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Abstract

A topological multiple testing scheme is presented for detecting peaks in images under stationary 

ergodic Gaussian noise, where tests are performed at local maxima of the smoothed observed 

signals. The procedure generalizes the one-dimensional scheme of [31] to Euclidean domains of 

arbitrary dimension. Two methods are developed according to two different ways of computing p-

values: (i) using the exact distribution of the height of local maxima, available explicitly when the 

noise field is isotropic [9, 10]; (ii) using an approximation to the overshoot distribution of local 

maxima above a pre-threshold, applicable when the exact distribution is unknown, such as when 

the stationary noise field is non-isotropic [9]. The algorithms, combined with the Benjamini-

Hochberg procedure for thresholding p-values, provide asymptotic strong control of the False 

Discovery Rate (FDR) and power consistency, with specific rates, as the search space and signal 

strength get large. The optimal smoothing bandwidth and optimal pre-threshold are obtained to 

achieve maximum power. Simulations show that FDR levels are maintained in non-asymptotic 

conditions. The methods are illustrated in the analysis of functional magnetic resonance images of 

the brain.
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1. Introduction.

Detection of sparse localized signals embedded in smooth noise is a fundamental problem in 

image analysis, with applications in many scientific areas such as neuroimaging [40, 20, 38], 
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microscopy [16, 19] and astronomy [7]. The key issue is to find a threshold to determine 

significant regions. This paper treats the thresholding problem as a multiple testing problem 

where tests are performed at local maxima of the observed image, allowing error rates and 

detection power to be topologically and geometrically defined in terms of detected spatial 

peaks, rather than pixels or voxels.

In neuroimaging, Keith Worsley pioneered the use of random field theory, especially the 

Euler characteristic heuristic, to approximate the null distribution of the global maximum of 

the observed image to control the family-wise error rate (FWER) of detected voxels [40, 41, 

38]. On the other hand, initial attempts to control the false discovery rate (FDR), desirable 

for being less conservative, ignored the spatial structure in the data [20, 24]. Recognizing the 

need to make inferences about connected regions rather than voxels in imaging applications, 

multiple testing methods have since been developed for pre-defined regions [21, 5, 36] and 

for the harder problem of detecting unknown clusters [25, 26, 43]. It has been argued, 

however, that localized signal regions often present themselves as peaks in the image 

intensity profile, inviting a more powerful analysis based on local maxima of the observed 

data as the features of interest [28, 13, 14].

Schwartzman et al. [31] formalized peak detection by introducing a multiple testing 

paradigm where local maxima of the smoothed data are tested for significance. That work, 

was limited to one-dimensional spatial and temporal domains because the distribution of the 

height of local maxima, a key ingredient for calculation of p-values, has historically been 

known in closed-form only for one-dimensional stationary Gaussian processes [15]. 

Recently, however, Cheng and Schwartzman [9, 10] have obtained exact expressions for the 

height distribution of local maxima of isotropic Gaussian fields and an approximation to the 

overshoot distribution of local maxima of constant-variance Gaussian fields by applying 

techniques from random matrices theory [18]. These crucial developments allow us in the 

current paper to extend the multiple testing method of [31] to Euclidean domains of higher 

dimension.

Our “smoothing and testing of maxima” (STEM) algorithm consists of the following steps:

1. Kernel smoothing: to increase the signal-to-noise ratio (SNR) [39, 34].

2. Candidate peaks: find local maxima of the smoothed field above a pre-threshold.

3. P-values: computed at each local maximum under the null hypothesis of no 

signal in a local neighborhood.

4. Multiple testing: apply a multiple testing procedure and declare as detected peaks 

those local maxima whose p-values are significant.

The main conceptual difference with the algorithm of Schwartzman et al. [31], in addition to 

being multi-dimensional, is the introduction of a height pre-threshold in step 2. Pre-

thresholding is often used in neuroimaging to reduce the number of candidate peaks or 

regions [43]. Considered formally here, it leads to two ways of applying the above 

algorithm. If the exact distribution of the height of local maxima for computing p-values in 

step 3 is known, such as for isotropic fields [9, 10], it is shown here that it is best not to 

apply pre-thresholding at all. However, if the height distribution is unknown, as is the case to 

Cheng and Schwartzman Page 2

Ann Stat. Author manuscript; available in PMC 2020 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



date for non-isotropic fields, then pre-thresholding is still valuable in that it enables the use 

of an approximation of the overshoot distribution of local maxima instead [9]. In step 4, for 

concreteness, we focus on the Benjamini-Hochberg (BH) procedure [6] for controlling FDR, 

although other procedures and error criteria could be used. The algorithm is illustrated by a 

toy example in Figure 1.

Following the reasoning of Schwartzman et al. [31], it is shown here that if the noise field is 

stationary and ergodic, then the proposed algorithm with the BH procedure provides 

asymptotic control of FDR and power consistency as both the search domain and the signal 

strength get large, the latter needing to grow only faster than the square root of the log of the 

former. The large domain assumption helps resolve an interesting aspect of inference for 

local maxima, namely the fact that the number of tests, equal to the number of observed 

local maxima, is random. The multiple testing literature usually assumes that the number of 

tests is fixed (an exception in a similar random processes setting is Siegmund et al. [32]). 

The large domain assumption implies that, by ergodicity, the number of tests behaves 

asymptotically as its expectation. On the other hand, the strong signal assumption asymptoti 

cally eliminates the false positives caused by the smoothed signal spreading into the null 

regions, causing each signal peak region to be represented by only one observed local 

maximum within the true domain with probability tending to one. Simulations show that 

FDR levels are maintained and high power is achieved at finite search domains and 

moderate signal strength. We also find that the optimal smoothing kernel is approximately 

that which is closest in shape and bandwidth to the signal peaks to be detected, akin to the 

matched filter theorem in signal processing [29, 33]. This bandwidth is much larger than the 

usual optimal bandwidth in nonparametric regression.

The results in this paper supercede those of Schwartzman et al. [31] in the sense that the 

latter can be seen as special cases when the domain is of one dimension and no pre-

thresholding is applied. This paper provides specific rates for the asymptotic results, not 

available in Schwartzman et al. [31], as well as a more rigorous discussion of the optimal 

smoothing bandwidth. In addition, a multiscale procedure is proposed that allows searching 

over a finite set of bandwidths, eliminating the need to select a single optimal bandwidth. On 

the contrary, the procedure is adaptive to peaks of different spatial extents so that power is 

increased without compromising error control.

A similar idea on multiple testing of local maxima was also proposed by Chumbley et al. 

[14], which we shall refer to as CWFF following the authors’ names. The statistical 

inference there, however, is unclear, as there is no formal definition of false positives (the 

signal is assumed to be nonzero over the entire domain) and no argument for error control. 

Moreover, p-values for local maxima are computed using an approximate formula for the 

overshoot distribution based on the expected Euler characteristic, requiring both a pre-

threshold and a pre-selected domain (see Eqs. (1) and (2) in [14]). Our work is more 

rigorous not only in terms of error control, but also in using the exact height distribution of 

local maxima for computing p-values in isotropic Gaussian fields and a more accurate 

approximation of the overshoot distribution. Our overshoot distribution does not require a 

pre-selected domain because it only depends on local properties of the field [9]. 

