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Abstract

Brain decoding—the process of inferring a person’s momentary cognitive state from their

brain activity—has enormous potential in the field of human-computer interaction. In this

study we propose a zero-shot EEG-to-image brain decoding approach which makes use of

state-of-the-art EEG preprocessing and feature selection methods, and which maps EEG

activity to biologically inspired computer vision and linguistic models. We apply this

approach to solve the problem of identifying viewed images from recorded brain activity in a

reliable and scalable way. We demonstrate competitive decoding accuracies across two

EEG datasets, using a zero-shot learning framework more applicable to real-world image

retrieval than traditional classification techniques.

Introduction

Research in the field of Brain-Computer Interfaces (BCI) began in the 1970s [1] with the aim

of providing a new, intuitive, and rich method of communication between computer systems

and their users. Typically, these methods involve measuring some aspect of neural activity and

inferring or decoding an intended action or particular characteristic of the user’s cognitive

state. Although BCI is still in its infancy, there are already practical applications in assistive

technology as well as in disease diagnosis [2, 3]. Brain-controlled prosthetics [4] and spellers

[5] have shown their potential to enable natural interaction in comparison with more tradi-

tional methods, such as mechanical prosthetics or eye-movement-based spellers. Other rele-

vant applications include identifying the image that a user is viewing, usually referred to as

image retrieval, which is of particular interest in the fields of visual attention applied to adver-

tising and marketing, in searching and organising large collections of images, and in reducing

distractions during driving, to name a few.

Although brain decoding technology has immense potential in diverse applications, it faces

multiple challenges related to speed and accuracy that must be overcome before it emerges as a

disruptive technology. The complexity of BCI stems from the naturally low signal-to-noise

ratio (SNR) and high dimensionality of raw brain data, which often complicates automated

analysis and can force researchers to manually analyse previously recorded neural activation

data. In the context of data collected from electroencephalography (EEG) devices, this is
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typically done either by examining the frequency domain or by plotting Event-Related Poten-

tials (ERPs). In an ERP experiment the participant is presented several times with a given stim-

ulus or stimulus category and their neural response each time can be recorded and averaged.

These ERPs can be analysed against well-known response patterns or, alternatively, character-

istics such as the strength and timing of signal peaks can be quantified and analysed automati-

cally. ERP analysis is well established and has important applications in medical diagnosis [6]

and in cognitive neuroscience research [7, 8]; however, the broad characterisation of brain

response used in traditional ERP methods is not richly informative enough to decode the level

of detail required to make predictions about a participant’s cognitive state, as required for BCI

image identification.

Given the complexities of decoding the nature of an arbitrary visual stimulus from a per-

son’s brain activity, cognitive neuroscientists and BCI researchers have traditionally tackled

the simpler task of determining which of some finite set of category labels corresponds to a

particular pattern of brain activity. In one of the first such studies, Haxby and colleagues [9]

collected functional Magnetic Resonance Imaging (fMRI) data as participants viewed a series

of images from the categories of human faces, cats, houses, chairs, scissors, shoes and bottles,
along with images of random noise. The researchers were able to determine with 83% accuracy

which category of object the participant was viewing.

However, fMRI is impractical for general BCI applications. Murphy et al. [10] used EEG

rather than fMRI and achieved 72% accuracy in classification across the two classes of mam-
mals and tools. While this study addressed a much simpler problem with only two possible

classes, it demonstrated category decoding using relatively inexpensive and less intrusive EEG

data collection methods (fMRI and EEG technologies are discussed in more detail in Section

‘Brain Data’).

In the studies mentioned above the classifiers would not determine specifically which stim-

ulus image was displayed (as required for image retrieval), instead they only determine the cat-

egory which the stimulus image belongs to. Moreover, as a classification approach, this is not

scalable to new classes and, although it may yield a high accuracy, it becomes less accurate

with increasing number of classes. An alternative approach to BCI image classification makes

use of rapid serial visual presentation (RSVP) [11, 12]. The participant is presented with a

rapid stream of images (approximately 10 each second) and is instructed to count the number

of times a particular target image or object appears. A classifier can then reliably decode

whether for a given segment of brain data, the participant had been presented with a target or

non-target image. This RSVP approach could be more directly applied to our problem by

showing a participant a target image from a gallery, and then presenting all of the images in a

gallery one by one with the expectation that when the target image should elicit neural activity

sufficiently different from the non-target images to identify it. However, as the number of

images in the gallery grows, it becomes impractical to present them in a real-world searching

scenario.

Traditional machine learning approaches can achieve high accuracy in classification tasks

when there is sufficient training samples for each class for a specified set of classes. However,

these approaches are not suitable when samples can belong to a novel class which has not been

seen before in training, or as the number of classes tends to infinity. This characteristic can be

too restrictive for many real-world applications where gathering extensive training data is

impractical. Zero-shot learning presents a more scalable approach to brain decoding, where

the performance of the system is sustained as the number of new classes and instances scales

up. Rather than learning a mapping directly to pre-defined classes or labels, we focus on creat-

ing an embedding space which could describe any valid class, and then learning a mapping

between neural activation data and this embedding space. Such a mapping can be defined with
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a subset of the full set of classes and/or instances, and tested using withheld classes/instances.

With this approach, the system could in theory decode arbitrary stimulus images it has not yet

been exposed to.

Introducing a feature-based model comes at a cost however, as it also impacts the overall

accuracy of the system. At present most zero-shot systems in this area [13, 14] exhibit perfor-

mance insufficient for real-world applications.

