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Abstract

Objective: Electroencephalogram (EEG) features predict neurological recovery following 

cardiac arrest. Recent work has shown that prognostic implications of some key EEG features 

change over time. We explore whether time dependence exists for an expanded selection of 

quantitative EEG (QEEG) features and whether accounting for this time-dependence enables 

better prognostic predictions.

Design: Retrospective.

Setting: Intensive care units at four academic medical centers in the U.S.

Patients: Comatose patients with acute hypoxic-ischemic encephalopathy.

Interventions: None.

Measurements: We analyzed 12,397 hours of EEG from 438 subjects. From the EEG, we 

extracted 52 features that quantify signal complexity, category, and connectivity. We modeled 

associations between dichotomized neurological outcome (good vs. poor) and QEEG features in 

12-hour intervals using sequential logistic regression with Elastic-Net regularization. We 

compared a predictive model utilizing time-varying features to a model using time-invariant 

features and to models based on two prior published approaches. Models were evaluated for their 

ability to predict binary outcomes using area under the receiver operator curve (AUC), model 

calibration (how closely the predicted probability of good outcomes matches the observed 

proportion of good outcomes), and sensitivity at several common specificity thresholds of interest.

Main Results: A model utilizing time-dependent features outperformed (AUC = 0.83 ± 0.08) 

one trained with time-invariant features (0.79 ± 0.07, p<0.05) and a random forest approach (0.74 

± 0.13, p<0.05). The time-sensitive model was also the best-calibrated.

Conclusion: The statistical association between QEEG features and neurological outcome 

changed over time, and accounting for these changes improved prognostication performance.
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INTRODUCTION

Over 500,000 cardiac arrests occur every year in the United States.(1) Most patients sustain 

severe brain injury resulting in coma.(2) Despite recommendations to postpone 

prognostication at least 72 hours post-arrest, the most common proximal cause of mortality 

is early withdrawal of life-sustaining therapies.(3, 4) There is a need for accurate methods to 

assign probability of good and poor neurologic outcome early after cardiac arrest, to reduce 

subjectivity, and avoid poor outcomes as a result of self-fulfilling prophecies.

Specific electroencephalogram (EEG) patterns are associated with eventual recovery from 

coma due to hypoxic-ischemic encephalopathy (HIE) after cardiac arrest.(5, 6) However, 
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existing EEG review practices rely on visual analysis, which does not translate into 

reproducible quantitative predictions of neurologic outcome.(7–15) Several studies have 

shown that several quantitative EEG (QEEG) features may carry prognostic information that 

is useful in outcome prediction on HIE.(6, 13, 16–25) More recent models have achieved 

promising results by combining several QEEG features (26) and leveraging local temporal 

trends of multiple QEEG features.(5)

In this study, we hypothesize that a machine-learning method can predict long-term 

neurologic outcome in HIE by integrating clinical data to existing and novel QEEG features. 

Our work goes beyond prior results by using a more comprehensive set of QEEG features, 

more completely leveraging temporal trends, and by rigorously characterizing statistical 

performance of the model.

MATERIAL AND METHODS

Subjects and clinical management

Adult subjects diagnosed with in- or out-of-hospital cardiac arrest from October 2009 to 

April 2016 in four university-affiliated hospitals in the U.S (Massachusetts General Hospital; 

Brigham and Women’s Hospital; Yale New Haven Hospital; and Beth Israel Deaconess 

Medical Center) were retrospectively reviewed. Subjects who were comatose after return of 

spontaneous circulation (ROSC) underwent continuous EEG monitoring and received 

targeted temperature management (TTM) with goal temperature of 32–34°C were screened 

(TTM 36°C was not used at the time of data abstraction). Retrospective data collection and 

analysis was performed under independent Institutional Review Board approvals at 

participating hospitals and informed consent was waived.

Data collection and functional outcome assessment

Clinical and outcome information were collected retrospectively. Subjects were stratified by 

age, gender, time to ROSC, and initial cardiac rhythm, dichotomized as shockable 

(ventricular fibrillation or ventricular tachycardia) or non-shockable (asystole, pulseless 

electrical activity, and unknown).

The primary outcome was defined as the best neurological function achieved up to 6-months 

after initial cardiac arrest, according to the Glasgow-Pittsburgh Cerebral Performance 

categories (CPC) scale, ascertained by medical record review (E.A., M.M.G, J.W.L., S.H., 

S.A., and M.B.W.). “Good” outcome was defined as a CPC score of 1 or 2 and “poor” 

functional outcome as a CPC of 3 to 5.(28) All patients had CPCs assessed at discharge. 