Furthermore, the pre-threshold is optimized to maximize power.
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In a broader statistical context, the STEM algorithm falls in the general category of selective 
inference, where inference is performed after selection [17, 22]. Similar to other high 

dimensional data problems, here too the number of tests is reduced by selecting particular 

features observed in the data, namely the observed local maxima. To be valid, the inference 

must take into account the selection process. This is done here by using the proper height 

distribution of local maxima [9, 10] mentioned above. A related p-value com-putation for 

the global maximum, also using the Kac-Rice formula, is given in [37].

Following the neuroimaging motivation, we show in this paper how inference for local 

maxima via the STEM algorithm can be used to find areas of brain activity in functional 

magnetic resonance imaging (fMRI). Specifically, we use a public fMRI data set from an 

experiment whose goal is to find brain regions that relate to inference of other people’s 

mental states, in particular false beliefs about reality [23]. Following the usual fMRI analysis 

protocol, a linear regression is fitted at each voxel and then the STEM algorithm is used to 

make inferences about the contrast of interest as a random field.

The proofs for all the lemmas and theorems in this paper can be found in the Online 

Supplementary Material [12]. The data analysis and all simulations were implemented in 

Matlab.

2. The multiple testing scheme.

2.1. The model.

Consider the signal-plus-noise model

y(t) = μ(t) + z(t), t ∈ ℝN, (1)

where the signal μ(t) is composed of unimodal positive peaks of the form

μ(t) = ∑
j = − ∞

∞
ajℎj(t), aj > 0,

and the peak shape hj(t) ≥ 0 has compact connected support Sj = { t: hj(t) > 0 } and unit 

action ∫Sjℎj t dt = 1 for each j. Let w(t) ≥ 0 be a unimodal kernel with compact connected 

support, mode at the origin and unit action, and let wγ(t) = w(t/γ)/γN with bandwidth 

parameter γ > 0. Convolving the process (1) with the kernel wγ(t) results in the smoothed 

random field

yγ(t) = wγ(t) * y(t) = ∫
ℝNwγ(t − s)y(s)ds = μγ(t) + zγ(t), (2)

where the smoothed signal and smoothed noise are defined as

μγ(t) = wγ(t) * μ(t) = ∑
j = − ∞

∞
ajℎj, γ(t), zγ(t) = wγ(t) * z(t) . (3)
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The smoothed noise zγ(t) defined by (2) and (3) is assumed to be a zero-mean thrice 

differentiable stationary Gaussian field such that for any non-negative integers k1,…,kN with 

∑i = 1
N ki = k ∈ 0, 1, 2, 3, 4 ,

∫ℝ+N
∂krγ(t)

∂t1
k1⋯∂tN

kN
dt < ∞, (4)

where ℝ+
N = [0, ∞)N and rγ(t) = E zγ(t)zγ(0) . The technical condition (4) is needed for 

obtaining the rates of FDR control and power consistency below, and by taking k = 0, it 

implies the ergodicity of zγ(t) [15]. It requires that the derivatives of the covariance function 

of the smoothed field zγ(t) should not decay too slowly. This can be easily obtained by using 

a Gaussian kernel wγ(t) in (2), regardless of the smoothness of the original noise.

For each j, the smoothed peak shape hj,γ(t) = wγ(t) * hj(t) ≥ 0 is uni-modal and has compact 

connected support Sj,γ and unit action. For each j, we require that hj,γ(t) is twice 

differentiable in the interior of Sj,γ and has no other critical points within its support. For 

simplicity, the theory requires that the supports Sj,γ do not overlap although this is not 

crucial in practice.

Let τj,γ ∈ Sj be the unique point where the peak shape hj,γ(t) attains its maximum. We 

impose the following uniformity assumptions on the signal:

1. supj |Sj,γ| < ∞ and infj Mj,γ > 0, where Mj,γ = hj,γ(τj,γ).

2. There exists a universal δ > 0 such that Ij, γ
mode : = t ∈ ℝN :‖t − τj, γ‖ ≤ δ ⊂ Sj for 

all j, Cγ = infjCj, γ > 0 and Dγ = infjDj, γ > 0, where

Cj, γ = inf
t ∈ Ij, γside

‖∇ℎj, γ(t)‖, Ij, γside = Sj, γ\Ij, γmode,

Dj, γ = − sup
t ∈ Ij, γmode

sup
x = 1

xT ∇2ℎj, γ(t)x,

Here ∇ f and ∇2f denote respectively the gradient and Hessian of a function f.

Assumption (1) indicates that the sizes of the supports Sj.γ are bounded and that the heights 

of the peaks of hj,γ are uniformly positive. In assumption (2), the condition on Cj,γ indicates 

that, uniformly for all j, hj.γ(t) has no critical points outside a ball Ij, γ
mode  centered at its 

mode. The condition on Dj,γ indicates that, uniformly for all j, hj,γ(t) is strictly concave 

within Ij, γ
mode ; the quantity sup x = 1xT ∇2ℎj, γ(t)x is the largest (negative) eigenvalue of the 

matrix ∇2ℎj, γ(t). These conditions allow for a large variety of unimodal functions which 

need not be concave within their support and whose level curves need not be convex. Figure 

2 shows an example.
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2.2. The STEM algorithm.

Suppose we observe y(t) defined by (1) in the cube of length L centered at the origin, 

denoted by U(L) = (−L/2, L/2)N, and suppose it contains J peaks. We call the following 

procedure STEM (Smoothing and TEsting of Maxima).

Algorithm 1 (STEM algorithm).

1. Kernel smoothing: Construct the field (2), ignoring the effects on the boundary 

of U(L).

2. Candidate peaks: For a fixed pre-threshold v∈ [−∞ , ∞ ), find the set of local 

maxima exceeding level v for yγ (t) inU(L)

T γ(v) = t ∈ U(L):yγ(t) > v, ∇yγ(t) = 0, ∇2yγ(t) ≺ 0 , (5)

where ∇2yγ(t) < 0 means that the Hessian matrix is negative definite.

3. P-values: For each local maximum t∈ t ∈ T γ(v) with observed height yγ(t), 

compute the p-value pγ (t, v) for testing

ℋ0(t): ∃δ0 > 0 such that μ(s) = 0 for all s ∈ B t, δ0 vs .
ℋA(t): ∀δ0 > 0, μ(s) > 0 for some s ∈ B t, δ0

(6)

where B(t, δ0) is a ball of radius δ0 centered at t.

4. Multiple testing: Let mγ(v) = # t ∈ T γ(v)  be the number of tested hypotheses. 

Apply a multiple testing procedureon the set of mγ(v) p-values pγ(t, v), t ∈ T γ(v) , 

and declare significant all local maxima whose p-values are smaller than the 

significance threshold.

Steps 1 and 2 above are well defined under the model assumptions. In the context of 

selective inference, Step 2 is the selection step, such that only the random locations in (5) 

observed to attain local maxima are selected for testing. The computation of valid p-values 

in Step 3 accounts for this selection by using the proper conditional distribution, as detailed 

in Sections 3 and 4 below. For step 4, we use the BH procedure to control FDR (Section 

3.2). Notice that, in contrast to the usual BH procedure, the number of tests mγ(v) is random.

When v = −∞, we regard T γ = T γ( − ∞) as the set of local maxima of yγ(t) in U(L). In such 

case, Algorithm 1 becomes an N-dimensional version of the STEM algorithm proposed in 

[31] for one-dimensional domains. When v >−∞, an option not available in [31], Algorithm 

1 provides a different way of selecting candidate peaks and computing p-values by choosing 

a pre threshold v. In particular, this provides an effcient way to approximate the p-values for 

stationary and non-isotropic Gaussian noise (Section 4).