Following the work in Haxby et al. [9], Mitchell et al. [13] used fMRI to decode the mean-

ings of nouns corresponding to concrete objects, using as features each noun’s textual co-

occurrence frequency with a set of 25 verbs. This study was one of the first to make use of

zero-shot learning, allowing them to decode classes (i.e. nouns) from outside the training set.

Others have used visual image features rather than semantic features to decode cognitive states

associated with viewing stimulus images in a zero-shot framework [15]. Using a Gabor-based

voxel decoder, Kay et al. [15] achieved accuracy of 51% and 32% among 1620 images in a sin-

gle-trial identification task, for two distinct subjects. These and other studies, while using

fMRI rather than EEG data, demonstrate the relevance of both semantic and visual informa-

tion in image decoding.

In related work, Palatucci et al. [14] used a similar procedure to Mitchell et al. [13] but with

EEG data. In a study by Carlson et al. [16] using visual images, Linear Discriminant Analysis

(LDA) was used to determine the categories of objects presented to participants. The aim of

this study was to map out the stages of object recognition by comparing the decoding accura-

cies across different levels of object representation and different time windows. They found

that the peak decoding rate for distinguishing between images of the human body was 120ms

after the image appeared, whereas the higher-level semantic distinction between animate and

inanimate images was best determined after 240ms. Using a combination of low-level visual

features and semantic features, Clarke et al. [17] demonstrated that decoding accuracy was sig-

nificantly improved by the incorporation of the semantic features from around 200ms post-

stimulus-onset. Similarly, Sudre et al. [18] also obtained high decoding accuracy using brain

data using both visual and semantic feature sets. These studies both use magnetoencephalogra-

phy (MEG), which is impractical for real-world BCI technology; however, their conclusions

suggest that decoding of neural activation data using visual and semantic models can be a feasi-

ble approach to image decoding in a real-world BCI framework.

This project is motivated by the goal of designing a BCI system which can retrieve any arbi-

trary image specified by a neural activation generated by a user viewing that stimulus image.

To this aim, this paper proposes an EEG zero-shot learning framework for individual image

retrieval which makes full use of both advanced visual and semantic image features [16–18],

rather than a single feature type [13–15]. We also apply the correlation-based feature extrac-

tion method presented in Mitchell et al. [13]. We evaluate our framework with the datasets

recorded in two studies [10, 19], but also apply the challenging zero-shot learning restriction.

Given our image retrieval application, we also aim to perform a more difficult task: where

Carlson et al. [16] utilises zero-shot learning only to determine membership of the stimulus to

a particular object category, our approach will aim to determine which actual image was

viewed. Among the previously described studies, only Palatucci et al. [14] uses EEG data to

decode images within a zero-shot framework but limited their evaluation to simplistic line

drawings rather than photographic images as in this study.

The main contributions of this paper are:

• First time visual and semantic features are used together for EEG zero-shot learning, which

translates to potential for a real-world BCI image retrieval system.

Real-world brain-computer interfaces
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• State-of-the-art performance for the particular task of EEG-driven image retrieval in a zero-

shot framework.

• Evaluation across two datasets from different sources including a large open dataset for

future comparative studies.

• Analysis of how well the feature sets chosen reflect the expected brain activity.

General methodology

Our framework comprises of three main components. First the brain data must be cleaned

and a subset of the EEG features extracted to represent the underlying cognitive states. Then

we apply our chosen computer vision and semantic models to the stimuli, to create a represen-

tation of each image in this visuo-semantic feature space. Finally we use a linear regression

algorithm to find a mapping between the brain and stimulus spaces which makes the brain

decoding possible. A high-level overview of this architecture can be found in Fig 1.

Brain data

Two of the most widely used approaches to recording brain activity are functional Magnetic

Resonance Imaging (fMRI) and EEG. The former can localize the physical source of brain

activity with high spatial accuracy. However, the temporal resolution of fMRI is limited to a

sampling rate of 1-2 seconds. Moreover, fMRI requires an MRI scanner, a large and expensive

piece of equipment using powerful magnetic fields and liquid helium coolant, making it

unsuitable for BCI systems outside of laboratory or clinical settings.

As a cheaper and more convenient alternative, EEG can be used to measure the electrical

activity produced in the brain. Given that we are interested in eliciting cognitive states associ-

ated with particular images, the experimental paradigms used for the EEG data in this study

Fig 1. Information flow in the image retrieval architecture. Overview of the flow of information and processing

during a single fold of cross-validation (‘Zero-shot Prediction’ Section). Model performance is determined by fit of the

predicted feature vectors: in the example above, the true target features are in the second position of a sorted list of

neighbours. In this case with a total of seven possible images, this results in a rank of 2, and a CMC AUC of 78.57%

(Cumulative Match Curve, Area Under Curve; see ‘Measure of Accuracy’ Section for details).

https://doi.org/10.1371/journal.pone.0214342.g001
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involve repeated presentations of images on a computer screen (‘Datasets’ Section). For each

image presentation, an “epoch” consisting of 1000ms of EEG data starting at the onset of the

stimulus presentation is extracted, which comfortably encompasses the informative brain

activity associated with the image [16]. We refer to an epoch of EEG data and its associated

stimulus image collectively as a “trial”. Our goal is to map epoch data to image features in

order to determine which image was presented at the time the epoch was recorded.

