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Abstract

Genomic and functional study of existing and emerging sarcoma targets, such as fusion proteins, 

chromosomal aberrations, reduced tumor suppressor activity, and oncogenic drivers, is broadening 

our understanding of sarcomagenesis. Among these mechanisms, the tumor suppressor p53 (TP53) 

plays significant roles in the suppression of bone and soft tissue sarcoma progression. Although 

mutations in TP53 were thought to be relatively low in sarcomas, modern techniques including 

whole-genome sequencing have recently illuminated unappreciated alterations in TP53 in 

osteosarcoma. In addition, oncogenic gain-of-function activities of missense mutant p53 (mutp53) 

have been reported in sarcomas. Moreover, new targeting strategies for TP53 have been 

discovered: restoration of wild-type p53 (wtp53) activity through inhibition of TP53 negative 

regulators, reactivation of the wtp53 activity from mutp53, depletion of mutp53, and targeting of 

vulnerabilities in cells with TP53 deletions or mutations. These discoveries enable development of 

novel therapeutic strategies for therapy-resistant sarcomas. We have outlined nine bone and soft 

tissue sarcomas for which TP53 plays a crucial tumor suppressive role. These include 

osteosarcoma, Ewing sarcoma, chondrosarcoma, rhabdomyosarcoma (RMS), leiomyosarcoma 

(LMS), synovial sarcoma, liposarcoma (LPS), angiosarcoma, and undifferentiated pleomorphic 

sarcoma (UPS).
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1. Introduction

Bone and soft tissue sarcomas are tumors of mesenchymal origin. Sarcomas are 

exceptionally rare tumors, comprising less than 1% of all human cancers. Most sarcomas 

arise from abnormal differentiation processes of mesenchymal stem cells (MSCs) and their 

derived cell lineages (Eid & Garcia, 2015, Lye, Nordin, Vidyadaran, & Thilakavathy, 2016). 

Sarcomas commonly occur in children and young adults (Ognjanovic, Olivier, Bergemann, 

& Hainaut, 2012). Sarcoma prognosis remains poor, especially in cases of distant metastasis 

(Meyer & Seetharam, 2019). Although advanced chemotherapy and surgery have improved 

patients’ prognosis, treatment options for most sarcomas have remained stagnant for the past 

30–40 years (Meyer & Seetharam, 2019, Scheidt, et al., 2019). Therefore, understanding the 

molecular mechanisms driving sarcoma malignancy would significantly accelerate 

development of novel therapeutic strategies.

Advances in molecular biology have enabled precise and detailed discovery in the genome 

and expression profiles of tumor tissues, as compared with those of non-tumor tissues. 

Several unappreciated mutations and chromosomal abnormalities are found in osteosarcoma, 

including genes associated with IGF signaling, alterations in the PI3K/mTOR pathway, and 

somatic structural variations in TP53 (Behjati, et al., 2017, X. Chen, et al., 2014, Perry, et 

al., 2014, Sayles, et al., 2019). Genome sequencing of Ewing sarcoma reveals mutations 

related to DNA repair machineries (Brohl, et al., 2017). Indeed, Anderson et al. (Anderson, 

et al., 2018) show that complex chromosome rearrangements at the early stage of Ewing 

sarcoma development may contribute to EWS-ETS gene fusions and other DNA 

rearrangements. Additionally, multi-platform molecular landscape analysis of 206 adult soft 

tissue sarcomas, including leiomyosarcoma (LMS), de-differentiated liposarcoma (LPS), 

undifferentiated pleomorphic sarcoma (UPS), and synovial sarcoma, has recently revealed 

previously unappreciated sarcoma-type-specific changes in copy number variation, 

methylation pattern, RNA expression profile, and protein expression, which could have an 

impact on sarcoma diagnosis and therapy (Cancer Genome Atlas Research Network. 

Electronic address & Cancer Genome Atlas Research, 2017). These findings have further 

confirmed the significance of mutations and genetic abnormalities in the TP53 gene on bone 

and soft tissue sarcoma progression. Mutations in TP53 are detected in about half of all 

tumors, remaining the most frequently mutated gene in human cancers (Hung & Anderson, 

1997, Taubert, Meye, & Wurl, 1998, Zhou, Hao, & Lu, 2018). Previously, mutations in TP53 
were thought to occur at a relatively low frequency in sarcomas (Toguchida, et al., 1992). 

This is mainly because mutations in TP53 were identified by sequencing only exonic regions 

in the DNA binding domain or by performing immunohistochemistry (IHC) to detect 

positive staining in p53-mutated tumors due to the long half-life of the mutant protein. 

However, recent whole-genome sequencing analyses have revealed more frequent alterations 

in TP53, including structural alterations in TP53 intron 1. Thus, the significance of TP53 in 

sarcoma could have been underestimated, which drives us to revisit the roles of TP53 in 

sarcomagenesis. Since the variety of alterations to TP53 and TP53 upstream regulators are 

detected in sarcomas, we will also discuss several distinct TP53 targeting strategies in this 

review article (Table 1).
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TP53 is a transcription factor that is stabilized following genotoxic stress and induces 

transcription of genes associated with cell cycle arrest, apoptosis, and metabolism, thereby 

functioning as a tumor suppressor (D. Lane & Levine, 2010, Ranjan & Iwakuma, 2016). 