Patients with CPC 3 and 4 were further assessed by chart review to determine whether they 

achieved a better CPC (1 or 2) in the following 6 months. CPC was chosen both because it is 

widely used in neurologic outcomes studies, and is simple enough to be easily ascertained 

via chart review. Prior studies have shown that CPC can be extracted reliably via chart 

review.(27) Reliability is further enhanced in our study by the lumping together of CPC 

scores into dichotomous “good” and “poor” outcomes.
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EEG data acquisition

Continuous EEG monitoring was started at each institution as early as possible during TTM 

and maintained for 24–72 hours, unless the subject regained consciousness, had life-

sustaining therapies withdrawn, or died. Digital EEG was recorded using the international 

10–20 system. EEG was analyzed up to 72 hours of monitoring. EEG preprocessing and 

artifact detection were performed prior to feature acquisition (Supplementary materials). §

QEEG features extraction

We extracted 52 QEEG features: 45 single-channel and 7 multi-channel (see Supplementary 

Materials; Table s1).(26, 29–39) Single channel features were computed on the following 

frontotemporal electrodes: Fp1, Fp2, F3, F4, F7, F8, and Fz. Multi-channel features were 

computed on the 21 unique pairs of the selected frontotemporal electrodes. To reduce feature 

dimensionality, the mean value of the extracted features across all channels was used. All 

EEG features were z-scored (i.e. scaled to zero mean and unit variance). A more detailed 

description of the QEEG features extracted, corresponding equations, and QEEG processing 

pipeline is available in the supplementary materials and online repository (Supplementary 

materials, Table s1). §

The 52 QEEG features fell into three EEG signal property domains: a) Complexity features 

(21 total) quantify the degree of randomness or irregularity in the EEG signal (29, 30, 35–

39); b) Category features (24 total) quantify the degree to which brain states fall into certain 

key EEG patterns likely to carry prognostic significance (26); c) Connectivity features (7 

total) quantify interactions across electrodes.(26, 31–34) All analyses were performed using 

MATLAB 2016a (Natick, MA, USA).

Statistical analysis

Univariate Analysis—We began our study exploring Spearman correlations between our 

56 features (52 QEEG and four clinical) and CPC scores at consecutive 12-hour time blocks, 

up to 72 hours.

Sequential Logistic Regression with Elastic Net Regularization—The prognostic 

importance of EEG features changes over time.(5, 26) We accounted for this evolution in the 

feature-outcome relationship by training a contiguous sequence of logistic regression 
models, one for every 12 hours of EEG. All subjects with EEG discontinued before the end 

of a given time interval (e.g. before 48h in the 36–48h interval) were excluded for the model 

trained within that interval. Therefore, each model was trained to predict 6-month neurologic 

outcome for subjects still monitored to the end of a given interval. Each model in the 

sequence included feature information from the current time interval, and feature 

information from preceding time intervals (e.g. the model at 36 hours contains feature 

information from hours 1–12, 13–24, and 25–36). This approach allowed models later in the 

sequence to consider both past and present feature information when making predictions. 

The number of subjects available for modeling purposes in each of the 12-hour time 

§To aid in reproducibility of this study, we have made our feature extraction code public: https://github.com/deskool/
ComaPrognosticanUsingEEG
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intervals, and their outcomes, are displayed in Table 1. In Figure 1, we graphically illustrate 

our approach. Features are selected using an Elastic Net model (see Supplementary 

Materials)(40). Henceforth, we refer to the Elastic Net regularized sequential logistic 

regression model as the time-sensitive model.

Baseline Models—We compared the time-sensitive model to four baseline approaches: 

(1) A clinical baseline: a logistic regression using age, gender, ROSC and initial rhythm; (2) 

a time-insensitive model: a logistic regression model using features selected by Elastic Net 

across all time intervals, but retrained within each time-interval; (3) the 2013 Cerebral 

Recovery Index (CRI): a heuristic approach using alpha/delta band-power, standard 

deviation, coherence in delta band, Shannon entropy, and regularity; (4) a Random Forest: a 

Random forest classifier with features and settings inspired by the 2017 CRI. (5) The CRI 

methods were selected as literature baselines given their impressive reported performance. 

The 2017 CRI used the five features from the 2013 study, in addition to four features that 

characterized burst-suppression activity. The authors reported these additional features 

provided modest improvements in model performance compared to a Random Forest 

classifier using the original five features. For this reason, we used the five CRI features from 

the 2013 model when implementing the Random Forest classifier.

