Skip to main content
. Author manuscript; available in PMC: 2019 Sep 16.
Published in final edited form as: Int J Radiat Oncol Biol Phys. 2018 May 24;102(4):1236–1243. doi: 10.1016/j.ijrobp.2018.05.041

Table 2.

Top 10 radiomic features according to performance on univariate logistic regression models

Rank Radiomic feature Mean value in treatment
effect (standard error)
Mean value in true
progression (standard error)
P value* AUC

1 T1c minimum 190.63 (17.12) 139.42 (17.71) .04 0.70
2 FLAIR NGTDM coarseness    0.05 (0.01)    0.03 (0.00) .03 0.69
3 T1c NGTDM texture strength 116.30 (13.68) 82.34 (9.49) .05 0.68
4 FLAIR kurtosis    3.09 (0.26)    3.53 (0.15) .15 0.67
5 T1c NGTDM coarseness    0.04 (0.00)    0.03 (0.00) .04 0.65
6 T1c GLRLM gray level nonuniformity 594.39 (70.12) 842.25 (75.11) .02 0.65
7 T1c fractal dimension    1.37 (0.03)    1.43 (0.02) .08 0.65
8 FLAIR minimum 4107.00 (353.47) 3130.63 (337.94) .05 0.65
9 T1c GLRLM run percentage    0.41 (0.03)    0.48 (0.02) .04 0.63
10 FLAIR NGTDM texture strength 338.99 (93.26) 203.51 (31.36) .18 0.63

Abbreviations: FLAIR = fluid-attenuated inversion recovery; GLRLM = gray level run-length matrix; NGTDM = neighborhood gray tone difference matrix; T1c = T1 post contrast.

*

P value is for difference in the means according to unpaired Student’s t test.

AUC is area under the receiver operating characteristic curve for performance of the radiomic feature on univariate logistic regression.