Typically, tumor suppressors have loss-of-function (LOF) mutations or deletions in cancers; 

however, the majority of TP53 mutations are missense mutations in the DNA binding 

domain, such that mutant TP53 (mutp53) not only loses the tumor suppressive function but 

also gains oncogenic functions (GOF: gain of function) independent of wild-type TP53 

(wtp53) (Parrales & Iwakuma, 2015). The most frequently mutated codons are R175, R248, 

and R273. There are roughly two types of TP53 mutations. The first is a DNA contact type 

in which mutations occur at amino acids that directly interact with DNA (e.g., K120, R248, 

R273, R280). The second is a conformational or misfolded type, in which mutations do not 

occur in DNA-contacting amino acids but instead alter the three-dimensional structure of 

TP53, thereby losing the DNA binding activity (Adhikari & Iwakuma, 2009, D. Lane & 

Levine, 2010). Increasing evidence suggests that not all TP53 mutants have identical GOF 

activity. However, overall, the majority of TP53 mutants lose tumor suppressive function, at 

least partially, and some mutants show distinct oncogenic activities to promote malignant 

progression (M. P. Kim & Lozano, 2018, Mantovani, Collavin, & Del Sal, 2019, Parrales & 

Iwakuma, 2015). These mutants’ oncogenic properties are seen throughout a variety of 

cancers including bone and soft tissue sarcomas.

Mutp53’s oncogenic properties are also demonstrated in Li-Fraumeni syndrome (LFS), an 

autosomal dominant familial cancer-prone syndrome. The link between germline mutations 

of TP53 and LFS was confirmed by molecular testing in 1990 (Malkin, et al., 1990). Over 

70% of patients with LFS inherently harbor a mutation in the TP53 gene in their germlines 

and frequently develop various types of cancer at early ages, including osteosarcoma, 

rhabdomyosarcoma (RMS), brain tumors, breast cancer, leukemias, and adrenocortical 

carcinoma (Correa, 2016, Malkin, et al., 1990). Osteosarcoma is the most common sarcoma 

in patients with LFS, though rates are only slightly higher for osteosarcoma than brain 

tumors and RMS (Correa, 2016, Guha & Malkin, 2017). Even a low-penetrance TP53 
R337H mutation, found in a clustered population in southeast Brazil, is associated with an 

increased frequency of adrenocortical tumors, choroid plexus carcinoma, and osteosarcoma 

(Seidinger, et al., 2011). Additionally, Mirabello et al. (Mirabello, Yeager, et al., 2015) 

report that young-onset osteosarcoma has a higher frequency of LFS-associated TP53 
mutations. Moreover, they show that the presence of a rare TP53 variant leading to an exonic 

splice site change, rs1800372 (p.R213R), is associated with metastasis at diagnosis of 

osteosarcoma (Mirabello, Yeager, et al., 2015).

In this review article, we revisit the significance of TP53 in bone and soft tissue sarcoma 

with updated literatures by focusing on osteosarcoma, Ewing sarcoma, chondrosarcoma, 

RMS, LMS, synovial sarcoma, LPS, angiosarcoma, and UPS. For each sarcoma we explore 

the roles of TP53 in tumor development, malignancy, and the prognosis of these sarcomas, 

as well as potential and optimal therapeutic strategies targeting TP53 for each sarcoma 

(Table 2).
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2. Osteosarcoma

Osteosarcoma is the most common primary cancer of the bone and arises during the process 

of osteoblastic differentiation from MSCs (Mortus, Zhang, & Hughes, 2014, Tang, Song, 

Luo, Haydon, & He, 2008). Osteosarcoma is commonly detected near the epiphyseal plate 

of long bones, most commonly in children. A combination of surgery and chemotherapy, 

including high-dose methotrexate, cisplatin, and doxorubicin, is the main therapeutic 

strategy for osteosarcoma. Although this treatment has improved 5-year survival rate of 

patients to 70% in the past three decades, some patients develop resistance to chemotherapy, 

and the long-term survival of patients with relapse remains below 20% (Harrison, Geller, 

Gill, Lewis, & Gorlick, 2018, Y. Zhang, J. Yang, et al., 2018). To overcome this poor 

prognosis, it is crucial to learn about the genetics and molecular pathogenesis of this disease.

Osteosarcomas frequently show complex karyotypes and genomic instability including gene 

amplifications (MYC, CCNE, Rad21, VEGFQ, AURKB, CDK4), deletions (TP53, RB1, 
PTEN), somatic nucleotide variants (SNVs) or short indels (TP53, ATRX, RBs, PRKDC), 

and structural variants (SVs: TP53, LRP1B, RB1, FHIT) (Martin, Squire, & Zielenska, 

2012, Sayles, et al., 2019). While many other sarcomas are often characterized by 

chromosomal translocations (including Ewing sarcoma, RMS, synovial sarcoma, and LPS), 

until now no such representative translocation has been identified in osteosarcoma (Martin, 

et al., 2012). Mutation of TP53 is well-correlated with genomic and chromosomal instability 

in human high-grade osteosarcoma (Al-Romaih, et al., 2003, Zuffa, et al., 2008). One early 

immunohistochemistry (IHC) study shows that 27 out of 46 (58.7%) osteosarcoma 

specimens exhibit TP53 overexpression, a common indicator of TP53 missense mutations 

(W. Guo, Wang, & Feng, 1996), while other studies show fewer TP53 mutations in 

osteosarcoma (Mendoza, Konishi, Dernell, Withrow, & Miller, 1998, Miller, et al., 1996, 

Mirabello, Koster, et al., 2015). Intriguingly, Masuda et al. (Masuda, Miller, Koeffler, 

Battifora, & Cline, 1987) first reported intron 1 rearrangements in the TP53 gene in 3 out of 

6 human osteosarcoma samples in 1987. Indeed, a recent whole-genome sequencing of 34 

osteosarcoma samples has discovered similar mutations in the TP53 gene. Nine (26%) have 

TP53 point mutations, and 19 (55%) have structural variations in the TP53 gene, the 

majority of which are translocations with breakpoints in the first intron (X. Chen, et al., 

2014). This finding is supported by the report by Ribi et al. (Ribi, et al., 2015), where 16% 

of sporadic osteosarcomas show intron 1 rearrangements, while no other tumors have such 

TP53 rearrangements. The intron 1 rearrangements are also detected in a four-generation 

LFS family (Ribi, et al., 2015). The most recent study by Sayles et al. (Sayles, et al., 2019) 

demonstrates that TP53 alterations including structural variation (SV) and somatic 

nucleotide variants (SNVs) are detected in 74% of human osteosarcoma. Since 

rearrangements in intron 1 cannot be detected by exon sequencing and IHC, alterations in 

TP53 have likely been underestimated. Biologically, loss of TP53 activity is shown to 

promote osteogenic differentiation of bone marrow stromal cells, as well as osteosarcoma 

development from MSCs (He, et al., 2015, Velletri, et al., 2016). Thus, TP53 has strong 

impact on preventing the malignant transformation of MSCs.