Performance Characterization Metrics—We evaluated model performance using EEG 

data for each consecutive 12-hour interval, up to 72 hours. Performance metrics included 

Area Under the Receiver Operator Curve (AUC), used to evaluate the model’s ability to 

make binary predictions, and the sensitivity and specificity for specific operating points on 

the ROC curve; and statistical calibration, which measures how well the observed 

proportions of good outcomes match predicted probabilities. Calibration is particularly 

important for our model when used as a risk-score.

Model Validation Approach—All models were validated using 10-fold cross validation. 

That is, we partitioned available data into ten folds. In each fold, 90% of the data was used 

to identify model parameters and the remaining 10% were used to evaluate model 

performance on subjects never seen in the corresponding training sets. Subjects within each 

testing fold were unique. We used the average performance of models across the unseen 

testing sets in the ten folds when comparing performance. Feature selection was performed 

using an Elastic Net with 10 inner validation folds (supplementary materials).

RESULTS

Data Characteristics

We identified five-hundred and thirty-six subjects across the four contributing hospitals. 

Seventy-six subjects were excluded from final analysis due to missing admission clinical 

information and 22 were excluded due to insufficient EEG recording quality or missing 

outcome assessments. The 438 remaining subjects had 12,397 hours of EEG data available.

By hospital discharge, 120 subjects had CPC of 1–2 and 281 subjects had a CPC of 5 

(401/438, 91.6% of subjects). The remaining 8.4% (37/438) had a CPC of 3 or 4 at 

discharge. Among these, 14 ultimately improved to a CPC score by 6-months of 1 or 2, five 
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remained with CPC of 3–4, and 10 died. For the remaining 8 cases (1.8% of 438), 6-month 

outcomes could not be determined by chart review. For these the discharge CPC score was 

carried forward and taken as the final outcome. In Table 1, Table s1 and Table s2, we 

summarize subject characteristics.

Univariate Analysis

Table s3 displays univariate Spearman correlations between features, and the CPC scores in 

contiguous 12-hour intervals. Several QEEG features were predictive exclusively in specific 

time windows (time-sensitive), with correlation weights varying over time. Figure s1 

illustrates three examples of features whose relationship with the most probable outcome 

changes over time, and three features whose prognostic value over time is stable.

Performance Characterization

We evaluate the ability of the models in two ways: First, to make accurate binary predictions 
(good vs. poor outcome), and second, to function as a risk scoring system by predicting the 

probability of a good (or, complementarily, a bad) outcome.

Performance in predicting binary outcomes: in Figure 2 we compare the time-dependent 

AUC of the time-sensitive model to baseline approaches. Note that, the model for each time 

point is trained only EEG data from subjects who survived and remained on EEG up to that 

time; model predictions likewise pertain only to those who remain on monitoring. Here the 

time-sensitive approach performed best, exhibiting consistent improvements in performance 

(p < 0.04, according to 2-sample t-test) with increased observation time (from AUC of 0.71 

± 0.05 at 12 hours to 0.79 ± 0.08 at 72 hours). The leave-one-institution-out cross-validation 

results are available in the supplementary materials (Figure s2).

With regard to overall area under the receiver operating curve, AUC0 (Figure 2 and Table 

s4), the time-sensitive model accurately predicted 6-month functional outcome (AUC0 = 

0.83 ± 0.08 across the 10 testing folds) compared to the time-insensitive model (AUC0 = 

0.79 ± 0.07), Random Forest (AUC0 = 0.74 ± 0.13), original CRI (AUC0 = 0.69 ± 0.07), and 

clinical baseline model (AUC0 = 0.68 ± 0.05). The improvement in prediction performance 

was statistically significant according to a 2-sample t-test (p < 0.05). In Figures 3 we report 

the overall sensitivity and specificity of the time-sensitive model over time. Table s5 and 

Table s6 contain sensitivity and specificity data for time-sensitive and time-insensitive 

models.

Final Model Using All Data

Table s7 shows coefficients for features selected by the time-sensitive model trained using 

all available data. The association of QEEG features with functional outcome varied across 

time. Not all types of EEG complexity positively correlated with outcomes. Fractal 

Dimension and False Nearest Neighbor were associated with poor outcomes while Entropy 

and Cepstrum coefficients were associated with good outcomes. As expected, the association 

between outcome and EEG category depended on the particular category: epileptiform 

activity was associated with poor outcomes while regularity (a measure of continuity) was 
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associated with good outcomes. Increased connectivity between channels was consistently 

associated with poor outcomes.