EEG data preprocessing. Preprocessing is a necessary stage of EEG data analysis that

involves aligning, normalising and otherwise cleaning the raw data in order to make it more

suitable for downstream analyses. The main goal of preprocessing the EEG data in our frame-

work is to remove sources of noise in order to minimise obfuscation of underlying useful pat-

terns in the data. Recordings are first filtered to remove ambient interference. One of the

strongest noise sources in EEG is ambient electrical activity near the recording equipment,

such as personal computers, large lights, or improperly insulated wiring. These signals are rela-

tively easy to separate from brain activity based on their frequency, typically 60hz or 50hz (in

America and Europe respectively). A lower frequency cut-off must also be established to

remove slower sources of noise—these are generally slow changes in the electrical profile of

the scalp or sensors such as a gradual increase or decrease of perspiration leading to a change

in conductivity. A band-pass filter was used to remove any signals in our data with a frequency

outside the range 1-40hz as in other studies [10, 11, 14, 19–22].

Channels with poor contact with the scalp were then identified using the variation, mean

correlation and Hurst exponent [23]. Each metric was calculated and any channel with a value

three standard deviations outside the norm across all channels was marked as poor. These

channels were then removed and replaced by values interpolated from the remaining clean

channels. These interpolated values were generated via spherical spline [24] which made use of

the values from clean channels along with their location in 3D-space to approximate a value at

the location of each removed channel.

The 1000ms epochs were baselined [20, 22] by subtracting from each channel the average

value of that channel from the 500ms prior to the image presentation. Epochs which fell out-

side the threshold for amplitude range, variance or channel deviation were removed as in

other studies [11, 20, 21, 25]. Again these metrics were computed and compared with a thresh-

old for standard deviation of three.

Following this, Independent Component Analysis (ICA) [26] was performed primarily to

identify artefacts related to eye movement as in other studies [10, 19, 20]. In this step the input

signal is decomposed into an approximation of its sources, and each source (or component)

can be examined to determine if it has encapsulated the influence of some artefact or pattern

of brain activity on the EEG recording. The process of converting a multi-channel signal into

components is reversible in that the original input signal can be reconstructed given a com-

plete set of the corresponding components. When we apply ICA to EEG for the purposes of

artefact rejection, components which isolate artefacts such as eye movement can be withheld

and the EEG reconstructed with the remaining components. So long as the components

removed correctly isolate the ocular artefacts, the reconstructed EEG recording should show

no more evidence of said artefacts. These components can be analysed by hand or automati-

cally to determine whether they should be removed.

In this study, components were compared against a channel of the input signal which

showed the strongest samples of ocular artefacts, components with a higher correlation to this

channel were more likely to have isolated the artefacts. A threshold is set as above to mark

components for removal if their correlation coefficients exceeded a z-score of three. In some

datasets, ocular activity is recorded by a sensor placed very close to the eyes which should pro-

vide a clean example of ocular artefacts, however the datasets we analyse here did not have a
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dedicated sensor for this purpose. We instead used whatever sensor was closest to the eyes and

while this is where ocular activity will be strongest, there is a risk that informative brain activity

could be lost. While we are primarily interested in using ICA to remove eye movement, there

are a number of other less common artefact sources which can be isolated in components.

Thresholds were also set as above for spatial kurtosis, Hurst exponent and mean gradient to

detect single electrode short duration offset, non-biological electrical signals [27], and high-

frequency content respectively. Components which reached these thresholds were removed

and the EEG signal reconstructed from the remaining components.

Next, within each epoch, channels were examined for short term artefacts using variance,

median gradient, amplitude range and channel deviation. Channels identified as noisy within

the bounds of the epoch were replaced by an interpolation from other nearby channels within

that epoch. Epochs were also downsampled to a rate of 120hz as in other studies [11, 14, 19] to

reduce dimensionality before machine learning is applied.

All of the above preprocessing steps were implemented using the EEG preprocessing toolkit

FASTER (Fully Automated Statistical Thresholding for EEG artefact Rejection) [20].

As a final preprocessing step before the EEG data are used in our regression model,

the data are z-scored (standardised). We primarily perform this step to ensure that the

mean of the data is zero as this can simplify the parametrisation of our machine learning

model. Z-scoring is done separately for each iteration of the cross validation, with the mean

values for the transformation calculated using only the training samples and the transforma-

tion then applied to the training and testing samples to avoid any influence of the latter in

the former.

EEG feature selection. After preprocessing, an EEG feature extraction process is used to

continue reducing the dimensionality of the data by extracting the most discriminatory fea-

tures from the preprocessed data, and further removing uninformative and noisy dimensions

of the data. This facilitates the successful mapping of EEG data to our image feature space by

extracting only those aspects of the EEG signal which are likely to be informative about the

visual and semantic feature sets. Following the approaches used in Mitchell et al. [13] and eval-

uated in Caceres et al. [28], we ignore all but the features with the highest collinearity across

presentations of the same stimulus on the screen. Concretely, the EEG data for a particular

participant following preprocessing is a 3D-matrix of size nE × nC × nT, where nE is the num-

ber of epochs (i.e. the number of stimulus presentation events), nC is the number of channels

(or sensors) in the EEG headset, and nT is the number of timepoints in an epoch (the number

of times during an epoch that sensor values were recorded). In this work, we use an epoch

length of one second and downsample the data to 120Hz, giving nT = 120. We treat the data

from each timepoint and each sensor as a separate feature, giving a total of nC × nT candidate

features for each epoch. In order to calculate feature collinearity, we reshape the nE × nC × nT

data matrix to a 2D-matrix of size nE × (nC × nT), or, equivalently, (nS × nP) × nF where nS is

the number of stimuli, nP is the number of times each stimulus was presented in a recording,

and nF is the number of EEG features. We then transform this back into a 3D-matrix of shape

nF × nP × nS and term this matrix D. D is therefore composed of a nP × nS feature matrix for

each EEG feature f. To calculate a stability score for a feature, we measure the consistency of

the feature across different presentations of the same stimulus—we calculate the Pearson cor-

relation for each pair of rows in D and use the mean of these correlations as the stability score

for that EEG feature f:

Stabilityðf Þ ¼
1

nCom

XnP

i¼1:

XnCom

j¼1;i!¼j:

:
covðDf ;i;:;Df ;j;:Þ

sDf ;i;:
sDf ;j;:
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where σx is the standard deviation of x and

nCom ¼
nPðnP � 1Þ

2

In each iteration of our cross-validation, we calculate the stability of each EEG feature

using the training set and select the most stable features for fitting the regression model.