Genetic deletion or mutations of TP53 in mice with the C57BL/6 background often results 

in osteosarcoma development (Lang, et al., 2004). Also, mice expressing gain-of-function 

Thoenen et al. Page 4

Pharmacol Ther. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(GOF) TP53R172H (R172H is equivalent to human R175H) spontaneously develop 

metastatic tumors, including osteosarcoma at a high frequency (~30% in the C57BL/6 

background) (Lang, et al., 2004, Olive, et al., 2004). This metastatic GOF activity by 

mutp53 can be mediated by upregulation of the ONZIN-CXCL5-MAPK axis or by binding 

of mutp53 with TP63, TP73, and ETS2 (Do, et al., 2012, Lang, et al., 2004, Pourebrahim, et 

al., 2017, Xiong, et al., 2014, Y. Zhang, Q. Hu, et al., 2018). Moreover, combined deletion of 

TP53 and RB1 in mouse osteoblasts results in development of metastatic osteosarcoma at a 

high frequency (Walkley, et al., 2008). Thus, deletions and mutations in TP53 significantly 

contribute to osteosarcoma progression in mouse models, supporting findings in humans.

TP53 has been implicated in chemotherapy sensitivity, mainly through induction of 

apoptosis and senescence as well as inhibition of autophagy (J. Fan & Bertino, 1999, Hu, et 

al., 2017, Z. Wang & Sun, 2010). Previous studies have shown that mutations in TP53 are 

associated with chemoresistance or poor event-free survival in human osteosarcoma (Goto, 

et al., 1998, Tsuchiya, et al., 2000). Loss of heterozygosity (LOH) of TP53 in osteosarcomas 

is associated with chemoresistance (Goto, et al., 1998). The work by Asada et al. (Asada, 

Tsuchiya, & Tomita, 1999) supports this, showing that deletion of TP53 is found in an 

osteosarcoma cell line with acquired resistance to cisplatin. However, multiple meta-

analyses suggest that while TP53 mutations could serve as an effective prognostic marker 

only for 2- or 3-year overall survival of patients with osteosarcoma, TP53 status does not 

appear to be correlated with development of metastases and chemotherapy response in 

patients with osteosarcoma (Z. Chen, Guo, Zhang, & Guo, 2016, Fu, et al., 2013, Gokgoz, et 

al., 2001, Pakos, Kyzas, & Ioannidis, 2004, Wunder, et al., 2005, Yao, et al., 2014). These 

clinical studies do not examine the structural alterations in TP53 introns. Considering 

frequent observations of the TP53 intron 1 rearrangement, it may be important to re-evaluate 

the clinical significance of TP53 alterations in malignancy, response to chemotherapy, and 

metastasis of human osteosarcoma and other types of cancer.

Alterations to regulators of TP53 can also contribute to development of osteosarcoma 

(Morrow & Khanna, 2015). One crucial regulator of TP53 stability and degradation is the 

protein MDM2 (murine double minute 2). MDM2, which acts as the major E3 ubiquitin 

ligase for TP53, is overexpressed in ~30% of human cancers. MDM2 copy number is 

amplified more than 3-fold in 14.7% of high grade osteosarcoma (Overholtzer, et al., 2003). 

Ito et al. (Ito, et al., 2011) show that 35% of osteosarcoma cases have over 3-fold MDM2 
amplification. However, mutations in TP53, but not copy number of MDM2, are correlated 

with overall genomic instability in high-grade human osteosarcoma (Overholtzer, et al., 

2003). Although a multivariate analysis shows that the MDM2 polymorphism T309G which 

increases MDM2 expression levels via an extra SP1 binding site in the MDM2 promoter is 

associated with an increased risk of developing high-grade osteosarcomas in female patients 

(Toffoli, et al., 2009), there is no conclusive literature showing correlation of MDM2 

overexpression with survival and prognosis of human osteosarcoma.

Another major inhibitor of TP53 is MDM4 (Haupt, Hernandez, Vijayakumaran, Keam, & 

Haupt, 2019). Although it is a homolog of MDM2, MDM4 does not have ubiquitin ligase 

activity like MDM2. However, MDM4 still binds with TP53 and inhibits TP53 activity. 

Also, MDM4 hetero-dimerizes with MDM2 through the C-terminal RING finger domain to 
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induce TP53 degradation as a cofactor of MDM2 (Haupt, et al., 2019). Similar to MDM2, 

35% of osteosarcoma cases show MDM4 amplification over 3-fold (Duhamel, et al., 2012, 

Ito, et al., 2011). In addition, multiple studies have highlighted the expression of MDM4 

splice variants in different tumor types (Bardot & Toledo, 2017). One MDM4 splice variant, 

MDM4-S, which skips exon 6 and prematurely terminates in exon 7, encodes a truncated 

MDM4 protein carrying only the N-terminal TP53-binding domain along with 13 novel 

amino acids (Bardot & Toledo, 2017, Pant, et al., 2017). Overexpression of MDM4-S has 

been linked to poor prognosis in osteosarcoma, soft tissue sarcoma, and other cancers 

(Dewaele, et al., 2016, Lenos, et al., 2012, Lenos & Jochemsen, 2011). Thus, MDM4-S 

overexpression can serve as an effective biomarker for TP53 pathway attenuation in cancers 

(Lenos, et al., 2012).