2.3. Error definitions.

As in [31], because the location of truly detected peaks may shift as a result of noise, a 

significant local maximum is called a true positive if it falls anywhere inside the support of a 

true peak; otherwise, it is called a false positive. This definition is consistent with (6).
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Define the signal region S1 = ∪j = 1
J Sj and null region S0 = U L \S1. For a significance 

threshold u above the pre-threshold v, the total number of detected peaks and the number of 

falsely detected peaks are

Rγ(u) = # t ∈ T γ(u)  and  V γ(u) = # t ∈ T γ(u) ∩ S0 (7)

respectively. Both are defined as zero if T γ(u) is empty. The FDR is defined as the expected 

proportion of falsely detected peaks

FDRγ(u) = E V γ(u)
Rγ(u) ∨ 1 . (8)

Kernel smoothing enlarges the signal support and increases the probability of obtaining false 

positives in the null regions neighboring the signal [26]. Define the smoothed signal region 

S1, γ = ∪j = 1
J Sj, γ ⊃ S1 and smoothed null region S0, γ = U L \S1, γ ⊂ S0 We call the 

difference between the expanded signal support and the true signal support the transition 

region Tγ = S1, γ\S1 = S0\S0, γ = ∪j = 1
J Tj, γ, where Tj,γ = Sj,γ \ Sj is the transition region 

corresponding to each peak j. While the transition region does not appear explicitly in the 

theorems below, it does play a crucial role in their proofs (online supplementary material).

In general, more than one significant local maximum may be obtained within the domain of 

a true peak, affecting the interpretation of definition (8). However, this has no effect 

asymptotically because, as shown in the proof of Theorem 3 below, each true peak is 

represented by exactly one local maximum of the smoothed observed field with probability 

tending to 1.

2.4. Power.

We define the power of Algorithm 1 as the expected fraction of true discovered peaks

Powerγ(u) = E 1
J ∑

j = 1

J
1 Tγ(u) ∩ Sj ≠ ∅ = 1

J ∑
j = 1

J
Powerj, γ(u), (9)

where Powerj,γ(u) is the probability of detecting peak j

 Power j, γ(u) = P T γ(u) ∩ Sj ≠ ∅ . (10)

The indicator function in (9) ensures that only one significant local maximum is counted 

within the same peak support, so power is not inflated. Again, this has no effect 

asymptotically because each true peak is represented by exactly one local maximum of the 

smoothed observed process with probability tending to 1.
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3. Detection of peaks by the height distribution of local maxima.

3.1. P-values.

For any local maximum t ∈ T γ(v) with observed height y γ(t), its p-value in step 3 of 

Algorithm 1 is the probability, under the null hypothesis (6), that such a height is observed 

given that t has been selected as an observed local maximum. As recognized in selective 

inference [17, 22, 37], the p-value must be computed as a conditional probability given the 

selection event. Specifically, the p-value is pγ (t, v) = F γ (yγ (t), v),t ∈ T γ(v), where

Fγ(u, v) = P zγ(t) > u t ∈ T γ(v) (11)

denotes the right tail probability of the smoothed noise field zγ(t) at the local maximum 

t ∈ T γ(v). By convention, when v = −∞, denote

Fγ(u) = Fγ(u, − ∞) . (12)

As shown in [9], the distribution (11) depends only on the local properties of the field zγ at t. 
Therefore, the probability (11) is the same as that under the complete null model μ(s) = 0 for 

all s ∈ U(L), simplifying the calculations.

The conditional distribution (11) is a Palm distribution [3, Ch. 6] and requires careful 

evaluation because the conditioning event has probability zero. Unlike the marginal 

distribution of zγ(t), it is not Gaussian but stochastically greater. Generally, for a constant-

variance Gaussian field, there is an implicit formula for Fγ(., v) [9]. Theorem 2 below ([9], 

[3]) provides an implicit formula for Fγ(·, v) for stationary Gaussian fields.

Theorem 2. Suppose the assumptions of Section 2.1 hold and that μ(t) = 0, ∀t. Let m0, γ
(U(1), u) denote the number of local maxima of zγ(t) exceeding level u in the unit cube U(1) 

= (−1/2, 1/2)N , and let m0, γ U(1)) =m0, γ(U(1), −∞) be the number of local maxima of zγ(t) 

in U(1). Then the distributions (11) and (12) can be expressed as

Fγ(u, v) = E m0, γ(U(1), u)
E m0, γ(U(1), v)  and  Fγ(u) = E m0, γ(U(1), u)

E m0, γ(U(1)) . (13)

Let σγ2 = Var zγ(t)  and Λγ = Cov ∇zγ(t) , both independent of t due to the stationarity of zγ(t). 

By the Kac-Rice formula [2], the expectations in (13) can be computed as

E m0, γ(U(1), u) = E det∇2zγ(t) 1 zγ(t) > u 1 ∇2zγ(t) ≺ 0 ∇zγ(t) = 0 p∇zγ(t)(0), (14)

where p∇zγ(t)(0) = 2π −N /2 det Λγ
−1/2 is the density function of ∇zγ(t) evaluated at 0.

The expectations above involving the indicator function 1 ∇2zγ t ≺ 0  are extremely hard to 

compute and thus the explicit formula for F γ is usually unknown. The only exception, as far 

as we know, is the case when the field zγ is isotropic. This is because, in such case, one may 

apply the Gaussian Orthogonal Ensemble (GOE) technique from random matrices theory to 
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compute these expectations [18]. The corresponding computable formula for Fγ for isotropic 

Gaussian fields was recently obtained in [9, Theorem 2.8] and [10]. In particular, when the 

dimension of the parameter space N is low, say N ≤ 3, an explicit formula for Fγ is also 

available in [11]. This will be used to compute the p-values exactly, see Proposition 6 below. 

We emphasize, however, that the generic form of the distributions (13) is sufficient in order 

to show error control and power consistency of the STEM algorithm, as described next.

3.2. Error control.

For a fixed height threshold u, step 4 of Algorithm 1 amounts to selecting those local 

maxima with height greater than u. To control FDR at a fixed level α, the BH procedure is 

applied in step 4 of Algorithm 1, as follows. For a fixed α ∈ (0, 1), let k be the largest index 

for which the ith smallest p-value is less than iα/mγ(v). Then the null hypothesis 

ℋ0(t) at t ∈ T γ(v) is rejected if

pγ(t, v) < kα
mγ(v) yγ(t) > uBH, γ(v) = Fγ( ⋅ , v)−1 kα

mγ(v) , (15)

where kα/mγ(v) is defined as 1 if mγ(v) = 0. Since ũBH,γ(v) is random, definition (8) is 

hereby modified to

FDRBH, γ(v) = E V γ uBH, γ(v)
Rγ uBH, γ(v) ∨ 1 , (16)

where Rγ(·) and Vγ(·) are defined in (7) and the expectation is taken over all possible 

realizations of the random threshold ũBH,γ(v).

Define the conditions:

(C1) The assumptions of Section 2.1 hold.

(C2) LN→∞ and a = infj aj → ∞, such that 

logLN /a2 0, J /LN = A1 + O a−2 + L−N /2  and  S1, γ /LN = A2, γ + O a−2 + L−N /2

with A1>0 and A2,γ ∈[0,1).

