learning methods can be used as 

an adjunct to traditional radiology review.

Improvement in the ability to distinguish true progression from treatment effect after SRS 

for brain metastases has important practical implications for patients and clinicians. For 

example, systemic therapies may be prematurely discontinued or salvage radiation therapy 

unnecessarily administered in cases of apparent progression without confirmatory pathology. 

Many positron emission tomography— and MRI-based methods have been proposed to 

diagnose treatment effect after SRS, but no standard approach has yet emerged (6, 12–17).

Integrated radiomic analysis may provide a new approach for improving the performance of 

conventional imaging of brain lesions. The results of the present study are consistent with 

other reports that have applied radio-mics for the diagnosis of growing brain metastases after 

SRS (18–20). For the most part, prior attempts have been limited by a very small number of 

lesions with pathologic confirmation (18, 19). In our dataset, nearly all lesions were verified 

by pathology; pathologic confirmation is critical to evaluating the true performance of these 

models, given the inaccuracy of conventional clinical judgment based on MRI or patient 

symptoms alone (12, 21). Some studies, for example, have examined the predictive ability of 

measuring mismatch in lesion appearance on T1 and T2 sequences (22, 23), but this 

approach failed to be predictive when assessed in an independent dataset (21).

Given the invasive nature of neurosurgery and the typically limited lifespan in this patient 

population, management often consists of observation until the patient becomes acutely or 

intractably symptomatic, and pathologic confirmation is, therefore, often lacking. In a 

recently published work, Zhang et al collected a larger series with pathologic confirmation 

to make predictions using an RUSBoost classifier with a reported AUC of 0.73 (20). Their 

method relied heavily on comparing differences in radiomic feature values at different 
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imaging time points, termed “delta radiomics.” When they used radiomic features from a 

single time point, the AUC was lower at 0.65. In the present study, we curated a similarly 

large series of metastatic lesions with pathologic confirmation, and our methods resulted in a 

better AUC using only a single imaging time point. Future investigations are planned to 

determine the optimal number of time points to provide the best prognostic performance for 

our model.

In addition to RUSBoost, other groups have also used various incarnations of SVM 

algorithms in their classification models (18–20). In the current study, we used IsoSVM, a 

hybrid SVM model that applies a nonlinear dimensionality-reduction machine learning 

method for both feature selection and classification that has been previously applied to 

distinguish benign from malignant breast lesions (11). There is a need for standardization of 

approaches for radiomics-based classification problems, and the many disparate approaches 

highlight the critical need for further research in this area. Moreover, there is a lack of 

methodology for the systematic selection of the optimal gray levels and binning needed for 

MRI-based radiomics publications, and this is an area of active investigation. The choice of 

machine learning algorithm and tuning of algorithms for specific datasets is a critical and an 

unmet challenge. For example, Parmar et al systematically evaluated 12 different machine 

learning classifiers in lung cancer radiomics using computed tomography and found that the 

choice of machine learning algorithm had a dominant influence on performance variance 

(24). Our ability to achieve a high AUC in this work likely reflects a combination of factors, 

including the specific choice and tuning of our algorithm and a sizeable sample of cases with 

pathologic confirmation.

As with most of these studies, a major limitation of the present work is a relatively small 

sample size. This limits the performance of classifier algorithms that are highly dependent 

on data for training. Random noise in small datasets often can be mistakenly interpreted as 

meaningful (a problem known as overfitting); as a consequence, the model may not perform 

as well in independent datasets. Given the difficulty of collecting pathologically proven 

cases, an important next step will be to collaborate with partner institutions to create larger 

datasets for model training and independent validation. Public, large-scale imaging datasets, 

such as those of the Quantitative Imaging Network, would be invaluable, but to date no 

Quantitative Imaging Network for brain metastases has been established (25).

Another limitation of this study is our simplified labeling of mixed-pathology specimens as 

cases of true progression. Although this mirrors our clinical practice of treating mixed cases 

as true progression, an ideal model would account for the exact ratio of tumor to necrosis on 

pathology to optimize model training and more precisely measure model performance.