Pagetic osteosarcoma and TP53

Paget’s disease of bone (PDB), which occurs in approximately 3% of adults over 50 years 

old, is a metabolic bone disease characterized by increased bone resorption and subsequent 

excessive disorganized bone formation (Ouslander & Beck, 1982). PDB occurs rarely in 

Asian and African regions, while individuals in Europe, North America, and Australia show 

a high prevalence rate of PDB (Gennari, Rendina, Falchetti, & Merlotti, 2019, Gruener & 

Camacho, 2014). One of the genes implicated in PDB is Sqstm1/p62, which plays roles in 

NF-κB activation as a scaffolding/adaptor protein and selective macroautophagy as an 

autophagosome cargo protein (Duran, et al., 2008, L. Fan, Yin, Zhang, & Hu, 2018, 

McManus & Roux, 2012). Patients with PDB have a high incidence of osteosarcoma, called 

Pagetic osteosarcoma. The prevalence of Pagetic osteosarcoma is estimated to be about 1%, 

which is several hundred- to thousand-fold higher than the prevalence of osteosarcoma in the 

general population depending on the age (Greditzer, McLeod, Unni, & Beabout, 1983, 

Hansen, Nellissery, & Bhatia, 1999, Mirabello, Troisi, & Savage, 2009). Pagetic 

osteosarcoma accounts for 50% of osteosarcoma cases in patients over 60 years of age 

(Gennari, et al., 2019, Yochum, 1984). Although MYC gene amplification and TP53 
mutations are detected in Pagetic osteosarcomas and loss of TP53 activity is reported to 

reduce Sqstm1/p62 levels, the direct role of TP53 in Pagetic osteosarcoma development 

remains unclear (Goiran, et al., 2018, Reddy, 2004, Ueda, Healey, Huvos, & Ladanyi, 1997).

TP53-targeted therapy in osteosarcoma

Because TP53 alterations have been underestimated in osteosarcoma, most early studies in 

osteosarcoma focus on restoring wtp53 activity by inhibiting a TP53 negative regulator, 

MDM2 (Table 1) (Hientz, Mohr, Bhakta-Guha, & Efferth, 2017). The first report for an 

MDM2 inhibitor is Nutlin-3a (Vassilev, et al., 2004). Nutlin-3a binds MDM2 in the TP53-

binding pocket and activates TP53 without causing DNA damage in cancer cells, leading to 

cell cycle arrest, apoptosis, and growth inhibition in osteosarcoma xenograft mouse models 

(Tovar, et al., 2006, Vassilev, et al., 2004, B. Wang, Fang, Zhao, Xiang, & Wang, 2012). 

Nutlin-3a shows synergy with other chemotherapy drugs and CDK inhibitors, and oridonin, 

a diterpenoid extracted from medicinal herbs (Cheok, Dey, & Lane, 2007, X. H. Wang, 

Zhang, Bao, & Liu, 2017). Unfortunately, clinical trials for Nutlin-3a in various tumor types 

have yet to show much success due to significant side-effects including bone marrow 

suppression (Ray-Coquard, et al., 2012). Several other compounds that inhibit MDM2-TP53 
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binding have been identified, including RG7112 (Tovar, et al., 2013), SAR405838 (S. Wang, 

et al., 2014), APG-115 (Yi, et al., 2018), AMG 232 (D. Sun, et al., 2014), and MK-8242 

(Wagner, et al., 2017). Some of these MDM2 inhibitors are currently in clinical trials (D. P. 

Lane, Brown, Verma, & Cheok, 2011, Morrow & Khanna, 2015, Tovar, et al., 2013, Wagner, 

et al., 2017, S. Wang, et al., 2014). Besides MDM2 inhibitors, investigators have discovered 

MDM4 inhibitors (e.g., CTX1, K-181, SJ-172550), as well as MDM2/MDM4 dual 

inhibitors (e.g., DIMP53–1, pDI analogs) (Bista, et al., 2012, Karan, et al., 2016, Philippe, et 

al., 2016, Soares, et al., 2017, Uesato, et al., 2016). The effects of these inhibitors on 

osteosarcoma need to be tested in the future.

When tumors carry missense mutp53, restoration of wtp53 activity from mutp53 can be an 

efficient strategy for anti-cancer therapy (Table 1) (Parrales & Iwakuma, 2015). PRIMA-1 is 

the first small molecule that is shown to restore sequence-specific DNA binding and 

transcriptional activities of TP53 with tumor suppressive effects in mutp53-expressing cells 

(V. J. Bykov, Issaeva, et al., 2005). Since then, many compounds have been identified, and 

details of these compounds are summarized elsewhere (Binayke, Mishra, Suman, Das, & 

Chander, 2019, V. J. N. Bykov, Eriksson, Bianchi, & Wiman, 2018, Parrales & Iwakuma, 

2015). Of these, APR-246, a PRIMA-1 analog, shows synergy in inhibiting tumor cell 

growth with camptothecin, a quinoline alkaloid, in the Saos2 osteosarcoma cell line 

exogenously expressing TP53 R273H (Saos2-TP53R273H) (V. J. Bykov, Zache, et al., 

2005). STIMA-1, a small molecule compound with structural similarities to CP-31398 that 

stabilizes the active conformation of TP53 (Wischhusen, Naumann, Ohgaki, Rastinejad, & 

Weller, 2003), is also shown to stimulate DNA binding of mutp53, induce expression of 

TP53 target genes, and trigger apoptosis in H1299-TP53R175H lung adenocarcinoma and 

Saos2-TP53R273H osteosarcoma cells (Zache, et al., 2008). Additionally, stictic acid, which 

was identified though computational methods for a transiently open binding pocket in the 

TP53 core domain, is shown to upregulate p21 and PUMA in Saos2 cells expressing TP53 

R175H and G245S (Wassman, et al., 2013).