More detail of the cross-validation architecture can be found in the ‘Zero-shot Prediction’

Section.

Image feature space

Computer vision is the field of study devoted to designing algorithms to interpret digital

images, so it is a natural place to look for an appropriate feature space. Different computer

vision models extract features at different levels of abstraction, ranging from recognising sim-

ple lines or colours through to recognising objects. Previous research [16, 17, 29–32] shows

that these levels of abstraction are evaluated sequentially in the human ventral visual process-

ing stream. In light of these findings, we expect earlier EEG features to contain predominantly

low-level visual information, with higher-level visual features being increasingly present in

later EEG features. For maximal decoding performance, it is therefore essential to find a set of

computer vision models which cover each level of abstraction that will be represented in the

EEG features. Furthermore, we chose feature sets which are grounded in similar mechanics to

human visual processing, under the rationale that these feature sets have the potential to best

match with human brain activity.

Gabor filters. In order to model human edge and texture detection we chose to use

Gabor Filter Banks as this well-established computer vision technique identifies visual

edges in a very similar way to the lowest-level of human visual processing in cortical areas

V1 and V2 [33–36]. A bank is comprised of a set of filters which each represent an edge with

a particular orientation and spatial frequency, these filters can be used to identify where in

an image there is a matching edge. The filter bank used here contains eight evenly spaced

orientations (θ) and four standard deviation values (σ) ranging from two to five, resulting in

a bank of 32 filters. The rest of the parameters were fixed at default with ksize = (31, 31),

wavelength of the sinusoidal factor (λ) = 6.0, spatial aspect ratio (γ) = 0.5 and phase offset

(ψ) = 0.

Each pixel co-ordinate in an image x, y is convolved with a Gabor filter described by the

parameters above:

gðx; y; l; y;c; s; gÞ ¼ exp �
x02þ g2y02

2s2

� �

exp i 2p
x0

l
þ c

� �� �

where

x0 ¼ x� cosyþ y� siny y0 ¼ � x� sinyþ y� cosy

Let Lϑ and Lσ denote the sets of parameter values defining the filter bank:

LW ¼ 0;
1

7
p;

2

7
p; :::

� �

Ls ¼ f2; 3; 4; 5g
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Each image in our feature set was convolved with every filter, and the result summed to

generate a histogram of 32 dimensions vgabor for each image:

vgaborðimageÞ ¼

P
x;y2grid gðx; y; l; LW1;c; Ls1; gÞ

..

.

P
x;y2grid gðx1; y1; l; LW8;c; Ls1; gÞ

..

.

P
x;y2grid gðx1; y1; l; LW1;c; Ls2; gÞ

..

.

P
x;y2grid gðx1; y1; l; LW8;c; Ls4; gÞ

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

T

We stack the vgabor vectors to create the final matrix of Gabor features for our image set:

xgabor ¼

vgaborðimage1
Þ

vgaborðimage2
Þ

..

.

vgaborðimagenSÞ

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

Scale invariant feature transform. The brain is also sensitive to higher-level visual infor-

mation which is not adequately captured by simple and spatially local Gabor Filters. In order

to make use of higher-level visual processing in our system we chose to apply a prominent

computer vision model which detects and describes keypoints in an image such as corners,

spots and other simple geometric entities. Keypoint locations in the image are important in

the model as they offer a degree of abstraction from the raw pixel values, as well as a degree of

transformation invariance (i.e. a particular set of features in an image selected as keypoints will

continue to be the keypoints even if the image is subjected to low-level transformations such as

scaling and rotation). In a similar way, human visual processing involves constructing repre-

sentations of the visual input which are invariant with respect to low-level transformations.

Moreover, in the computer vision model the keypoints tend to reflect interesting or important

components of the images, and such locations within the image may also be reflected in

humans’ visual attention during object processing (e.g. where a keypoint represents the edge

or boundary between an object outline and the background).

Scale Invariant Feature Transform (SIFT) identifies these keypoints using difference of

Gaussians and generates a descriptor for the pixel neighbourhood [37]. We then applied Visual

Bag Of Words (VBOW) [38] to the extracted SIFT features. Bag of words is a well-known tech-

nique in information retrieval and natural language processing which allows for a more dis-

criminative and consistent representation of the feature representation. To achieve this, the

different feature components which are most common across different exemplars in a large

calibration set are identified and collated to form a “codebook’’ or dictionary, a conceptual bag

of words to be used to describe the input (in the context of image processing, the “words” are

Real-world brain-computer interfaces
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not literally words, but are a set of image feature types that can be used to represent images,

analogous to how a document can be represented as a collection of word types). Those feature

components that are uncommon, and therefore likely to be of little discriminative value or

associated with noise in individual images, are discarded. Using this codebook, a histogram is

generated detailing how often each feature component of the codebook appears in the image

features. This histogram is what can be used to represent images in a much lower dimensional

space, which is also invariant to spatial transformations. Since the histogram has the same

length as the number of elements in the codebook, every exemplar is represented with a vector

of the same length, which simplifies the subsequent stages of the machine learning pipeline.

