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Abstract

Ongoing efforts are oriented towards the development of novel therapeutic agents to repress lung 

hyper permeability responses due to inflammation. The endothelial barrier dysfunction due to such 

events, may eventually lead to severe cardiovascular complications, such as the Acute Respiratory 

Distress Syndrome. Hsp90 inhibitors are anticancer compounds, associated with strong anti-

inflammatory responses in the endothelium. Our latest observations in experimental models of 

Acute Lung Injury suggest that P53 orchestrates, at least in part, such responses. Remarkably, both 

Hsp90 inhibition and P53 induction are associated with the activation of the Unfolded Protein 

Response element. The purpose of the current manuscript, is to introduce the hypotheses that UPR 

induction protects the vasculature against inflammation.

1. ARDS

1.1 Lung Endothelial Dysfunction: The Cause And Consequence of ARDS

Described over 50 years ago, Acute Respiratory Distress Syndrome (ARDS) remains the 

major manifestation of the “corrupted” lung homeostasis, destined to cause non-hydrostatic 

pulmonary edema, respiratory abnormalities and death[1]. ARDS appears in 10 to 86 

patients per 100,000 cases. The majority of incidents have been reported in Australia and the 

United States[2]. The development of that syndrome is due to direct (pneumonia and gastric 

aspiration); or indirect (sepsis and pancreatitis) lung injury, which in turn results to 

inflammation and hypoxemia[3]. Indeed, endothelial barrier dysfunction (EBD) manifests 

ARDS. The disruption of the alveolar-capillary membrane results to lung dysfunction and 

hyperpermeability responses, which in turn affect the respiratory function [4].
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1.2 Endothelial Hyperpermeability: The Hallmark of Severe Inflammation in the 
Pulmonary Microvasculature

The endothelium forms a unique barrier between the vascular lumen and the vascular 

wall[5]. This barrier is a highly metabolic and dynamic unit, essential for the efficient 

function of the lungs[4]. It is strongly influenced by changes of the cellular redox status due 

to abnormal increases of reactive oxygen and nitrogen species, malignancies, as well as by 

diabetic microvascular and macrovascular complications[6]. All those events alter the 

architecture of junction and adhesion proteins. Irrespective of its diverse etiologies, ARDS 

leads to increased permeability of the alveolar-capillary barrier, which in turn induce 

respiratory failure [7]. Since ARDS is associated with thousands of incidents in the USA[8], 

new pharmacological agents that counteract its severe and lethal outcomes are needed.

1.3 Current Approaches Against ARDS

The therapy for ARDS is focused on preventing lung injury. To maintain viable gas 

exchange, the mechanical ventilation becomes progressively riskier going from mild to 

severe (ARDS). Tidal volume, driving pressure, flow, and respiratory rate have been 

identified as causes of ventilation-induced lung injury[9]. Thus, the patients are given 

medications to prevent and treat infections, relieve pain and discomfort, prevent blood clots 

in the legs and lungs, minimize gastric reflux, and sedate [10]. It is clear that the elucidation 

of the mechanisms that govern vascular barrier function, will propel the development of 

more efficient and targeted thepapies to support those in need. It is our great hope that the 

development of novel agents which protect the endothelium against inflammatory insults, 

will prevent deaths due to ARDS [11]. Thus, intense research on the cellular cascades that 

supports endothelial barrier function is needed, to discover new approaches for ARDS 

treatment.

2. P53 and Inflammation

2.1 P53 induces Endothelial Inflammation

P53 has been involved in inflammatory processes. It was demonstrated in HCT116 cancer 

cells that P53 impairs endothelial function by transcriptionally repressing Kruppel-Like 

Factor 2 in a histone deacetylase – dependent; and a histone acetyltransferase - independent 

fashion. P53 leads to inflammatory gene expression and impaired endothelium-dependent 

vasodilatation, promoting endothelial dysfunction[12]. Furthermore, p53 accumulation and 

heparanase overexpression in senescent endothelial cells are involved in mediating the 

increased risk of venous thrombosis with age. Thus, heparanase antagonization, may 

represent a promising strategy to ameliorate the prothrombotic endothelial phenotype_with 

age[13]. Mutated P53 is involved in tumor progression[14] via the potentiation of NFκB 

transcriptional activities[15]. In type 1 diabetic models generated with streptozotocin 

injection, the endothelial p53 expression was upregulated along with an inhibition in 

acetylcholine-driven vasodilatation. The genetic disruption of endothelial-cell p53 

significantly ameliorated endothelial dysfunction, and in the ischemic vessel p53 level was 

markedly increased. Conversely, forced expression of endothelial p53 inhibited vessel 

dilatation, and reduced the blood flow in the ischemic limb. Thus, the authors concluded that 

the inhibition of endothelial p53 would become a new therapeutic target for vascular 
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complications related to diabetes[16]. P53 deletion in mice with chronic lung inflammation 

exerted a protective role towards the lungs, thus it was assumed that p53-triggered 

senescence promoted lung damage due to inflammation[17].

