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The chaperonin GroEL and its co-chaperonin GroES form
both GroEL–GroES bullet-shaped and GroEL–GroES2 football-
shaped complexes. The residence time of protein substrates in
the cavities of these complexes is about 10 and 1 s, respectively.
There has been much controversy regarding which of these
complexes is the main functional form. Here, we show using
computational analysis that GroEL protein substrates have a
bimodal distribution of folding times, which matches these res-
idence times, thereby suggesting that both bullet-shaped and
football-shaped complexes are functional. More generally, co-
existing complexes with different stoichiometries are not mutu-
ally exclusive with respect to having a functional role and can
complement each other.

The Escherichia coli GroE system assists protein folding in
vivo and in vitro by an ATP-dependent mechanism (1). It com-
prises GroEL, a complex of two back-to-back stacked rings,
each made up of seven identical subunits, and its cofactor
GroES, which is a single homoheptameric ring. Binding of
GroES to GroEL forms a cage in which substrate proteins can
fold in isolation from bulk solution (1). Early EM and biochem-
ical studies showed that GroEL and GroES are able to form both
GroEL–GroES2 symmetric football-shaped (2–5) and GroEL–
GroES asymmetric bullet-shaped (6, 7) complexes. The crystal
structure of the bullet complex was solved more than 2 decades
ago (8), and, more recently, crystal structures of the football
complex have also become available (9, 10). The existence of
both types of complexes is, thus, not in any dispute. Moreover,
both types of complexes were found to co-exist under certain
conditions (11). The main controversy has concerned the iden-
tity of the predominant functional form of the GroE machine.
Some studies show that, in the presence of substrate protein,
the relative populations of the asymmetric and symmetric com-
plexes shift in favor of the latter species (12, 13). By contrast,
others have argued that the asymmetric complex is the func-
tional form and that the symmetric species accumulates only in
the presence of unfoldable protein substrates (14). Given that
GroEL has become a paradigm for molecular machines, in gen-

eral, and chaperonins, in particular, resolving the controversy
regarding the identity of its main functional form is important
and has been the subject of reviews (e.g. see Refs. 11 and 15). It
is also of broad interest because other protein complexes with
varying subunit stoichiometries are known to co-exist in vitro
and in vivo (16). An example is the 20S core particle of the
proteasome, which forms both 1:1 and 1:2 complexes with the
19S lid complex (17).

The debate regarding the functional roles of the bullet- and
football-like complexes is of importance for understanding
GroE’s mechanism of action, in part, because it bears on the
residence time of substrate proteins encapsulated in its cavity.
In the case of the asymmetric complex, the residence time is
estimated to be 10 –15 s (18, 19), whereas, in the case of the
symmetric complex, it is only about 1 s (13). Short residence
times are consistent with the iterative annealing model (20)
according to which the role of encapsulation is to subject the
substrate protein to forced unfolding upon ATP and GroES-
promoted conformational changes. According to the iterative
annealing model, GroEL assists folding by unfolding misfolded
proteins, thereby providing them with further opportunity to
fold correctly inside or outside the cavity. The short residence
times in the symmetric complex would, therefore, result in
more iterations and higher folding yields. By contrast, long res-
idence times are more consistent with a model according to
which encapsulation favors folding owing to confinement and
properties of the cavity walls and the cavity-confined water (1).
Given that GroEL has evolved to facilitate the folding of a range
of protein substrates (21, 22) with different properties (23), we
consider here the possibility that symmetric and asymmetric
complexes specialize in assisted folding of different protein
substrate subsets and that both are, therefore, functional forms.

Results and discussion

Assuming that slow folders might benefit from longer encap-
sulation times, we hypothesized that GroEL substrates have a
bimodal distribution of folding rates (i.e. times) in accord with
the different residence times in the two GroE complexes. We
first compared the distribution of folding rates of the 57 oblig-
atory GroEL substrates (21, 22) with that of all of the cytosolic
proteins in E. coli. Given that many of the relevant three-di-
mensional structures are not available, the folding rate (kF) of
each protein was calculated from its length and predicted sec-
ondary structure (24) as described before (25). It may be seen
that the distribution of folding rates of the obligatory GroEL
substrates is indeed found to be bimodal (Fig. 1A), whereas that
of all of the �1600 cytosolic proteins is unimodal (Fig. 1B). The

This work was supported by United States–Israel Binational Science Founda-
tion Grant 2015170 and the Minerva Foundation with funding from the
Federal German Ministry for Education and Research and the Kimmelman
Center for Biomolecular Structure and Assembly. The authors declare that
they have no conflicts of interest with the contents of this article.