Following this VBOW process, we generated SIFT keypoint descriptors for a large corpus

of images and then selected the most informative descriptors to compile the codebook. As our

goal is to create an approach applicable to real-world BCI systems, we require our image fea-

ture space to have the capacity to describe and discriminate arbitrary representative images.

To this end, we used a SIFT codebook trained with a large, diverse corpus of images taken

from ImageNet [39].

Each SIFT Descriptor represents a 4 × 4 grid around some keypoint in the image. Differ-

ence of Gaussian (DoG) is run on each segment of this grid and the results compiled into a his-

togram with eight bins. A SIFT descriptor is the resulting 8 × 4× 4 = 128 dimensional vector,

indexed by x-y. Each element of the codebook is a SIFT Descriptor. K-means clustering was

performed with a random subset of 10 million SIFT descriptors generated over the ImageNet

corpus to produce 1000 clusters. The centroid of each cluster was then taken to produce a

codebook of 1000 dimensions to categorise future SIFT descriptors.

Using VBOW has the benefit of finding features that generalise well across multiple differ-

ent objects and as such have the best chance of extending to new classes. Moreover, it removes

spatial data making the feature vector invariant to spatial transformations such as rotation,

translation and scale which is less relevant to intermediate-level visual information. A list of

imageDescriptors were generated for an image, and used to produce a histogram vsift of how

often each ‘visual word’ encoded in the codebook appeared in the stimulus image.

vsiftðimageÞ ¼ ½hs1; hs2; :::; hs1000�

where

hsi ¼
X

k2imageDescriptors

Iðk ¼ codebookiÞ

and I is an indicator function evaluating to 1 if the argument is true and 0 otherwise.

This implementation made use of Dense SIFT, meaning the keypoints correspond to a reg-

ularly sampled grid, rather than a set of natural keypoints estimated for an image. A histogram

vsift was generated for each image, and collated into a matrix representing our stimulus image

SIFT features xsift.

xsift ¼

vsiftðimage1
Þ

vsiftðimage2
Þ

..

.

vsiftðimagenSÞ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5
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Colour histogram. Finally, as none of the previous visual features encapsulates colour

information, we chose a global Hue, Saturation, and Value (HSV) histogram to model colour

in our approach, since there is some evidence that a HSV colour space comes closer to reflect-

ing human vision than Red, Green, and Blue (RGB) [40]. A HSV histogram vhsv is generated

for each image using a quantisation of four bits per pixel and channel:

vhsvðimageÞ ¼ ½h1; h2; :::; h16; s1; s2; :::; s16; v1; v2; :::; v16�

hi ¼
X16

j¼1

X

k2iP

Iðkhue ¼ jÞ si ¼
X16

j¼1

X

k2iP

Iðksat ¼ jÞ vi ¼
X16

j¼1

X

k2iP

Iðkvalue ¼ jÞ

Where iP is the list of pixels in the image, and khue, ksat and kvalue are the hue, saturation,

and value of the pixel k respectively. This gives each HSV channel 16 bins to produce a histo-

gram of 48 features. The histograms are then collated into a matrix representing our HSV fea-

ture space xhsv.

xhsv ¼

vhsvðimage1
Þ

vhsvðimage2
Þ

..

.

vhsvðimagenSÞ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

Global vectors for word representation. While visual features allow us to describe

images at low and intermediate levels, higher-level semantic processing requires us to charac-

terise the image in terms of the object it contains. To model object-level information, we

included a general set of features describing the semantic differences between concepts.

We chose a set derived with the Global Vectors for Word Representation (GloVe) algorithm

as it is well established [41–43] and state-of-the-art vector datasets are readily available.

The learning objective of GloVe is to generate for each word an M-dimensional vector such

that the dot product of two of the vectors equals the logarithm of the probability of the associ-

ated words co-occurring in text. As M increases, a larger number of words can be more

accurately described; however this increases the computation time both in training GloVe

and in any downstream analyses which use GloVe vectors as input. In this project, we make

use of a pretrained matrix gMat of 1.9 million words with 300 dimensions indexed by the

word [44].

Firstly a name is assigned to each stimulus image to describe the subject of the image. A

number of our stimulus images were labeled with a Multi-Word Expression (MWE) which did

not have a corresponding feature vector in gMat. In these cases we used the mean of its com-

posite words, following [45]. For example, the stimulus “plaster trowel” was set to the mean of

the vector for “plaster” and the vector for “trowel”.

For each of our images we chose a single word or MWE to represent the content (i.e. the

depicted object), and take the row of the GloVe matrix which corresponds to that word as the
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feature vector for the image in our high-level semantic feature space.

xsem ¼

gMatnames1

gMatnames2

..

.

gMatnamesnS

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

where

names ¼ farmadillo; axe; badger; beaver; . . . ; zebrag

Combining the feature sets. The complete visuo-semantic feature set is then composed

by combining xgabor, xsift, xhsv and xsem. Concatenating the raw feature sets together would

result in a poor and imbalanced feature space due to the differences in dimensionality and

value scaling across the different constituent feature sets. We therefore normalise each feature

set to ensure that the values in each row range from zero to one and perform Principal Compo-

nent Analysis (PCA) to reduce the dimensionality of the concatenated feature space.

With y 2 xgabor and z be the length of y, we normalise the feature vector by its range and

stack the results to form xgaborR:

vgaborðimageÞ ¼

y1 � minðyÞ
maxðyÞ � minðyÞ

y2 � minðyÞ
maxðyÞ � minðyÞ

..