Compared with studies in which patients were scanned on a single scanner or in which SRS 

treatment was delivered by a single modality (eg, Gamma Knife), we describe results over a 

long period with varying scan acquisition parameters and where SRS was delivered on a 

variety of treatment machines with different fractionation schemes. Although normalization 

of MRI data has been proposed to standardize arbitrary differences in intensities of scans 

between patients and over time (26), the degree of importance and benefit of normalization 

for radiomic prediction models to classify cancer progression or treatment effect has not 
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been well established. In particular, it is unclear whether intensity normalization over the 

entire magnetic resonance image is beneficial when the particular region of interest has a 

high average intensity. Indeed, of the brain radiomics studies discussed, 2 earlier studies 

performed intensity normalization, whereas the latest study did not (18–20). Given that we 

did not apply normalization or other preprocessing in the present study, our ability to 

generate a predictive model with excellent performance, despite substantial variability in 

treatment and image acquisition, likely increases the generalizability of our findings.

Linking radiomic features with underlying biologic characteristics can be extremely 

challenging (27). For example, NGTDM coarseness (2 of our top 5 ranked features) also has 

been used to distinguish head and neck tumors (less coarse) from normal tissues (more 

coarse) on positron emission tomography scan (28), but it is uncertain whether this may 

represent a common underlying biologic process across sites, imaging modalities, and 

clinical scenarios. Another highly ranked feature in this dataset was T1c GLRLM gray level 

nonuniformity. Similar nonuni-formity features were also top-performing features in a large, 

combined study of head and neck cancer and lung cancer radiomics (29); in that study, the 

authors found that these features, which measure intralesional heterogeneity, were predictive 

for both clinical prognosis and cell cycling gene expression levels, with increased 

heterogeneity correlating with greater proliferation. In our dataset, it appears that 

nonuniformity was higher in true progression cases (Table 2), concordant with the idea of 

using radiomic heterogeneity as a biomarker for proliferation. Kurtosis, our fourth-ranked 

feature, also has been linked with heterogeneity; in particular, higher mean values have 

predicted for local failure in head and neck cancers treated with radiation (30, 31).

Conclusions

Our results indicate that radiomics and machine learning methods hold great promise for 

discriminating between treatment effect and true progression in brain metastases treated with 

SRS. A predictive model built on radiomic features from an institutional cohort with 

pathologic validation of cancer progression performed excellently on cross-validation 

testing. Such work will prove invaluable for guiding the management of individual patients 

and assessing the outcomes of novel interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Progression and treatment effect of brain metastases on magnetic resonance imaging. Top: 

T2 Fluid-attenuated inversion recovery (FLAIR) (A) and T1 post-contrast (B) images for a 

patient with treatment effect of a left prefrontal metastasis from non-small cell lung cancer. 

Bottom: T2 FLAIR (C) and T1 postcontrast (D) images for a patient with true progression of 

a right cerebellar metastasis (breast primary) after stereotactic radiotherapy. Both cases were 

confirmed by surgical pathology.
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Fig. 2. 
Analysis with radiomics. Major steps in radiomics include (1) image registration, (2) lesion 

segmentation, (3) radiomic feature extraction, (4) determination of the importance of each 

feature and ranking features accordingly, and (5) predictive modeling with a machine 

learning algorithm trained on an optimal set of features and parameters.
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Fig. 3. 
Receiver operating characteristic curve for IsoSVM model in leave-one-out cross-validation. 

Area under the curve (AUC) was 0.81, indicating excellent performance of the model on 

leave-one-out cross-validation.
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Table 1

Tumor and treatment characteristics

Characteristics Data

Median patient age at SRS (range), y 56.5 (29–86)

No. of lesions treated   82

Primary histology

 Non-small cell lung cancer   28

 Melanoma   21

 Breast   16

 Small cell lung cancer  6

 Other   11

SRS machine

 CyberKnife   58

 Gamma knife  8

 Linear accelerator   16

Treatment characteristics

 Median total dose (range), Gy   20 (14–25)

 Median fractions (range) 1 (1–5)

 No. treated with WBRT (%) 15 (18.3)

 No. with prior same-site SRS (%) 7 (8.5)

 Median time from SRS to resection (range), d*   302 (21–1351)

Abbreviations: SRS = stereotactic radiosurgery; WBRT = whole brain radiation therapy.

*
For lesions with radiographic pseudoprogression without pathology, time interval was from SRS until date of maximum size.
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