The conditions on A1 and A2,γ in (C2) above ensure that, as the search volume LN grows, 

the signal does not asymptotically vanish nor it covers the entire search space.

Theorem 3. Let conditions (C1) and (C2) hold.

i. Suppose that Algorithm 1 is applied with a fixed threshold u > v, then

FDRγ(u) ≤ E m0, γ(U(1), u) 1 − A2, γ
E m0, γ(U(1), u) 1 − A2, γ + A1

+ O a−2 + L−N /2 . (17)

ii. Suppose that Algorithm 1 is applied with the random thresholdũBH,γ(v)(15), 

then
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FDRBH, γ(v) ≤ α E m0, γ(U(1), v) 1 − A2, γ
E m0, γ(U(1), v) 1 − A2, γ + A1

+ O a−1 + L−N /4 . (18)

The proof of Theorem 3 is based on the fact that, as LN→∞, the weak law of large numbers 

for ergodic fields guarantees that the number of observed local maxima above v is 

asymptotically proportional to the expectation E m0, γ(U(1), v)  in (17) and (18) (as shown in 

the Supplementary Material, proving this with the right rates requires estimating the order of 

the variance of the number of local maxima of a stationary random field, a result previously 

known only for N = 1 [27]). Meanwhile, as a→∞, the number of local maxima within each 

true peak converges to 1 in probability, yielding the term A1 in the denominators.

The proof of Theorem 3 is also based on the fact that, when the BH algorithm is used, the 

threshold (15) can be viewed as the smallest solution of the equation αG(u, v) ≥ Fγ(u, v), 
where G(u, v) is the empirical right cumulative distribution function of yγ(t), t ∈ T γ(v) [20]. 

Thus, as L→ ∞, the random threshold ũBH,γ(v) converges asymptotically to the 

deterministic threshold

uBH, γ* (v) = Fγ
−1 αA1E m0, γ(U(1), v) /E m0, γ(U(1))

A1 + E m0, γ(U(1), v) 1 − A2, γ (1 − α) . (19)

Note that this is a strictly increasing function in v.

It can be seen from the proof of Theorem 3 that the inequalities in (17) and (18) become 

equalities asymptotically (without specific rates), so the bounds given in (17) and (18) are 

tight and can be regarded respectively as the asymptotic estimators of FDRγ(u) and 

FDRBH,γ(v).

3.3. Power consistency.

Similar to the definition of FDRBH,γ (16), since ũBH,γ(v) is random, define

PowerBH, γ(v) = E 1
J ∑

j = 1

J
1 Tγ uBII , γ(v) ∩ Sj ≠ θ . (20)

Since ũBH,γ(v) converges to the deterministic threshold u*
BH,γ(v), which attains the 

minimum at v = −∞, we see that the power is asymptotically maximized at v = −∞ when γ 
is fixed. Intuitively, this occurs because pre-thresholding excludes certain true peaks below 

the threshold which can no longer be detected, yielding less power. This phenomenon will 

be reflected in the simulation studies below (Figure 4) and it implies that, if the exact height 

distribution of local maxima Fγ(·, v) or Fγ( · ) is known, for example the smoothed noise zγ 
is an isotropic Gaussian field, then we will choose to apply the original STEM algorithm 

without pre-thresholding (i.e., v = −∞ ) to perform the test.

The following lemma provides an asymptotic approximation to the power at a fixed 

threshold.
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Lemma 4. Let conditions (C1) and (C2) hold. As aj→ ∞, the power for peak j (10) can be 
approximated by

Powerj, γ(u) = Φ ajℎj, γ τj, γ − u
σγ

1 + O aj−2 . (21)

The next result indicates that the BH procedure is asymptotically consistent.

Theorem 5. Let conditions (C1) and (C2) hold.

i. Suppose that Algorithm 1 is applied with a fixed threshold u > v, then

 Power γ(u) = 1 − O a−2 .

ii. Suppose that Algorithm 1 is applied with the random threshold ũBH,γ(v)(15), 

then

PowerBH, γ(v) = 1 − O a−2 + L−N /2 .

The proofs of Lemma 4 and Theorem 5 above are a consequence of the fact mentioned 

before that, as a → ∞, the number of local maxima within each true peak converges to 1 in 

probability. Power consistency can be sustained if LN → ∞ as long as (log LN)/a2 → 0 

(condition C2). However, if LN → ∞ faster, then it can be seen from the proofs that the 

power may be bounded above by a constant strictly less than one.

3.4. Optimal smoothing kernel.

The best smoothing kernel wγ(t) is that which maximizes the detection power under the true 

model. By Lemma 4, the power (21) is approximately maximized by maximizing the signal-

to-noise ratio (SNR)

SNRj, γ = ajℎj, γ τj, γ
σγ

=
aj∫ℝNwγ(s)ℎj(s)ds

σ ∫ℝNwγ2(s)ds
, (22)

where σ is the standard deviation of the observed process y(t). The smoothing kernel wγ(t) 
that maximizes (22) is called a matched filter in signal processing [29, 33]. It is known in 

signal processing that if the peak locations are known, then the matched filter maximizes the 

detection power exactly. As shown in the simulations, the result only holds approximately in 

our case because the peak locations are unknown.

3.5. Isotropic Gaussian fields.

Explicit expressions for the distribution (11) are known in the special cases when N≤ 3 and 

zγ(t) is isotropic. They are obtained from [11] by standardizing the field in (11) as 

Fγ(u, v) = P zγ(t)/σγ > u/σγ | t ∈ T γ(v)  and are given by the following proposition.
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Proposition 6. Let the assumptions in Theorem 2 hold and let zγ(t)be an isotropic Gaussian 
field over RN with correlation function

ργ t − s 2 = E zγ(t)zγ(s) /σγ2 .

Let κγ = − ργ′ / ργ′′, whereργ′ = ργ′(0) and ργ′′ = ργ′′(0). Then the distributions (12) and (11) are 

given respectively by

Fγ(u) = ∫u/σγ
∞

gγ x; κγ dx  and  Fγ(u, v) = Fγ(u)/Fγ(v),

where gγ(x; κγ) is the density of the height distribution of local maxima for the standardized 
field zγ(t)/σγ, explicitly formulated in [11] for N ≤ 3.

Also, explicit formulae for E m0, γ(U(1), u)  and E m0, γ(U(1))  and E m0, γ(U(1))  (14), which 

will be used in our simulations below for evaluating (19), the theoretical FDR and the 

theoretical power, can be found in [11] for N ≤ 3.

From a practical standpoint, if zγ is isotropic, then as shown in [9],

ργ′ = − 1
2σγ2

Var ∂zγ(t)
∂ti

, ργ′′ = 1
12σγ2

Var ∂2zγ(t)
∂ti2

(23)

for any i=1,…,N. Therefore, in oreder to estimate κγ = − ργ′ / ργ′′, we only need to estimate 

the variances of derivatives of zγ (or equivalently yγ)

Example 7 (Gaussian autocorrelation model). Let the noise z(t) in (1) be constructed as

z t = σ∫ℝN
1

νN ϕN
t − s

ν dB s , σ, ν > 0,

where ϕN(x) = (2π)−N /2e− x 2/2 for all x ∈ ℝN is the N-dimensional standard Gaussian 

density, dB(s) is Gaussian white noise and ν > 0 (z(t) is regarded by convention as Gaussian 

white noise when ν = 0). Convolving with a Gaussian kernel wγ(t) = (1/γN) ϕN(t/γ) with γ 
> 0 as in (3) produces a zero-mean infinitely differentiable stationary ergodic Gaussian field

zγ(t) = wγ(t) * z(t) = σ∫ℝN
1

ξN ϕN
t − s

ξ dB(s), ξ = γ2 + ν2,

with σγ2 = σ2/ 2NπN /2ξN ,ργ′ = − (2ξ)−2,ργ′′ = (2ξ)−4 and κγ = 1. The above expressions may 

be used as approximations if the kernel, required to have finite support, is truncated at [−γd, 
γd]N for moderately large d, say d = 3.