.

yz � minðyÞ
maxðyÞ � minðyÞ

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

T

xgaborR ¼

vgaborRðxgabor1Þ

vgaborRðxgabor2Þ

..

.

vgaborRðxgabornSÞ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð1Þ

The final complete set of features is the concatenation of the features from each of the com-

ponent visual and semantic models:

featuresvs ¼ ½xgab; xhsv; xsift; xsem�

Finally, before using these features in our classification model, we apply one further feature

selection based on a measure of fit from the regression model (as described in Section ‘Zero-

shot Prediction’).
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EEG mapping

The mapping of our EEG data to our visuo-semantic feature space is essentially a problem of

fitting a regression model fi for each image feature i such that f(EEGy) = [f1, . . ., fi]� featuresy

where EEGy is the preprocessed nC × nT-dimensional brain activity vector associated with

stimulus image y.

Assuming a linear relationship exists between these two components, multiple linear

regression can be applied to find some set of weights w1 such that f1ðEEGyÞ ¼ vEEG1
� w10 þ

vEEG2
� w11 þ . . . will produce a value as close as possible to featuresy1

, some vector of weights

w2 such that f2ðEEGyÞ ¼ vEEG1
� w20 þ vEEG2

� w21 þ . . . will produce a value as close as possi-

ble to featuresy2
, and so on until a vector can be stacked which is as close as possible to

featuresy.

Prior studies [10, 14] have shown success using a linear regression model with brain data

when they are regularised. This coupled with its speed and simplicity made it a natural choice

for a baseline approach. L2 regularisation is used to reduce overfitting and improve the gener-

alisation properties of the model. This choice is preferred over L1 regularisation given the

expected high collinearity of our samples, i.e. signals recorded from nearby locations in very

similar temporal instants should register very similar sources in brain activity. A good model

will be able to generalise the relationship rather than being limited to projecting the particular

samples and/or classes used in training. If this is achieved, the mapping mechanism and the

representative feature spaces could be used within a zero-shot learning architecture.

Zero-shot prediction. Once a mapping between EEG data and the image feature space

has been learned from training, a prediction of image features can be made for an EEG epoch

withheld from the training set. To ensure a zero-shot framework, we use leave-one-class-out

cross-validation to iteratively withhold all epochs associated with a particular stimulus/image

for testing in each iteration. Concretely, this means we withhold the data for trials related to

Stimulus 1, and train a regression model using the trials for the rest of the stimuli. We then

pass the withheld testing trials into our regression model to produce a predicted image feature

vector for each trial. We then return the trials for Stimulus 1 to the training set and instead

withhold the trials for Stimulus 2. A separate regression model is trained from scratch for this

new training set, and then predicted image feature vectors are produced for the Stimulus 2 tri-

als. This pattern is repeated for each stimulus image in the recording.

Following the regression, there is one final step of feature selection over the predicted

image features before moving to the feature matching for image retrieval. We do not make use

of all image features in the predicted image feature vector, but instead select just those which

are best represented in the EEG data. To make the distinction between useful and under-repre-

sented features, we approximate each feature’s informativeness by calculating the measure of

fit of our regression model. When predictions are fed to the classifier, we ignore the columns

of the feature space and the predicted feature vectors with the lowest measure of fit.

For each iteration of train/test split, after the regression model has been fit, an R2 measure

of fit is calculated for each image feature column in features. For each epoch in a recording we

produce a predicted image feature vector and collate these vectors into the matrix p. Each

epoch is associated with a particular stimulus image and each stimulus image is associated

with a feature vector in features, so we generate t such that ti is the feature vector associated

with the stimulus image used in epoch i.
These fit values are then averaged across iterations to produce an estimate of which image

features are best represented in the EEG data. This estimation is reached entirely without influ-

ence from the withheld epochs. The last step of the brain decoding mechanism is implemented

using a nearest neighbour classifier between the predicted image feature vector pj from the
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EEG and the target image feature vector tj. This allows us to order all the images in our data-

base (including the target stimuli) in the image feature space by their distance from the pre-

dicted feature vector. We can then convert this ordered list of stimuli into a rank by counting

how far down the list the target image is, where a perfect prediction results in rank one and

where the expected rank assuming chance performance is nS/2, where nS is the number of sti-

muli images.

Results

Datasets

Two different datasets are used to evaluate our zero-shot prediction architecture, in order to

reduce the risk of overfitting to a particular dataset and limiting the generality of our conclu-

sions. To facilitate comparison with previous approaches, two datasets with similar tasks,

“Trento” and “Stanford”, are used.

Trento data. The first collection of EEG data analysed in this study is the Trento set [10]

which uses 60 grayscale photographs as stimuli. Since this dataset was initially designed for

classification, images are grouped in 30 pictures of 30 different land mammals and 30 pictures

of 30 different hand tools. However, due to our image retrieval goal this category-level infor-

mation is discarded and the stimuli are treated as 60 individual images. In an EEG experimen-

tal session, these images were each presented six times to each participant, for a total of 360

trials (i.e. 360 epochs). There were seven participants; five males and two females (ages 25-33),

all of whom were native speakers of Italian. Each participant completed a single experimental

setting.