Certain features were more predictive early on (Tsallis entropy, autoregressive-moving 

average, and coherence in the delta band) while other features were more predictive later 

(number of sharp waves, fractal dimension, and cross correlation magnitude).

DISCUSSION

The technical contribution of this study lies in the methodological approach we developed. 

Our modeling framework reflects the decision process of care providers, considering 

information across multiple points in time when predicting outcomes. We showed that the 

QEEG model which retains “memories” of previously encountered features outperformed 

state-of-the-art approaches which used only present features. The time-sensitive model had 

the best classification (overall AUC0 = 0.83 ± 0.08) and statistical calibration of all tested 

approaches (Figure 4 and Table s5). These test characteristics show that our model makes 

well-calibrated predictions. That is, the observed proportions of good outcomes match the 

predicted probabilities of good outcomes quite well. The superior calibration of our time-

sensitive model provides strong motivation for its use as a risk score. In Figure s3, we 

illustrate how outcome probabilities of the model could be used to score patient risk in a 

continuously updated fashion. An important strength of this study was its multicenter nature, 

incorporating data from four institutions and more than 400 subjects.

Several features selected by our final model reflect prior findings in the literature. We found 

that information theoretic measures of EEG complexity and regularity were predictive of 

good functional outcomes while features measuring epileptiform discharges were associated 

with poor outcomes.(5, 17, 19, 22, 26, 41, 42) Two EEG complexity features (Cepstrum and 

Tsallis entropy) and EEG regularity contributed to predictions in the first 24 hours of 

monitoring. These findings substantiate prior reports that specific EEG signatures observed 

during the first 24 hours after cardiac arrest have strong predictive value despite hypothermia 

and sedative use.(15) Other QEEG features available to our model, but not selected, have 

been previously reported as useful in HIE prognostication. These include measures of 

spectral content and burst-suppression.(5, 13, 16–18, 20, 22–26, 41) This apparent difference 

from previous literature is likely due to our feature selection method, which when faced with 

multiple informative but correlated features chooses among them. Thus, features that have 

significant predictive value individually are not necessarily retained in the final multivariate 

prognostication model.

Our model demonstrates that EEG provides valuable prognostic information early after 

cardiac arrest, and that temporal trends can be used to further improve predictions. The time-

sensitive model performance continued to improve as more data became available, 

highlighting the incremental prognostic value of continuous EEG beyond 24 hours.(5, 15, 

18, 19)

In our analysis, the time-sensitive method outperformed a Random Forest classifier and the 

original CRI model utilizing five QEEG features.(5, 26) We note that the performance of our 
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Random Forest implementation was inferior to that reported by Tjepkema-Cloostermans et 

al. (AUC = 0.90 at 24 hours).(5) The discrepancy may result from: (1) the heterogeneity of 

our data, which came from four different centers compared to the authors’ two-center study, 

(2) our decision to align data with respect to the start of EEG recording rather than the time 

of cardiac arrest, and (3) use of more extensive validation (10-fold versus 1-fold).

Limitations

This study has several limitations. We have attempted to address each of them at least in 

part, but further work remains.

1) Our method focused on EEG and initial clinical features. A multi-modal prognostication 

strategy integrating data from serial neurological exams, notably the pupillary reflex and 

Glasgow Coma Score, somatosensory evoked potentials, neuroimaging, serum biomarkers, 

visual EEG review could likely provide further improve prognostic predictions. Future 

studies need to investigate whether QEEG analysis improves on current multimodal 

prognostication methods.

2) Outcome data beyond hospital discharge was missing for some subjects with CPC 3 or 4 

at discharge; however, this problem was limited to 1.8% (8/438) of subjects. A sensitivity 

analysis excluding these cases showed no significant change in prediction performance, 

therefore we do not believe that loss to follow up in this small subpopulation significantly 

affected our results.

3) The duration of EEG monitoring was not uniform across all subjects. This is typical of 

retrospective studies in this population and is reflected in the decline in prediction 

calibration after 48 hours. For pragmatic reasons (to facilitate training machine learning 

models), we aligned EEG data based on time of initiation of EEG rather than time of ROSC. 

This caveat may decrease interpretability of our findings regarding how QEEG features 

change across time from initial injury. However, this data alignment facilitated deployment 

of a sequential model that requires feeding features forward from one-time interval to 

another, which would be compromised if large sections of data from the first 12 hours were 

unavailable. A visual representation of the time to ROSC compared to the time of EEG 

initiation in Figure s4.

4) Healthcare providers participating in decision making regarding life-support were not 

blinded to EEG results, therefore we cannot exclude that self-fulfilling prophecies affected 

the outcomes observed and which features were most predictive in our QEEG model.