Suppose the signal peak j is a truncated Gaussian density
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ℎj(t) = 1/bjN ϕN t − τj /bj 1 t − τj /bj ∈ −cj, cj
N , bj, cj > 0

Ignoring the truncation, hj,γ(t) = wγ(t) * hj(t) in (22) is the convolution of two Gaussian 

densities with variances γ2 and bj
2, which is another Gaussian density with variance γ2 + bj

2

We have that

SNRj, γ =
ajℎj, γ τj

σγ
=

aj
σπN /4

γ2 + ν2

γ2 + bj2
2

N /4

.

As a function of γ, the SNR is maximized at

argmax
γ

SNRj, γ = bj
2 − 2ν2, ν < bj/ 2

0, ν > bj/ 2 .
(24)

In particular, when ν = 0, we have that the optimal bandwidth for peak j is γ = bj, the same 

as the signal bandwidth. We show in the simulations below that the optimal γ is indeed close 

to (24). It can be seen from (24) that as ν gets larger, which means that y(t) gets smoother, 

the optimal γ becomes smaller. If ν is large enough, there is no need to smooth at all.

3.6. Multiscale testing procedure.

The optimal bandwidth γ may be hard to specify in practice. A data-driven procedure for 

selecting the optimal bandwidth was suggested in Schwartzman et al. [31]. However, 

because it depends on the shape and extent of the signal peak hj, optimal detection of 

different signal peaks within the same image may require different values of γ. To avoid the 

problem of exact bandwidth selection and handle peaks of different widths, we consider a 

multiscale testing procedure as follows.

Let Γ = {γi}1≤i≤|Γ| be a set of bandwidths, where |Γ| denotes the length of Γ. Apply 

Algorithm 1 for each γi ∈ Γ separately, and define the combined criteria

FDRΓ u = E
∑i = 1

Γ V γi u

∑i = 1
Γ Rγi u ∨ 1

,

FDRBH, Γ(v) = E
∑i = 1

Γ V γi uBH, γ(v)

∑i = 1
Γ Rγi uBH, γ(v) ∨ 1

,
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PowerΓ(u) = E 1
J ∑

j = 1

J
1 ∪i = 1

Γ Tγi u ∩ Sj ≠ ∅ ,

PowerBH, Γ(v)=E 1
J ∑

j = 1

J
1 ∪i = 1

Γ Tγi uBH,γ(v) ∩ Sj ≠ ∅ ,

where v is the pre-threshold in Algorithm 1 and u > v is some fixed number.

The combined FDR criterion above is the expected proportion of false discoveries across all 

bandwidths in Γ simultaneously. This definition accounts for multiplicity of false positives 

over bandwidths and can be asymptotically controlled, as shown below. It has the correct 

interpretation of the FDR denominator as the total number of observed significant local 

maxima because the analyst cannot know in a given analysis which peaks correspond to the 

same true peaks and which do not, even if the same true peak is detected with several 

bandwidths. The combined power above, on the other hand, counts each truly detected peak 

once regardless of the bandwidths used to detect it.

The above definitions are similar to those in [26] in the sense that we too consider the union 

of detections over scales. However, because significant local maxima are points rather than 

regions, we cannot take advantage of the union of overlapping regions to account for repeats, 

but must be more specific about how each significant local maximum is counted, as 

discussed above.

Theorem 8. Let conditions (C1) and (C2) hold.

i. Suppose that Algorithm 1 is applied for each γi ∈ Γ with a fixed thresh u > v, 
then

FDRΓ(u) ≤
∑i = 1

Γ E m0, γi(U(1), u) 1 − A2, γi
∑i = 1

Γ E m0, γi(U(1), u) 1 − A2, γi + A1
+ O a−2 + L−N /2 .

ii. Suppose that Algorithm 1 is applied for each γi ∈ Γ with the random threshold 
ũBH,γi(v) (15), then

FDRBH, Γ(v) ≤ α
∑i = 1

Γ E m0, γi(U(1), v) 1 − A2, γi

∑i = 1
Γ E m0, γi(U(1), v) 1 − A2, γi + A1

+ O a−1 + L−N /4 . (25)

The following result follows directly from Theorem 5 and the facts

 Power Γ(u) ≥ max
1 ≤ i ≤ Γ

 Power γi(u),
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 PowerBH, Γ(v) ≥ max
1 ≤ i ≤ Γ

PowerBH, γi(v)

Theorem 9. Let conditions (C1) and (C2) hold.

i. Suppose that Algorithm 1 is applied for each γi ∈ Γ with a fixed thresh old u > v, 
then

 Power Γ(u) ≥ 1 − O a−2 .

i. Suppose that Algorithm 1 is applied for each γi Γ with the random 
thresholdũBH,γi(v) (15), then

 PowerBH, Γ(v) ≥ 1 − O a−2 + L−N /2 .

Because testing over a range of bandwidths exacerbates the multiple testing problem by 

increasing the number of tests and increasing the transition region, in practice the set Γ 
should not be too large and should reflect the range of signal peaks present in the data.

4. Detection of peaks by approximate overshoot distribution.

4.1. Approximating the overshoot distribution.

In the neuroimaging literature, it is common to pre-threshold the test statistic field and then 

perform inference on the supra-threshold statistics [43]. The rationale is that significance 

thresholds tend to be high, and so weak signals of no biological interest are not expected to 

survive a moderate pre-threshold. Moreover, it may seem that using a pre-threshold would 

increase power by reducing the multiplicity of the tests being performed. We showed 

theoretically in Section 3.3 and will confirm by simulations that, in the best case scenario 

where the exact distribution of the height of local maxima is known, pre-thresholding (v = 

−∞) does not increase detection power. However, pre-thresholding is still very valuable if 

the exact distribution is unknown but an approximation is known. In that case, the question 

of which pre-threshold to use remains relevant.

As mentioned, if the Gaussian field is only stationary but not isotropic, then the explicit 

formula for Fγ(u, v) (11) is unknown so far. However, by [9, Corollary 2.5], there exists ε0 > 
0 such that as v → ∞ and u > v,

Fγ(u, v) = Kγ(u, v) 1 + o e−ε0v2 ,

where
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Kγ(u, v) =
HN − 1 u/σγ e−u2/ 2σγ2

HN − 1 v/σγ e−v2/ 2σγ2

and HN−1(x) is the Hermite polynomial of degree N - 1. A similar argument to the proof of 

[9, Corollary 2.5] yields that for a fixed v, as u → ∞,

Fγ(u, v) = βγ(v)Kγ(u, v) 1 + o e−ε0u2 , (26)

where

βγ(v) = (2π)−(N + 1)/2σγ−N det Λγ
1/2HN − 1 v/σγ e−v2/ 2σγ2

E m0, γ(U(1), v)
(27)

and Λγ = Cov(∇zγ(t)). Note that βγ(v) is similar to the ratio of the expected Euler 

characteristic [2, Lemma 11.7.1] and the expected number of local maxima of zγ(t) over the 

unit cube U(1). It is conjectured that βγ(v) < 1 for all v > 0 (this is true for N = 1 and N = 2 

[9]).