Other than these compounds to increase wtp53 activity, drugs that can deplete mutp53 can 

also be used to inhibit tumor growth of mutp53-expressing osteosarcoma. This is based on 

the observations that cancer cells are addicted to oncogenes, including mutp53, and that 

depletion of mutp53 may lead to reactivation of proteins or pathways suppressed by mutp53 

(Iyer, et al., 2016, Parrales & Iwakuma, 2015). HSP90 inhibitors and cholesterol-lowering 

drugs (statins) are agents have been shown to induce degradation of mutp53 mediated by 

MDM2 and/or CHIP ubiquitin ligases and inhibit tumor progression including osteosarcoma 

(Alexandrova, et al., 2015, Parrales, et al., 2016).

Another way to target TP53 mutations is to treat cells with a compound that inhibits proteins 

or pathways unique and essential for survival and proliferation (vulnerabilities) in TP53-null 

or mutated cells with minimal impact on wtp53-expressing cells (Table 1) (Lu, et al., 2016, 

Tongyang, et al., 2015). Such a compound may inhibit function of proteins that show a 

synthetically lethal interaction with TP53 mutations, including CHK1, ATM/CHK2, Plk1, 

Wee1, and MK2 (Chung, et al., 2018, Gurpinar & Vousden, 2015, Harada, et al., 2011, 

Jiang, et al., 2009, Morandell, et al., 2013, Origanti, Cai, Munir, White, & Piwnica-Worms, 

2013, Tongyang, et al., 2015, X. Wang & Simon, 2013, Weidle, Maisel, & Eick, 2011). 
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Since ~80% of osteosarcoma cases have TP53 alterations, targeting vulnerable pathways and 

proteins in cells lacking wtp53 activity would be a reasonable treatment strategy. 

Intriguingly, Yu et al. (Yu, et al., 2015) identify HDAC (histone deacetylase) inhibitors 

through a 54 FDA-approved agent screen as agents having anti-growth activity and 

synergistic effects with proteasome inhibitors in five TP53-inactive pediatric osteosarcoma 

cell lines, although the underlying mechanism remains unclear.

3. Ewing sarcoma

Ewing sarcoma accounts for approximately 1% of childhood cancers and is the second most 

common bone cancer in children, although it can also arise in soft tissues (Grunewald, et al., 

2018). The femur is the most frequently affected bone. The origin of Ewing sarcoma 

remains controversial as both MSCs and neural crest stem cells (NCSCs) have been 

implicated as the cell of origin (Lin, Wang, & Lozano, 2011, Todorova, 2014). 

Microscopically, the tumor consists of small round cells with regular round nuclei and a 

narrow rim of clear or faintly eosinophilic cytoplasm (Burchill, 2003).

The current chemotherapy protocols for Ewing sarcoma include combinations of 

doxorubicin, cyclophosphamide, vincristine, actinomycin-D, ifosfamide, and etoposide 

(Ozaki, 2015). These treatments have improved the overall 5-year survival of localized 

Ewing sarcoma to 70%. However, overall survival of metastatic Ewing sarcoma remains 

stagnant at ~30% (Balamuth & Womer, 2010, Kridis, et al., 2017).

This malignancy is characterized by translocation between a gene of the RNA-binding TET 

family (e.g., EWSR1, FUS) and a gene of the ETS-transcription family (e.g., FLI1, ERG, 

ETV1, ETV4, and FEV). In the majority of cases (~85%), the EWS-FLI1 fusion resulting 

from a t(11;22) translocation is detected (Renzi, Anderson, Light, & Gupta, 2018). However, 

it remains unclear why this fusion occurs and how exactly the fusion protein contributes to 

Ewing sarcoma development. A recent study by Anderson et al. (Anderson, et al., 2018) 

using whole-genome sequence analyses of 124 Ewing sarcomas indicates that chromoplexy, 

a sudden burst of loop-like genomic rearrangements involving multiple chromosomes and 

genes, rather than reciprocal translocation, is the potential cause of the EWSR1–ETS fusion 

in 42% of cases. The loop-like genomic rearrangements and fusions are also detected in 

other sarcomas including chondromyxoid fibroma and synovial sarcoma (Anderson, et al., 

2018).

Molecular and genetic profiles of Ewing sarcoma have been assessed in a genome-wide 

association study of 733 Ewing sarcoma cases and 1,346 unaffected individuals of European 

ancestry by Crompton et al. (Crompton, et al., 2014). They reveal new susceptibility loci at 

6p25.1, 20p11.22, and 20p11.23, in addition to previously reported loci at 1p36.22, 10q21.3, 

and 15q15.1. They identify candidate genes at 6p25.1 (RREB1) and 20p11.23 (KIZ) 

(Crompton, et al., 2014). Brohl et al. (Brohl, et al., 2014) also show that Ewing sarcoma has 

frequent mutations in the cohesin complex subunit STAG2 (21.5%), homozygous deletion of 

CDKN2A (13.8%) and mutations of TP53 (6.2%), as well as an increased prevalence of the 

BRCA2 K3326X polymorphism (7.3%). Other genome sequencing studies also identify 

mutations in cancer-related genes including KDR, STK11, MLH1, KRAS, and PTPN11, as 
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well as in DNA double-strand break repair, in Ewing sarcoma tissues (Brohl, et al., 2017, 

Zhang, et al., 2016).