5) Some drugs administered to cardiac arrest patients are known to modulate the EEG (e.g. 

propofol, midazolam). Limited data is available on the specific effects of sedatives on QEEG 

trends in the cardiac arrest population, and unfortunately hourly sedation information for 

each patient is not available for the cohort in our study. If we had been able to account for 

effects of sedatives in training the model, this might have further improved prediction 

performance. Future studies should analyze and incorporate of specific effects of sedation in 

QEEG trends.
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6) The performance of our time-sensitive model is modest (AUC=0.83), and our current 

modeling approach is not ready for deployment at the bedside. A model that can integrate 

initial clinical information and continuous EEG to other data streams such as serial clinical 

exams, brain imaging tests, sedation, serum biomarkers, and somatosensory evoked 

potentials has the potential to improve prediction performance beyond our current method.

CONCLUSIONS

We utilized a large, multi-center cohort with HIE to train a sequential prognostication model 

for good and poor functional outcomes. The QEEG model we developed is time-sensitive, 

selecting specific feature values at specific points in time that are most predictive of 

outcome. The time-sensitive model had better classification and statistical calibration 

compared to several state-of-the-art baseline approaches. These results demonstrate that the 

statistical association between quantitative EEG features and neurological outcome in HIE 

changes over time, and accounting for these changes improves performance of predictive 

models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Modeling Approach
An overview of our modeling approach. Features (depicted as colored rectangles) are 

extracted from contiguous temporal partitions of our training data. All features within and 

preceding a given temporal partition are-provided to an Elastic Net regularized logistic 

regression model, which identifies the subset of features within the temporal partition most 

predictive of patient outcome. The selected features and training data are then used to 

generate a final general linear model (GLM) - the performance of which is evaluated on a 

held-out test set (green box).
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Figure 2: Model Performance Comparison as a Function of Time
A comparison of our time-sensitive (green) model’s ten-fold Area Under the Receiver 

Operator Curve performance on the held-out testing sets over time and four baseline 

approaches: time-insensitive (red), the 2013 CRI (blue), Random Forest model inspired by 

the 2017 CRI (purple), and a model using four clinical features (age, gender, ROSC, and 

arrest rhythm) (gray).

Ghassemi et al. Page 13

Crit Care Med. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Specificity and Sensitivity of the Time-Sensitive Model at Different Sensitivity and 
Specificity Thresholds
(A) The mean specificity (and standard error) of the proposed approach at a variety of 

sensitivity thresholds of interest. (B) The mean sensitivity (and standard error) of the 

proposed approach at a variety of specificity thresholds of interest.
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Figure 4: Model Calibration Performance Comparison for Each 24-hour Block.
A comparison of our model’s calibration approach to three baseline approaches over three 

days post-cardiac arrest. Ideal calibration is achieved when colors bars perfectly overlap the 

gray shading in the background of each image. The calibration of a particular prediction 

level is shown as a bar. The shading of the bar reflects time (lighter is earlier, darker is later). 

(A) The calibration of the 2013 Coma Recovery Index (CRI); (B) the calibration of the 

Random Forest model based on the 2017 CRI; (C) the calibration of a time-insensitive 

logistic regression model; (D) the time-sensitive logistic regression model.
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Table 1:

Collected Clinical information on patients, partitioned by CPC outcome

Variable CPC 1 (N=111) CPC 2 (N=23) CPC 3 (N=9) CPC 4 (N=14) CPC 5 (N=281)

Age (years, mean) 53(16) 60(14) 68(13) 58(20) 62(17)

Gender (% male) 59 70 30 36 67

ROSC in minutes, (mean, std) 20(19) 14(12) 13(10) 13(8) 28(61)

Rhythm at Arrest

Asystole (%) 5 13 10 7 18

PEA (%) 27 26 50 36 34

VFib (%) 41 17 10 21 14

VT (%) 7 4 0 7 3

Other (Non-VFib or VT) (%) 20 40 30 29 31

Cause of Arrest

Cardiac (%) 23 4 10 29 18

Pulmonary (%) 5 13 10 7 12

Unknown (%) 6 0 0 0 2

Other/Unknown (%) 66 83 80 64 68

Arrest Location

In-hospital (%) 18 30 50 0 10

Out-of-hospital (%) 35 17 0 43 40

Unknown (%) 47 53 50 57 50

CPC: Cerebral Performance Category; ROSC: Return of Spontaneous Circulation; PEA: Pulseless Electrical Activity; VFib: Ventricular 
Fibrillation; VT: Ventricular Tachycardia
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