For a fixed threshold u, the control of FDRγ(u) and the consistency of power Powerγ(u) in 

Theorem 10 are the same as those given in part (i) of Theorem 3 and part (i) in Theorem 5 

respectively. When the BH algorithm is used, we have the following result.

Theorem 10. Let conditions (C1) and (C2) hold. Suppose Algorithm 1 is applied with the 
random threshold uBH, γ(v) by using Kγ (u, v) instead of Fγ (u, v) to compute p-values. Then 

as v→∞ such that v2/log(LN)→0 and v2/log(a)→0,

FDRBH, γ(v) ≤ α E m0, γ(U(1), v) 1 − A2, γ βγ(v)
E m0, γ(U(1), v) 1 − A2, γ + A1

1 + o e−ε0v2 , (28)

where ε0 > 0 is some constant and βγ(v) is defined in (27), and moreover,

 PowerBH, γ(v) = 1 − O a−2 + L−N /2 . (29)

The proof of Theorem 10 requires careful attention to rates because both sides of (28) go to 

zero as v increases. Yet, (28) gives the right approximation to the FDR for finite v. The 

additional asymptotic conditions v2/log(LN)→0 and v2/log(a)→0, in fact indicate that v 
should increase more slowly than log(LN) and even more slowly than log(a), so in practice it 

need not be very large. In the simulations we will see that an appropriate value for v is about 

2σγ.

4.2. Optimal pre-threshold.

A question that arises when using the overshoot distribution is how to select the pre-

threshold. From the proof of Theorem 10 in the Supplementary Material, we see that the 

random threshold ũBH,γ(v) converges asymptotically to the deterministic threshold

Cheng and Schwartzman Page 16

Ann Stat. Author manuscript; available in PMC 2020 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



uBH, γ* * (v) = Fγ
−1 αA1βγ(v)E m0, γ(U(1), v) /E m0, γ(U(1))

A1 + E m0, γ(U(1), v) 1 − A2, γ 1 − αβγ(v) (1 + o(1)) . (30)

For fixed γ, the power (21) is maximized at the optimal pre-threshold minimizing uBH, γ* * (v), 

which is

vopt, γ = argmax
v

HN − 1 v/σγ e−v2/ 2σγ2

A1 + E m0, γ(U(1), v) 1 − A2, γ 1 − αβγ(v) . (31)

When γ and α are fixed, we see that vopt,γ depends only on the covariance structure of zγ(t). 
A practical approximation to the optimal pre-threshold is found in the simulations section 

below.

4.3. Multiscale testing procedure.

The results about the multiscale procedure in Section 3.6 can be extended to the case where 

the overshoot distribution is used. Let Γ = {γi}1≤i≤|Γ| be as in the defined Section 3.6. 

Applying overshoot distribution, we have the following result.

Theorem 11. Let conditions (C1) and (C2) hold. Suppose that Algorithm 1 is applied for 
each γi ∈ Γ, with the random threshold ũBH,γi(v) by using Kγi(u, v) instead of Fγi(u, v) to 
compute p-values. Then, as v → ∞ such that v2/ log(LN) → 0 and v2/ log(a) → 0,

FDRBH, Γ(v) ≤ α
∑i = 1

Γ E m0, γi(U(1), v) 1 − A2, γi βγi(v)

∑i = 1
Γ E m0, γi(U(1), v) 1 − A2, γi + A1

1 + o e−ε0v2 ,

where ε0 > 0 is some constant and βγi(v) is defined in (27), and moreover,

 PowerBH, Γ(v) ≥ 1 − O a−2 + L−N /2 .

5. Simulation studies.

5.1. Simulation setting.

Simulations were used to evaluate the performance and limitations of the STEM algorithm 

for finite range L = 300, finite number of peaks J = 9 and moderate signal strength a over ℝ2

(i.e., N = 2). Adopting the notations in Example 7, the truncated Gaussian peaks ajhj(t) are 

constructed with aj = a, bj = 3 and cj = 3 for all j = 1, … , J and varying a, and {τj}1≤j≤J = 

{(75i1, 75i2) }i1, i2=1,2,3; the noise z(t) is constructed with σ = 1 and varying ν ∈ {0, 1, 2} 
the smoothing kernel wγ(t) is constructed with c = 3 and varying γ. The noise parameters 

σγ, ργ′ and ργ′′ (note that κγ = 1) were estimated using the same smoothing kernel. The BH 

procedures were applied at level α = 0.05 and over 10,000 replications.
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5.2. Detection of peaks by the height distribution of local maxima.

Figure 3 shows the realized FDR and power of the STEM algorithm with the BH procedure, 

evaluated according to (16) and (20) with v= −∞. The range of values of the signal strength 

a was chosen between 35 and 55 to show interesting intermediate values of FDR and power, 

but notice that the signal is overall quite weak; the peaks in Figure 1 all have values of a of 

75 and above, and all are virtually invisible in the presence of noise (y(t) in Figure 1). As 

predicted by the theory, for every fixed bandwidth γ, the FDR is controlled below α = 0.05 

for strong enough signal a, and the power increases to 1. The theoretical FDR curve (blue) is 

evaluated according to the upper bound in (18), while the theoretical power curve (blue) is 

derived by plugging the asymptotic threshold uBH, γ*  (19) into the approximated power (21). 

The discrepancy between the realized FDR and the theoretical FDR is caused by the 

boundary effects of kernel smoothing and the finite size of the search domain. For small ν 
and small γ, say ν = 0 and γ = 1, the discrepancy is larger because the representation of the 

smoothed field zγ on the simulated discrete grid is not smooth enough. Note that the realized 

power curve follows the same patterns as the theoretical power curve. As the signal gets 

stronger, the bandwidth maximizing the realized power gets closer to its optimal value.

5.3. Multiscale testing procedure.

Tables 1 and 2 show the realized FDR and power for the multiscale procedure of Section 3.6. 

The theoretical FDR values in Table 1 were evaluated according to the upper bound in (25). 

Again, the FDR is controlled below α = 0.05 and that the power tends to 1 as the signal 

strength a increases. To compare with the usual STEM algorithm with optimal γ, Table 2 

reports a maximal power over scales is akin to the multiscale power definition of [26]. The 

multiscale procedure has more power, but yields a slightly slower rate of FDR control, 

especially when the signal strength is very weak (a = 35).

5.4. Detection of peaks by the overshoot distribution.

Figure 4 shows the realized FDR and power of the STEM algorithm with the BH procedure, 

using the exact overshoot distribution Fγ(·, v) to compute p-values instead of the exact 

height distribution. Here, the bandwidth was fixed to the optimal value. The theoretical FDR 

curve was evaluated according to the upper bound in (18), while the theoretical power curve 

was derived by plugging the asymptotic threshold u*
BH,γ(v) (19) into the approximate power 

(21). As shown in Figure 4, as the pre-threshold v gets larger, the FDR becomes smaller and 

so does the power. This confirms the observation made after (20) that the case of ν = −∞ 
gives the best performance if the exact height distribution Fγ is known. However, when the 

signal is relatively strong, prethresholding does not weaken the power too much.