With regard to TP53 mutations, multiple articles have found that genetic alterations in the 

TP53 gene are detected only in ~10% of Ewing sarcomas (Komuro, et al., 1993, Lerman, et 

al., 2015, Neilsen, Pishas, Callen, & Thomas, 2011, Radig, et al., 1998). The two most 

frequently detected TP53 mutations in Ewing sarcoma are the C176F and R273X (Sand, 

Szuhai, & Hogendoorn, 2015). Although mutation frequency of TP53 is low in Ewing 

sarcoma, TP53 still plays a crucial role in inhibiting Ewing sarcoma progression. Li et al (Y. 

Li, et al., 2010) report that EWS-FLI1 binds to and inhibits TP53’s transcriptional activity, 

which may explain why TP53 mutations are detected only in ~10% of Ewing sarcoma. To 

support this finding, silencing of EWS-FLI1 reactivates NOTCH signaling and subsequently 

activates TP53 to induce cell cycle arrest in Ewing sarcoma cells (Ban, et al., 2008). 

Additionally, EWS-FLI1 significantly inhibits p300-mediated acetylation of TP53 at 

Lys-382 (Y. Li, et al., 2012). These results strongly suggest the inhibitory role of EWS-FLI1 

in TP53 activity as well as the vital tumor inhibitory role of TP53 in Ewing sarcoma 

progression. However, a study by Lessenick et al. (Lessnick, Dacwag, & Golub, 2002) 

shows that EWS-FLI1 induces a TP53-dependent growth arrest in primary human 

fibroblasts, which is rescued by wtp53 inhibition. The observed discrepancy may be due to 

difference in the experimental settings including cancer cells vs non-transformed cells.

Several clinical studies also support the important role of TP53 in inhibiting Ewing sarcoma 

progression. An IHC study by de Alava et al. (de Alava, et al., 2000) shows that positive 

TP53 staining in Ewing’s sarcoma is a poor prognostic factor. This finding is supported by 

studies by Huang et al. (H. Y. Huang, et al., 2005) and Abdu et al. (Abudu, et al., 1999), 

demonstrating significant correlation of TP53 mutations with poor overall survival and 

response to chemotherapy. On the other hand, a study by Lerman et al. (Lerman, et al., 2015) 

fails to observe an association between TP53 mutations and event-free survival of patients. 

The discrepancy among these studies may be caused by the methodology used to determine 

TP53 mutations. Whole-genome sequencing, rather than IHC and exome sequencing, would 

be necessary to clarify the significance of TP53 mutations in Ewing sarcoma.

Similar to osteosarcoma, MDM2 overexpression is not high (~10%) (Kovar, et al., 1993). 

Ladanyi et al. (Ladanyi, et al., 1995) report that only three out of 30 Ewing sarcoma 

specimens have MDM2 gene amplification, all of which have metastasis at diagnosis, while 

only one out of 15 specimens without MDM2 amplification has metastasis, suggesting 

correlation between MDM2 amplification and metastasis. Thus, the TP53 pathway may play 

a crucial role in the suppression of Ewing sarcoma progression.

Given the infrequent rate of mutations of TP53 in Ewing sarcoma, restoring TP53 activity by 

inhibiting upstream inhibitors of TP53 is a rational therapeutic strategy (Neilsen, et al., 

2011, Stolte, et al., 2018). Through a genome-scale CRISPR-Cas9 screening, Stolte et al. 

(Stolte, et al., 2018) identify MDM2, MDM4, USP7, and PPM1D as druggable targets for 

Ewing sarcoma. They also demonstrate that ATSP-7041, a stapled peptide inhibitor of 

MDM2 and MDM4, shows anti-tumor efficacy in vitro and in mouse models. Additionally, 

P5091, a USP7 inhibitor, and GSK2830371, a Wip1/PPM1D inhibitor, decrease viability of 
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Ewing sarcoma cells, in a TP53-dependent manner (Stolte, et al., 2018). Pishas et al. (Pishas, 

et al., 2011) show that Nutlin-3a induces cell death, mainly apoptosis, in Ewing sarcoma 

cells expressing wtp53, and Nutlin-3a’s effect is synergistic with the chemotherapeutic 

agents: vincristine, actinomycin D, doxorubicin, and etoposide. Similarly, Sonnemann et al. 

(Sonnemann, et al., 2011) observe that nutlin-3a induces apoptosis and senescence with 

increased TP53 level and mRNA expression of TP53 downstream target genes in wtp53-

expressing Ewing sarcoma cells (Sonnemann, et al., 2011). Also, YK-4–279, a small 

molecule inhibitor of EWSR1–ETS’s transcriptional activity through inhibition of its 

interaction with RNA helicase A, is shown to reduce Ewing sarcoma development regardless 

of TP53 status. The effects of YK-4–279 are additive with Nutlin-3a, in vitro and in a 

xenograft zebrafish model of human Ewing sarcoma cell lines (van der Ent, et al., 2014). 

Another way to restore wtp53 activity in Ewing sarcoma is to inhibit CD99. CD99 is 

expressed in most cases of Ewing sarcoma and is required to maintain malignancy (Pasello, 

Manara, & Scotlandi, 2018, Ventura, et al., 2016). Guerzoni et al. (Guerzoni, et al., 2015) 

find that dAbd C7, a novel human monospecific bivalent single-chain fragment variable 

diabody against CD99, induces cell death in Ewing sarcoma cells, through MDM2 

degradation and TP53 reactivation; the anti-CD99 dAbd C7 shows additive effects with 

doxorubicin to suppress Ewing sarcoma malignancy.