1 An incumbent of the Carl and Dorothy Bennett Professorial Chair in
Biochemistry. To whom correspondence should be addressed. E-mail:
Amnon.Horovitz@weizmann.ac.il.

croACCELERATED COMMUNICATION

J. Biol. Chem. (2019) 294(37) 13527–13529 13527
© 2019 Bigman and Horovitz. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.

mailto:Amnon.Horovitz@weizmann.ac.il
http://crossmark.crossref.org/dialog/?doi=10.1074/jbc.AC119.010299&domain=pdf&date_stamp=2019-8-1


modality of these distributions was confirmed using the Bayes-
ian information criterion (26). Strikingly, the ratio of the folding
times (t � ln2/kF) corresponding to the two maxima of the
bimodal distribution matches very closely to the ratio of exper-
imentally determined residence times in the bullet and football
forms (log(kmax1/kmax2) � log(t2/t1) � �1.95 � 0.82 � �1.13
(i.e. t2/t1 � 0.07), whereas the ratio of estimated residence times
(13, 18, 19) is between 1⁄10 (i.e. 0.1) and 1⁄15 (i.e. 0.07)).

Next, we analyzed the distributions of folding rates of homo-
logs of the 57 obligatory GroEL substrates in mollicutes (27), a
class of bacteria that includes both organisms with a chaper-
onin system and (the only known) organisms without a chap-
eronin system. The distribution of folding rates of the 155 ho-
mologs of GroEL substrates in mollicutes with a chaperonin
system was also found to be bimodal (Fig. 2A). By contrast, the
distribution of folding rates of the 387 homologs of GroEL sub-
strates in mollicutes without a chaperonin system was found to
be multimodal (Fig. 2B). These results support our proposal
that bimodality in the distribution of folding rates is a property
of GroEL substrates that is linked to the mechanism of their
GroE dependence.

In summary, there is compelling biochemical evidence that
GroE footballs are functional. It is not clear, however, why
inter-ring negative cooperativity (28), which is responsible for
the presence of the bullet form, has evolved if the only func-
tional form is the football. Our data suggest that both forms are
functional with respect to substrates with different folding
rates. It is also possible, however, that both forms are functional
under different conditions. It has been shown, for example, that
formation of footballs is favored under high ATP concentra-
tions, but the range of ATP concentrations in E. coli cells varies
widely and was reported to be 1.55 � 1.22 mM (29). Conse-
quently, the asymmetric species may also be the main func-
tional form at low ATP concentrations. In general, co-existing
complexes can complement each other and need not be mutu-
ally exclusive in having a functional role.

Materials and methods

The sequences of E. coli (K12 strain, organism ID 83333) pro-
teins were extracted from Uniprot. The number of cytosolic
proteins, which were defined as such if they did not include the
keyword “membrane” in their Uniport accession, was found to

Figure 1. Distributions of folding rates of GroEL substrates and all cytosolic E. coli proteins. A, the distribution of folding rates of GroEL substrates is
bimodal with maximum values at log(kF) of �1.95 and �0.82. Bimodality was confirmed using the Bayesian information criterion (BIC); BIC � nln(RSS/n) �
kln(n), where n in the number of data points, RSS is the residual sum of squares between the model and the data, and k is the number of parameters in the
model. The two models were compared using �BICi,j � BICi � BICj, where i and j represent the number of modes in the model. Here, we found �BIC1,2 � 16,
indicating BIC2 � BIC1 and, therefore, that the bimodal distribution describes the data significantly better (lower BIC score is better). B, distribution of the folding
rates of all E. coli cytosolic proteins is unimodal, with a maximum value of log(kF) � �0.72. Here, �BIC1,2 � �22, thereby indicating that the unimodal
distribution describes the data significantly better.

Figure 2. Distributions of folding rates of homologs of the GroEL substrates in mollicutes with and without a chaperonin system. A, distribution of
folding rates of 155 homologs of GroEL substrates in mollicutes with a chaperonin system. For this class, �BIC1,2 � 15, indicating that the bimodal distribution
describes the data better than a unimodal distribution, as found for the GroEL substrates in E. coli. B, distribution of folding rates of 387 homologs of GroEL
substrates in mollicutes without a chaperonin system. For this class, �BIC1,2 � 6 and �BIC2,3 � 28, indicating that a trimodal distribution describes the data
significantly better than unimodal or bimodal distributions.
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be 1579. The list of GroEL homologs from mollicutes was taken
from Ref. 27. PSIPRED (24) was used to predict the secondary
structure of all of the proteins in this study. Folding rates were
calculated using the equation, log10(kF) � 10.7 � 16.6(leff

0.1 � 1),
where leff is the effective protein length (25). The experimen-
tally determined (30) folding rate of the GroEL substrate PepQ,
for example, is 0.039 min�1 (log10(kF) � �3.23), in good agree-
ment with the calculated rate of 0.026 min�1 (log10(kF) �
�3.36).
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