In Figure 5, the approximate overshoot distribution Kγ( , v) is used to compute p-values 

instead of the exact overshoot distribution. Here again, the bandwidth was fixed to the 

optimal value. The theoretical FDR curve was evaluated according to the upper bound in 

(28), while the theoretical power curve was derived by plugging the asymptotic threshold 

uBH, γ* * (v) (30) into the approximate power (21). The simulation shows that the pre-threshold 

maximizing the realized power is close to the optimal pre-threshold vopt,γ (31), which in this 

example is about 2σγ. Moreover, the realized curves still fit the theoretical curves well for 
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small v. This is because the limit in Theorem 10 is in fact taken when the BH threshold is 

large.

5.5. Comparison with other methods.

We compare the STEM algorithm 1 to two other methods. First, because the signal strength 

a→∞ in condition (C2), one may think this makes the model relatively simple 

asymptotically (in fact not, because the null domain is also getting large), and wonder if 

some simple tests can also detect peaks with error control and power consistency. To check 

this, we try a simple quantile test as follows. Under (C2), the ratio of the number of true 

peaks and the number of all peaks of the field tends to

r1, γ =
A1

E m0, γ(U(1)) 1 − A2, γ + A1
.

Thus, choosing the 100(1 − r1,γ)% quantile of the heights of all candidate peaks as threshold 

guarantees that all true peaks will be detected asymptotically. Since r1,γ is unknown, we call 

this an “oracle quantile test”. Alternatively, if r1,γ is replaced by an arbitrary fixed fraction 

independent of γ, say 0.05, we call it “95% quantile test”. Figure 6 (left) shows the 

comparison between the STEM algorithm by height distribution and these two quantile tests; 

even if they are asymptotically consistent, the quantile tests cannot control the error. Second, 

Figure 6 (right) compares the STEM algorithm by approximate overshoot distribution to the 

method in Chumbley et al. [14] (CWFF) using Eqs. (1) and (2) therein for computing p-

values. These two similar methods give almost the same results, especially when the pre-

threshold is not small. However, CWFF requires estimation of additional parameters that the 

approximate overshoot method does not need.

6. Data example.

6.1. Data description.

The fMRI data was obtained from the public repository OpenfMRI (openfmri.org). It 

involves an experiment whose goal is to find brain regions that are active when processing 

other people’s false beliefs about reality, in comparison with similar purely physical false 

realities. Details about the psychological motivation and experimental design of this so-

called “false belief task” can be found in [23]. In brief, subjects read short stories 

corresponding to either a person’s false belief about reality or false realities with no people 

involved. The effect sought after in the analysis is the contrast between the neural activity in 

those two states.

For simplicity, we focus here on data from a single subject (# 49). The data consist of a 

sequence of n = 179 brain fMRI images of size 71 × 72 × 36 voxels (one row was removed 

from the original size of 72 × 72 × 36 due to absence of data there). As standard pre-

processing, algorithms were applied for motion correction over the recording period.
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6.2. Regression analysis.

To analyze the data, we followed the usual general linear model (GLM) approach [39], 

where, after spatial registration of the n images to a common template, the n image 

intensities at each voxel were modeled as a linear function of the stimuli. Letting Y (t) 
denote the n × 1 vector of observed intensities at spatial location (voxel) t, the model is Y (t) 
= Xβ(t) +∈(t), where X is an n × 3 matrix whose columns contain the duration of the two 

types of stories as 0–1 step functions of time, in addition to a column for the intercept term. 

The vector β(t) contains the regression coeffcients, while ∈(t) is a n × 1 random vector 

whose entries are assumed to be i.i.d. with zero mean and variance σ2(t). The least-squares 

estimate of the coefficient vector β(t) at each location t is β (t) = X′X −1X′Y (t). The contrast 

of interest η(t) = c′ β(t), c = (0,1,−1)′ , is the difference between the regression coeffcients 

corresponding to the two stimuli. Its estimate is η(t) = c′β (t) with variance 

Var(η(t)) = σ2(t)c′ X′X −1c ..

To test the null hypothesis ℋ0:η(t) = 0 at each location t, we used a Wald statistic, defined as 

the estimate η(t) divided by its estimated standard error:

η(t) = η(t)
se(η(t)) = c′ X′X −1X′Y (t)

σ2(t)c′ X′X −1c
. (32)

The noise variance estimate σ2(t) above was obtained as σ2(t) = e(t) 2/(n − 3), where 

e(t) = y(t) − Xβ (t) is the vector of regression residuals. Because the number of degrees of 

freedom n − 3 = 176 is large, we may consider η(t) to be an approximately Gaussian 3D 

random field with constant variance 1, playing the role of y(t) in model (1).

6.3. Inference via the STEM algorithm.

For the kernel smoothing step, we used a 3D isotropic Gaussian kernel as in Example 7 with 

bandwidth γ = 1.6 voxels. Given the voxel size of 3 mm, this corresponds to a bandwidth of 

4.8 mm and a full width half maximum of 11.3 mm, optimizing the analysis for signal 

regions of about that size. To perform the convolution, the kernel was truncated at 2.5 

standard deviations from the mode, yielding a kernel support of 8 × 8 × 8 voxels. After 

convolution, only the “valid” portion of the image was retained, i.e. those voxels whose 

values were computed from neighborhood voxels strictly contained in the original image, 

yielding a valid image of size 64 × 65 × 29 = 120, 640.

We first assumed the noise field to be isotropic and applied the STEM algorithm using the 

exact height distribution of local maxima to compute p-values, as in Section 3.5. To estimate 

the required parameters σγ2 and κγ of the height distribution, we used a volume of 27 × 72 × 

36 = 69, 984 voxels consisting of the top 14 and bottom 13 rows of the data outside the 

skull, containing only noise. The sample variance within this region and across time yielded 

the estimate σγ
2 = 0.0058. Similarly, under the isotropy assumption, the sample variance of 

the first and second numerical derivatives yielded estimates of ργ′ and ργ′′ by (23), leading to 

the estimate κγ = − ργ′ / ργ′′ = 1.1463.
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The analysis results using the BH algorithm at FDR level 0.05 are shown in Figure 7. The 55 

significant local maxima can be interpreted as representing significant brain regions. Most of 

these are located in the anterior and posterior ventral parts of the cortex, as well as the dorsal 

parts of the pre-frontal cortex, consistent with the results reported in Moran et al. [23]. For 

comparison, we also performed the analysis with κγ = 1, as in Example 7, avoiding 

estimation of this parameter. The results obtained were very similar.

To evaluate the effect of the distribution used to compute p-values, Table 3 compares the 

results using the exact height distribution or the approximate overshoot distribution. As seen 

in the table, computing p-values using the approximate overshoot distribution with pre-

threshold v = 2σγ (close to optimal according to Figure 5) yields less candidate peaks but 

about the same number of significant ones. This confirms the simulation results that using 

the approximate overshoot distribution yields similar power, while not requiring the isotropy 

assumption.

As an additional comparison, we performed the analysis using the CWFF method where the 

expected Euler characteristic parameters were estimated from the residuals outside the brain. 

As expected from the simulation results, the significance threshold and number of significant 

peaks were the same as with the approximate overshoot distribution, except that the latter 

did not need estimation of those extra parameters.