2.2 P53 Opposes Endothelial Inflammation

P53 has been found to demonstrate an anti-inflammatory role in various tissues and 

experimental models, partially due to its capacity to suppress NF-κB [18-20]. Mutant 

rodents lacking P53 were more vulnerable to LPS than the vehicle-treated experimental 

subjects. However, the induction of P53 due to Nutlin suppressed the production of pro-

inflammatory and inflammatory cytokines, and opposed the development of the LPS-

inflicted ALI[21]. P53 has been also shown to exert a strong anti-oxidative role both in vivo 

and in vitro, since it exerted the capacity to reduce ROS accumulation[22]. Studies in knock 

out mice revealed the protective role of this transcription factor towards Listeria 

monocytogenes[23]. Furthermore, P53 mediated the release of cytokines in P53 null mice 

exposed to LPS [24], and has been associated with weak responses against various forms of 

chemotherapy[25]. P53 deletion in mice intestinal epithelial cells resulted to increased 

inflammation [26].

2.3 P53 Opposes LPS – inflicted Lung Injury

We have recently shown that “The Endothelium Defender” [27] elicits robust anti - 

inflammatory activities in the human lung endothelium[14]. P53 protects against the LPS – 

induced EBD, by I) Disrupting the inflammatory RhoA/MLC2 pathway[28] II) Suppressing 

the actin - severing activity of cofilin [29] III) Mediating the protective effects of Hsp90 

inhibitors in experimental models of ALI[30] IV) Suppressing the deteriorating activities of 

APE1/Ref1 towards the lung endothelium[30]. Strikingly, both P53 augmentation and Hsp90 

inhibition support endothelium integrity and induce the Unfolded Protein Response element 

(UPR).

3. Unfolded Protein Response

3.1 Hsp90 inhibition and UPR.

The Endoplasmic Reticulum (ER) participates in the biosynthesis and maturation of the 

majority of intracellular proteins [31]. Cells are constantly monitor and control the 

misfolded proteins in the ER lumen. When the concentration of those dysfunctional proteins 

is above a critical threshold, it stimulates the UPR induction[32]. The UPR is composed of 

IRE1α (inositol-requiring enzyme 1α), PERK (pancreatic endoplasmic reticulum kinase), 

and ATF6 (activating transcription factor 6). When those ER stress sensors sense increased 

load of misfolded proteins, they first attempt to restore the protein-folding demand and 

capacity back into physiological levels[33]. To increase protein folding capacity, UPR 

increases ER volume and induces the expression of ER chaperones[34]. Further, it 

accelerates the degradation and removal of the misfolded proteins from the ER lumen. If all 

those activities succeed, the cells survive and the UPR function returns back to normal [35]. 

If those adaptive responses are fail to restore the proper protein-folding homeostasis, UPR 

will be transformed into an alternate signaling state which will actively promote cell 

death[36]. Thus, the induction of UPR functions towards cellular repair. Since Hsp90 
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regulates the maturation of proteins, it is strongly involved in the regulation of ER stress 

[33]. Moreover, Hsp90 inhibition has been associated with both anti - inflammatory 

activities and UPR activation[23, 32, 33, 37-39].

It has been reported that Hsp90 inhibition by PU-H71 generated ER stress and activated 

UPR, as evidenced by the XBP1 mRNA splicing and up-regulation of the ER stress markers 

Grp94, Grp78, ATF4 and CHOP[40]. Indeed, Hsp90 inhibition induced the UPR in 

myeloma cells. It was suggested that the ability of Hsp90 inhibitors to eliminate myeloma 

plasma cells is partially due to induction of ER stress with the downstream initiation of all 3 

branches of the UPR[37]. Another study reported that the ability of Geldanamycin to 

stimulate ER stress-dependent transcription depends on its interaction with GRP94. It was 

suggested that Hsp90 modulates UPR by stabilizing IRE1[41].

Furthermore, the ER chaperone GPR78 which acts as a key sensor of ER stress and activates 

UPR, has been reported to play a key role in endothelial integrity. This important study by 

Birukova et al., examined the molecular events triggered by OxPAPC to increase vascular 

integrity. It was revealed that OxPAPC directly binds GRP78. That binding lead to GRP78 

trafficking to caveolin-enriched microdomains on the cell surface, and the consequent 

activation of sphingosine 1-phosphate receptor 1 and Rac1 GTPase. Those events are 

essential for cytoskeletal reorganization and EC barrier enhancement [42]. Moreover, it was 

recently reported that GRP78 translocation to the cell surface and the O-GlcNAcylation of 

VE Cadherin contribute to ER stress – mediated endothelial permeability[43].