Participants were instructed to silently name the image with whatever term occurs naturally

whilst EEG data was collected with a 64-channel EEG headset sampling at 500Hz. More details

of the paradigm and recording of the data can be found in Murphy et al. [10]. The epoched

data for each session therefore consists of a matrix of shape nE × nC × nT, where nE = 360,

nC = 64 and nT = 500. Through the preprocessing steps outlined in the ‘EEG Data Preprocess-

ing’ Section (including removal of noisy epochs), the resulting cleaned set was a matrix of size

340 × 7680 on average per recording. The number of epochs is approximate as for each experi-

mental session, a different number of low quality epochs for each participant are removed dur-

ing preprocessing. Similarly, each recording had a different number of components subtracted

after ICA (two on average). In the original study, the aim was to train a linear binary classifier

to distinguish between epochs associated with mammal or tool stimuli, which differs from our

goal of matching epochs to particular images. As such, the Trento materials use a narrow selec-

tion of stimuli from just two semantic categories, and each object image will be visually and

semantically similar to many other images in the set. This provides a challenging test of our

method’s ability to predict the correct image from a set of possible and very close alternatives.

Stanford data. The second EEG dataset we used to test our approach is an openly avail-

able dataset compiled at Stanford University [19]. Participants were presented with a series of

colour photographs, drawn from the categories human body, human face, animal body, animal
face, fruit/vegetable, or man-made (inanimate object). There were 12 images in each category

and each image was presented 12 times in random order for a total of 864 trials per recording.

Again, we discard category information and the experiment is treated as an image retrieval

task with 72 individual images. There were 10 participants (ages 21-57), three of whom were

female and one who was left-handed, all reported normal or corrected-to-normal vision. Every

participant completed two sessions which each comprised of three separate EEG recordings

for a total of 60 recordings. The EEG was recorded using a 128-channel headset sampling at

1kHz. Each recording therefore contained 864 epochs, each with 128,000 features in its raw
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form. The resulting cleaned set after preprocessing measured approximately 792 epochs × 128

channels × 120 timepoints, giving a EEG feature matrix of average size 792 × 15,360 per

recording. Across the recordings in the Stanford dataset, preprocessing resulted in the interpo-

lation of approximately five channels, the subtraction of four independent components, and

the removal of 0-2 trials of each stimulus. Following removal of noisy trials during preprocess-

ing, four of these recordings were left with no trials for one of their stimuli; these recordings

were excluded from further analysis.

This dataset is the largest of those used in the related image decoding studies above. For

comparison, three of the studies [13, 14, 46] involved nine participants who each attended a

single recording, though in the case of Palatucci et al. [14] three of these participants were

simultaneously recorded with an EEG headset. There is also established work in the field mak-

ing use of even fewer participants, such as Haxby et al. [9] which had six, or Kay et al. [47]

which had two. A slightly larger cohort of 14 was used by Clarke et al. [17], and 20 by Carlson

et al. [16], however again each of these participants only attended a single recording task.

Measure of accuracy

Given the difficulty of the zero-shot prediction task, we used an accuracy metric more sensitive

to small improvements in prediction power based on the Cumulative Match Curve (CMC).

Once a set of predicted visuo-semantic image features is produced for the EEG associated to a

particular image presentation, all the images were ranked by their Euclidean distance from the

predicted feature vector. A CMC was then generated by counting how often the true target

appears in the top X ranked images as shown in Fig 1. For example, the first value on the x-axis

represents the percent of cases where the target image is the nearest to the predicted features in

the feature space, the second value on the x-axis represents the percent of cases in which the

target image was one of the two closest images to the predicted features, and so on. The Area

Under Curve (AUC) is calculated as the normalised volume below the curve for use as the

final metric.

Parameter optimisation

A short gridsearch was performed to empirically optimise the parameters. A random record-

ing from each dataset was chosen and used to perform this gridsearch for each experiment

below. We then used the highest performing parameter set to perform the decoding for the

rest of the recordings with the same dataset and image feature set. We do expect that different

recordings will perform best under different parameter settings, and as such accuracy could be

maximised with a more rigorous approach to gridsearching. That said we have chosen to

determine parameters from a single recording in order to better reflect training in a real-world

BCI system. Gridsearching for the Trento dataset was performed with the recording from Sub-

ject 6, and for the Stanford dataset with the first recording of Subject 10. In Tables 1 and 2 the

recording used for each dataset has been marked (GS) and excluded from the mean column.

Table 1. Trento decoding accuracies (CMC AUC % (Cumulative Match Curve Area Under Curve)).

Feature Set S1 S2 S3 S4 S5 S7 GS Mean

Visual 57.2 65.12 58.72 55.75 64.58 67.18 62.03 62.56

Semantic 57.74 64.74 56.26 61.66 65.98 63.9 64.28 61.71

Visuo-semantic 57.63 63.32 58.46 62.8 62 63.72 66.06 61.32

https://doi.org/10.1371/journal.pone.0214342.t001
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Alpha values {1e-2, 1e-1, 1e0, 1e1, 5e1, 1e2} were tested for the ridge regressor. The number

of EEG features retained during feature selection (‘EEG Feature Selection’ Section) was tested

over the values {25, 50, 75, 100, 125, 150, 175, 200, 250, 500, 750, 1000, 1500, 2000, 2500, 3000}.

Decoding accuracy

In order to compare the effectiveness of our chosen image feature models and confirm our

expectation that combining the models would provide more predictive power than using them

in isolation, the CMC AUC for both datasets was calculated when using all visuo-semantic fea-

tures (featuresvs) and compared against using only visual feature set (featuresv) or the semantic

feature set (featuress) individually.

featuresvs ¼ ½xgab; xhsv; xsift; xsem�

featuresv ¼ ½xgab; xhsv; xsift�

featuress ¼ xsem

Results are shown in Table 1 for the Trento dataset and Table 2 for the Stanford dataset.