When Ewing sarcoma expresses mutp53, APR-246 can be used to induce apoptosis by 

reactivating wtp53 activity in tumors. APR-246 is currently in early-phase clinical trials for 

Ewing sarcomas (Aryee, et al., 2013). Intriguingly, curcumin may radiosensitize TP53-

mutated Ewing sarcoma cells by upregulating p21 and Bax and downregulating BCL-XL 

and MCL1, although the mechanism behind reactivation of wtp53 from mutp53 remains 

unclear (Veeraraghavan, Natarajan, Herman, & Aravindan, 2010). Another small molecule 

TP53 reactivator, RITA/NSC652287, is shown to induce apoptosis and effectively reduce 

tumor growth of Ewing sarcoma cell lines; however, this effect of RITA is independent of 

the TP53 status. As an additional mechanism of action of RITA in Ewing sarcoma cells, 

RITA induces degradation of IGF-1R, a regulator of anchorage-independent growth, in a 

manner dependent on MDM2 (Di Conza, et al., 2012). More studies are required for 

evaluating efficacy of targeting the TP53 pathway for Ewing sarcoma therapy.

4. Chondrosarcoma

Chondrosarcoma is a heterogeneous group of bone malignancies with cartilage-forming 

tumor cells, and it is the second most common form of primary malignant bone tumor 

(Chow, 2018, M. J. Kim, Cho, Ayala, & Ro, 2011). Chondrosarcoma generally grows slowly 

and rarely metastasizes, and the prognosis of surgically resected chondrosarcoma is good 

with a ~50% 5-year survival rate (M. J. Kim, et al., 2011). However, chondrosarcoma is 

generally chemo- and radiotherapy resistant, likely due to a low percentage of dividing cells 

and poor tumor vascularization. Because surgical resection is the primary treatment for 

chondrosarcoma, more efficient treatment options for metastatic and recurrent disease are 

required (Gelderblom, et al., 2008).

Genetically, chondrosarcoma can be subtyped to chromosomal translocation-positive and 

translocation-negative types. Extraskeletal myxoid chondrosarcoma, a slow-growing, low-
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grade sarcoma with high frequency of metastases and local recurrence, has a t(9;22)

(q22;q12) translocation, creating the EWSR1-NR4A3, RBP56-NR4A3, and TCF12-NR4A3 
fusion genes, while mesenchymal chondrosarcoma, a rare, fast-growing, high-grade 

sarcoma, has a HEY1-NCOA2 fusion gene resulting from intrachromosomal rearrangement 

of 8q21.13 and 8q13.3 or a IRF2BP2-CDX1 fusion gene resulting from t(1;5)(q42;q32) 

(Chow, 2018, Nazeri, Gouran Savadkoohi, Majidzadeh, & Esmaeili, 2018, Nyquist, et al., 

2012, Panagopoulos, et al., 2002, Sandberg, 2004, Stenman, Andersson, Mandahl, Meis-

Kindblom, & Kindblom, 1995, L. Wang, et al., 2012). On the other hand, de-differentiated 

chondrosarcoma, a high grade, non-chondroid sarcoma associated with low-grade 

cartilaginous lesions, have structural aberrations in chromosomes 1 and 9, as well as 

numerical aberrations (trisomy and tetrasomy) in chromosomes 7 and 19, without having 

distinct chromosomal translocations (Bridge, Bhatia, Anderson, & Neff, 1993, Dijkhuizen, 

et al., 1994, Hameed, et al., 2009, Olsson, Paulsson, Bovee, & Nord, 2011, Sakamoto, 

2014). Also, clear cell chondrosarcoma, a rare, slow-growing low-grade sarcoma with low 

metastatic potential, does not have chromosomal translocations.

A whole-genome sequencing analysis by Tarpey et al. (Tarpey, et al., 2013) reveals that 37% 

of chondrosarcoma cases have COL2A1γ gene deletion and rearrangements, while 

mutations in IDH½ are found in 59% of cases, similar to the previous findings by Amary et 

al. (Amary, et al., 2011) and Totoki et al. (Totoki, et al., 2014). Additionally, they detect 

mutations in TP53 (20%), the RB pathway (33%), and Hedgehog signaling (18%) (Tarpey, 

et al., 2013). Mutations in TP53 and RB1 are the most common changes involved in the later 

stage of chondrosarcoma (Oshiro, et al., 1998, Samuel, Costa, & Lindskog, 2014). Also, 

deletion and silencing of p16, an upstream regulator of RB1, are implicated in de-

differentiated chondrosarcoma (Asp, et al., 2000, Sakamoto, 2014). In conventional and de-

differentiated chondrosarcoma, alterations in the TP53 gene are observed in 20–50% of 

cases, while alterations in the RB pathway are detected in 30–96% of cases, depending on 

the methods of detection (exome sequencing or IHC) (Blasenbreu, et al., 1998, Schrage, et 

al., 2009, Tarpey, et al., 2013). A higher incidence of TP53 mutation is found in atypical 

chondrosarcomas, de-differentiated types, and mesenchymal types, while overexpression 

(indicating missense mutations) or alteration in TP53 is correlated with high histologic 

grade, presence of metastasis or local recurrence, and reduced overall survival (Dobashi, et 

al., 1993, Oshiro, et al., 1998, Simms, Ordonez, Johnston, Ayala, & Czerniak, 1995, 

Wadayama, Toguchida, Yamaguchi, Sasaki, & Yamamuro, 1993). Moreover, overexpression 

of MDM2 by IHC is found in 33% of high-grade chondrosarcoma, which is positively 

correlated with histological grades (Schrage, et al., 2009). Thus, the TP53 pathway is altered 

in over half of high-grade chondrosarcomas. Furthermore, a mouse model overexpressing 

Gli2, a protein that plays a role in regulating growth plate chondrocyte differentiation, in 

combination with TP53 heterozygosity develops chondrosarcoma. This is due to additive 

effects of overexpression of Gli2 and TP53 deficiency on inhibition of apoptosis mediated 

through IGFBP3 downregulation in chondrocytes (Ho, et al., 2009, M. J. Kim, et al., 2011).