3.2 Inflammation and UPR

3.2.1 UPR activation induces Inflammation—The harmful effects of the robust 

endothelium UPR activation, will inevitably cause cellular death[44-49]. Moreover, a robust 

UPR activation has been shown to be associated with homocysteinemia, hyperlipidimia, 

high glucose, insulin resistance, disturbed blood flow, pulmonary hypertension part through 

the activation of ER stress.[49, 50]. A study on the role of the UPR mediators in 

angiogenesis revealed a critical role for ATF6 and PERK in VEGF-mediated signaling. The 

activation of PERK and ATF6, but not IRE1α, was important for the VEGF-mediated anti-

apoptotic pathway that also involved mTORC2- dependent Ser473 phosphorylation of AKT. 

VEGF activation did not lead to CHOP induction, but instead ensured a pro-survival 

advantage by maintaining a high level of AKT phosphorylation[51].

3.2.2 UPR activation Opposes Inflammation—However, a recent emerging body of 

evidence suggests that UPR propels dynamic anti–inflammatory responses. It was recently 

suggested that the IRE1α in intestinal epithelial cells is essential for protecting against 

colitis, and revealed that it functions to maintain the intestinal epithelial homeostasis and 

oppose inflammation due to bowel diseases[52]. Remarkably, the transfection of human 

pulmonary artery endothelial cells with siRNA for BiP (the ER Hsp70) abrogated 

endothelial permeability[51]. Furthermore, the LDL–induced inflammatory responses in 

human mesangial cells were reduced after IRE1alpha silencing. Pretreatment of those cells 

with the UPR inductor Tunicamycin significantly reduced the elevation of the LDL – 

induced pro - inflammatory cytokines[53].
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It was suggested that CHOP deficiency results in elevated LPS - induced inflammation and 

kidney injury[54]. The investigators revealed that CHOP mice developed more severe AKI 

after LPS injection, thus in that case the UPR activation exerted a protective role against 

AKI. Moreover, mild endoplasmic reticulum stress ameliorates LPS - induced 

neuroinflammation and cognitive impairment via regulation of microglial polarization[55]. 

Interestingly, a subcytotoxic dose of subtilase cytotoxin prevented LPS - induced 

inflammatory responses, depending on its capacity to induce the UPR.

Pretreatment of a mouse macrophage cell line, RAW264.7, with a subcytotoxic dose of 

SubAB-triggered UPR and inhibited LPS-induced MCP-1 and TNF-a production associated 

with inhibition of NF-kB activation. SubAA272B, a SubAB active site mutant that cannot 

induce UPR, did not show such effects[56].

Although ER stress triggers activation of NF-kB in the early phase, these results indicate a 

possibility that a subsequent UPR has the potential to inhibit activation of NF-KB in a later 

phase. The mechanisms involved in those events have not been fully elucidated, but there are 

several possibilities. ER stress-induced UPR may inhibit NF-KB by downregulating TRAF2 

(TNF receptor-associated factor 2) and/or the induction of C/EBPs (CCAAT/enhancer- 

binding proteins) and A20[57]. Interestingly, the proteasome inhibitor MF132 inhibits NF-

KB by MG132 through ER stress-mediated induction of the liver activating protein and the 

liver enriched inhibitory protein[58]. In summary, the previously mentioned data support the 

underappreciated role of UPR induction against inflammation.

3.3. The Reciprocal Regulation between P53 and UPR.

There is a limited body of reports devoted on the “cross talking” between P53 and UPR in 

the endothelium. Most of the published reports are in malignant experimental models. In 

cancer cells, it was revealed that P53 negatively regulates IRE1α expression [59]. In breast 

cancer cells (MCF7), ER stress induced p53 expression via NF-κB Activation[60]. In 3T3 

fibroblasts and prostate cancer cells, ER stress induced p53 degradation via the 

phosphorylation of P53 at serine S315 and S376[61]. Interestingly, in HCT116 human 

colorectal carcinoma p53+/+ cells, treatment with the ER stress-inducing agent thapsigargin 

caused a rapid drop in total p53 levels, while it induced CHOP levels[62]. In human and 

canine osteosarcoma cells, it was suggested that P53, UPR and ER stress form a regulatory 

loop, and that P53 may suppresses UPR. These studies were not supported by “in vivo” 

observations [63]. Our group has recently demonstrated that UPR regulates P53 expression 

in the pulmonary endothelium[64]. This study reports the first evidence that both UPR and 

P53 operate towards the regulation of lung endothelium integrity. Indeed, future efforts will 

elucidate the exact components of the UPR machinery in charge of those molecular events.

4. Conclusions

A robust and prolonged UPR induction has been associated with severe inflammatory 

responses, often associated with lethal outcomes. The present assay suggests that a mild 

UPR induction is probably associated with protective effects in the vascular endothelium, 

and may serve as an attractive target towards the development of new therapies against 

ARDS.
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P53 opposes Inflammation

UPR activation induces P53

Hyperpermeability causes ARDS

Hsp90 inhibition Induces UPR
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