7. Discussion.

7.1. Asymptotic considerations.

Regarding condition (C2), it is not surprising that if the volume of the search space LN 

increases, then the signal strength a should also increase in order for the detection procedure 

to have good power while the error is controlled. We do not find this assumption restrictive 

because the search space may grow exponentially faster. Our simulations have shown that 

the theoretical results provide good approximations in non-asymptotic conditions when the 

search space LN and the signal strength a are large, the former much larger than the latter.

These conditions are realistic in applications. In data with n repeated observations, the signal 

strength a is proportional to n Setting p = LN as the dimensionality of the problem, the 

condition (log LN)/a2 0 becomes (log p)/n → 0, which is similar to the condition required 

for consistent model selection in high dimensional regression [8, 42]. In our fMRI data 

example, the search volume corresponding to L3 was 64 ×65 × 29 = 120, 640 voxels and the 

sample size was 179, giving a ratio (log LN)/a2 of about log(120, 640)/179 = 0.0284, which 

is close to zero.

The assumption (log LN)/a2 → 0 is in fact stronger than needed. From the proof of Theorem 

5, it can be seen that if the signal strength grows suffciently fast so that (log LN)/a2 is 

bounded asymptotically by some positive constant, then the power will be asymptotically 

bounded from above by some constant less than 1. A future analysis of contiguous 

alternative hypotheses may help clarify this.
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Efforts were made in this paper to include convergence rates in the results, which were not 

available in Schwartzman et al. [31]. Doing so required calculating the order of the variance 

of the number of local maxima of a stationary random field in N dimensions. Computing the 

moments of the number of local maxima of a random field is known to be an important and 

non-trivial problem in probability theory [4, 35].

7.2. Signal model considerations.

The signal modeling assumptions of unimodality and compact support enabled defining true 

and false detections. It should be noted, however, that the formal hypothesis test performed 

at each local maximum is not about the signal peak but about its support. In this sense, the 

problem may be called “detection of signal support”. The justification for the name “peak 

detection” is that, by the signal unimodality, the detected local maxima asymptotically 

coincide with the local maxima of the signal, thus detecting the peaks in addition to their 

support.

In future work, the assumptions of unimodality and compact support could be relaxed. As 

suggested by simulations in [31], we believe that the STEM algorithm can detect multimodal 

peaks because local maxima of the observed field in the troughs between the true modes are 

unlikely to occur. However, a more careful definition of power would be required. Siding 

with Chumbley et al. [14], it may be possible to assume that the signal is non-zero 

everywhere by defining true detections to occur within a given distance of a true mode, 

rather than outside the domain.

Except for the unimodality and compact support assumptions, the signal model was kept 

general in nonparametric form. Using a single smoothing bandwidth in the analysis 

presumes that the signal peaks have similar shapes and supports. To handle peaks of 

different spatial extents, a multi-scale procedure was proposed that enables peaks to be 

optimally detected by different bandwidths. A more principled approach may consider 

performing the inference on the continuous scale-rotation space produced by varying the 

smoothing bandwidth and spatial orientation of the smoothing kernel [1]. However, this 

approach remains challenging because, even under the complete null hypothesis, the scale-

rotation field is not stationary. We leave this possibility for future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Raw signal μ(t) with six true peaks of different shapes and simulated Gaussian noise z(t) 

produce the observed field y(t) and smoothed field yγ(t). Out of 77 local maxima of yγ(t) 

(candidate peaks), the BH detection threshold at FDR level 0.2 selects six (significant 

peaks), one of which is a false positive. In this case, five out of six true peaks are detected.
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Fig 2. 
An artificial example of unimodal functions hj(t) (left) and hj,γ(t) (right) allowed by our 

signal model. Here, hj,γ(t) is concave within Ij, γ
mode  (interior of the black circle) and has no 

critical points outside Ij, γ
mode , yet its level curves are not all convex.
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Fig 3. 
Realized (black) and “theoretical” (blue) FDR, Realized (black) and “theoretical” (blue) 

power of the BH procedure by the exact height distribution Fγ (i.e., v = - ∞) for a = 55 

(solid), a = 45 (dashed) and a = 35 (dotted). The maxima of the curves (solid circles) 

approach the optimal bandwidth (vertical dashed).
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Fig 4. 
Realized (black) and “theoretical” (blue) FDR, Realized (black) and “theoretical” (blue) 

power of the BH procedure by the exact overshoot distribution Fγ(·, v) for a = 55 (solid), a = 

45 (dashed) and a = 35 (dotted).

Cheng and Schwartzman Page 28

Ann Stat. Author manuscript; available in PMC 2020 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 5. 
Realized (black) and “theoretical” (blue) FDR, Realized (black) and “theoretical” (blue) 

power of the BH procedure by the approximated overshoot distribution Kγ( · , v) for a = 55 

(solid), a = 45 (dashed) and a = 35 (dotted). The maxima of the curves (solid circles) 

approach the optimal pre-threshold vopt,γ (vertical dashed).
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Fig 6. 
Left panel: FDR and power comparison among the STEM algorithm by height distribution 

(black), the “oracle quantile test” (red) and the “95% quantile test” (green). Right panel: 

FDR and power comparison between the STEM algorithm by approximate overshoot 

distribution (black) and CWFF (red), the method in Chumbley et al. [14]. In both panels, ν = 

1 (moderate autocorrelation) and a = 45 (moderate signal strength).
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Fig 7. 
fMRI data analysis results using the exact height distribution of local maxima for isotropic 

noise and FDR level 0.05. Montage shows the brain volume as transverse slices from the 

bottom of the brain (top left panel) to the top of the brain (bottom right panel). The 55 

significant local maxima are marked by white triangles. Colored regions indicate the 

smoothed Wald statistic field above the height of the smallest significant local maximum. 

Results are superimposed on an anatomical brain image (gray) for reference.

Cheng and Schwartzman Page 31

Ann Stat. Author manuscript; available in PMC 2020 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cheng and Schwartzman Page 32

Table 1

Simulated FDR by multiscale procedure (left) and simulated maximal FDR by STEM algorithm in Figure 3 

(right); the numbers in parentheses are theoretical FDR’s by multiscale procedure.

v = 0 v = 1 v = 2

a = 35 0.0739; 0.0409 (0.0495) 0.0634; 0.0437 (0.0492) 0.0484; 0.0443 (0.0486)

a = 45 0.0498; 0.0434 (0.0495) 0.0495; 0.0423 (0.0492) 0.0454; 0.0435 (0.0486)

a = 55 0.0440; 0.0425 (0.0495) 0.0433; 0.0422 (0.0492) 0.0427; 0.0416 (0.0486)

Ann Stat. Author manuscript; available in PMC 2020 May 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cheng and Schwartzman Page 33

Table 2

Simulated power by multiscale procedure (left) and the maximal simulated power by STEM algorithm in 

Figure 3 (right).

v = 0 v =1 v = 2

a = 35 0.3106; 0.2449 0.3823; 0.3118 0.7068; 0.6631

a = 45 0.7167; 0.6590 0.7950; 0.7444 0.9674; 0.9587

a = 55 0.9414; 0.9204 0.9670; 0.9541 0.9989; 0.9984
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Table 3

Comparison of different methods for computing p-values.

BH height threshold # tests # significant tests

Height distribution 3.9156σγ 334 peaks 55 peaks

Overshoot distribution 3.8337σ γ 159 peaks 56 peaks
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