All the exemplar decoding results we present are significantly above chance (50%), indicat-

ing a mapping between EEG activity and the image feature sets we have chosen that can be

used for zero-shot brain decoding. For the Stanford dataset, which uses a larger and more

diverse set of object images, the semantic feature set gives better accuracy than the visual fea-

ture set, and best performance is obtained with the combined visuo-semantic feature set.

In the results for the Trento dataset, these trends are less clear, but it can be seen that the

combination of all features is a robust approach overall.

EEG feature selection visualisation

In order to demonstrate that our EEG feature selection was performing as expected and was

properly selecting activity from channels and timepoints known to relate to meaningful visual

processing, we analysed which EEG features were assigned the highest score by the stability

measure outlined in the ‘EEG Feature Selection’ Section. Figs 2a and 3a show a grand average

of the stability scores at different times during an epoch. These values were generated by tak-

ing the mean of the scores across each channel for the time offset in question. Figs 2b–2d and

3b–3d show snapshots of the stability values at particular timepoints from the temporal plots,

distributed over the EEG sensor locations.

Stability peaks within the expected time window [16], indicating that the feature selection

method is properly determining the most informative features within the EEG activity. Based

on previous research [16, 17, 30], we would expect the posterior sensors to be more useful

early in an epoch when there is more visual processing, and that informative areas later on

would be more spatially diffuse, when activity reflects more widely-distributed semantic

Table 2. Stanford decoding accuracies (CMC AUC % (Cumulative Match Curve Area Under Curve)).

Feature Set S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 GS Mean

Visual 59.27 56.91 57.28 57.51 62.57 60.96 56.59 54.5 54.11 61.08 61.97 58.08

Semantic 60.12 56.89 61.38 60.35 65.49 63.93 62.36 55.93 58.07 64.28 64.82 60.88

Visuo-semantic 61.86 58.45 60.8 61.85 67.9 66.08 63.07 56.59 57.84 65.77 66.01 62.02

https://doi.org/10.1371/journal.pone.0214342.t002
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processing of the stimulus. The stability analysis reflects this pattern, more clearly in the

Trento dataset than the Stanford dataset.

Comparison with state-of-the-art

Because of our zero-shot analysis framework, a study with directly comparable results could

not be identified in a review of relevant EEG literature. However, the studies mentioned in the

background section can provide a frame of reference. While Palatucci et al. [14] used image sti-

muli and decoded the image from brain activity, the focus was on decoding semantic informa-

tion about the object in the image rather than retrieving the stimulus image based on the brain

data. The datasets we have access to in this study involve much more visually complex image

stimuli. Moreover, where Palatucci et al. [14] made use of minimilistic line drawings, the pho-

tographs used in both datasets analysed in this study are much more visually complex. In

order to best leverage this extra visual information, we added several visual feature sets to our

analysis.

The leave-one-class-out task performed by Palatucci et al. [14] is similar enough to the task

in this study to give context to our results, though given that the two studies use different data-

sets a direct comparison with our approach is not possible. The paradigm used in the Palatucci

Fig 2. Trento EEG feature stability by time and location. The areas shaded in red signify the locations with highest

electroencephalography (EEG) stability, while areas shaded in blue signify the lowest.

https://doi.org/10.1371/journal.pone.0214342.g002
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et al. study was very similar to those used in the Trento and Stanford experiments, with partici-

pants being presented with a series of images and asked to silently name them. Compared with

the Palatucci et al. [14] study, we obtain slightly better results (Table 3).

Conclusion

In this paper we proposed an approach to zero-shot image retrieval in EEG data using a novel

combination of feature sets, feature selection, and regression modeling. We have shown that a

combination of visual and semantic feature sets performs better than using either of those fea-

ture sets in isolation. We also analysed the performance of each image feature model used in

our approach individually to help identify where future improvements could be made.

Fig 3. Stanford EEG feature stability by time and location. The areas shaded in red signify the locations with highest

electroencephalography (EEG) stability, while areas shaded in blue signify the lowest.

https://doi.org/10.1371/journal.pone.0214342.g003

Table 3. Leave-one-class-out task percent rank accuracy.

Dataset Name Rank Accuracy

Palatucci et al. [14] (their approach) 56%

Trento dataset (our approach) 61.1%

Stanford dataset (our approach) 61.65%

https://doi.org/10.1371/journal.pone.0214342.t003
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We hope that future work can improve upon this approach using the same open dataset for

comparison as it is difficult to accurately predict how well our approach would perform on the

other datasets mentioned in Sections ‘Introduction’ and ‘Comparison with State-of-the-art’.

While this study considers a relatively large amount of EEG data in comparison to related

studies (as shown in the ‘Stanford Data’ Section), a larger and more diverse dataset may be

beneficial in evaluating the performance of our approach.

We have demonstrated that the features we extracted for the EEG data and images are justi-

fied and perform significantly above chance. However it is possible that our image features do

not accurately reflect all stages of human visual processing, and that a different set of features

would better facilitate a regression model. For example, large neural networks that recognise

images have a hierarchical architecture which reflects some aspects of human visual processing

[48, 49] and which could provide an effective model for our feature space. Alternatively we

could replace our semantic features with a set derived from a distributional word embedding

model such as word2vec [50] or fastText [51].

Moreover, our EEG feature selection may correctly quantify the usefulness of each particu-

lar timepoint in each channel, but it is likely that features which are close in time and location

will have very similar information and thus similar scores, and so a feature selection method

may select a set of good quality but redundant features. In future work, we will explore feature

selection methods that produce a small set of maximally informative EEG features. Neverthe-

less, our approach has demonstrated a marked improvement over current state-of-the-art for

EEG zero-shot image decoding and is a step towards the application of EEG to real-world BCI

technologies.
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