Chemotherapy is generally not effective in chondrosarcoma with the exception of 

mesenchymal chondrosarcoma (Dai, Ma, He, & Jha, 2011). As mentioned above, signaling 

pathways of IGF, Hedgehog, RB, and TP53, as well as these interactions, are implicated in 

chondrosarcoma progression, and these pathways can be potential therapeutic targets 
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(Bovee, Hogendoorn, Wunder, & Alman, 2010, Jamil, Howie, & Salter, 2010). Intriguingly, 

van Oosterwijk et al. (van Oosterwijk, et al., 2013) identify that the Src pathway is involved 

in chondrosarcoma chemoresistance. To support their finding, dasatinib, a dual BCR/ABL 

and Src family tyrosine kinase inhibitor, is shown to be effective in a phase 2 clinical study 

for multiple sarcomas, including chondrosarcoma, and significantly sensitizes 

chondrosarcoma cell lines harboring TP53 mutations to doxorubicin, (Schuetze, et al., 

2017). Appropriate TP53-tageting agents may be chosen to enhance efficacy of current 

treatment regimens for chondrosarcoma, depending on TP53 status (Polychronidou, et al., 

2017).

5. Rhabdomyosarcoma (RMS)

Rhabdomyosarcoma (RMS) is a malignant tumor most commonly found in the head & neck, 

trunk, genitourinary tract, or limbs, and accounts for about half of all childhood soft tissue 

sarcomas (Egas-Bejar & Huh, 2014). RMS is generally thought to derive from the myogenic 

progenitors of striated muscle or MSCs, with the specific cell of origin (e.g. satellite cells, 

myoblasts) determining RMS subtype and therapy (Abraham, et al., 2014, X. Sun, et al., 

2015). The main varieties of RMS are alveolar RMS (ARMS), embryonal RMS (ERMS) 

which has two histopathologic variants: spindle cell and botryoid (Esiashvili, Prabhu, Kahn, 

& Paulino, 2013), and pleomorphic RMS (PRMS) (Ruiz-Mesa, Goldberg, Coronado Munoz, 

Dumont, & Trent, 2015). The ERMS and ARMS subtypes are most common in children and 

adolescents, while adults typically develop PRMS (Egas-Bejar & Huh, 2014, Ruiz-Mesa, et 

al., 2015). Remission rates for RMS with modern therapies are now >90% in children 

without metastasis (Mazzoleni, et al., 2005); however, the 5-year survival rate for metastatic 

RMS remains less than 30%, and adult RMS also shows poor prognosis (Egas-Bejar & Huh, 

2014).

RMS can also be subtyped to chromosome translocation-positive (ARMS) and -negative 

(ERMS, PRMS) types. The majority of ARMS cases (~85%) express PAX-FKHR fusion 

proteins resulting from translocation of a PAX family member (i.e. PAX3, PAX7) located on 

chromosome 1 or 2 to the FKHR gene locus on chromosome 13 (Stegmaier, et al., 2011). 

The PAX-FKHR fusion protein in ARMS maintains myogenic lineage but inhibits terminal 

myogenic differentiation through induction of MyoD and inhibition of cell cycle arrest (Graf 

Finckenstein, Shahbazian, Davicioni, Ren, & Anderson, 2007). Normal myogenic cells also 

express the PAX/FKHR mRNA, as well as other chimeric fusion mRNAs, during normal 

myogenesis, suggesting that a portion of this population of cells may become transformed 

during this process, producing ARMS tumors (Xie, et al., 2016). ERMS tumors frequently 

display chromosomal abnormalities including aneuploidy and polyploidy, and are 

characterized by loss of heterozygosity on the short arm of chromosome 11 (Goldstein, 

Meller, Issakov, & Orr-Urtreger, 2006). Although the t(1 or 2;13) chromosome translocation 

is rare in ERMS, both PAX3 and PAX7 are frequently overexpressed in ERMS (Goldstein, 

et al., 2006). PRMS also do not normally have the PAX-FKHR fusion and can have a highly 

complex karyotype, sometimes with abnormalities in every chromosome (Goldstein, et al., 

2006). Similar to ERMS, PRMS tumors overexpress both PAX3 and FOXO1 (FKHR) 

(Goldstein, et al., 2006).

Thoenen et al. Page 12

Pharmacol Ther. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Neither ARMS nor ERMS harbors many somatic mutations or genetic alterations (Shern, et 

al., 2014), but tumors lacking the PAX-FKHR fusion protein tend to have a higher burden of 

somatic mutations in the TP53 and RB1 pathways (S. J. Xia, Pressey, & Barr, 2002). 

Interestingly, ERMS is proposed to originate at an earlier stage of myogenic development 

than ARMS (Stewart, et al., 2018). Using whole-genome and transcriptomic sequencing, 

Seki et al. (Seki, et al., 2015), further subdivide RMS to into four ARMS/ERMS subtypes 

based on somatic mutations: A1, A2, E1, and E2. While A1 and A2 show expression of 

PAX-FKHR and cell cycle regulators, the E1 and E2 subtypes contain mutations in the 

FGFR4/RAS/AKT pathways, as well as PTEN mutations (Seki, et al., 2015). E1 and E2 also 

have greater chromosomal and epigenetic aberrations evidenced by changes in allelic 

imbalance and gene copy number (Seki, et al., 2015).

Mutations in TP53 in RMS range from 0.02% to 15% (Ognjanovic, Martel, et al., 2012, 

Seki, et al., 2015, Taylor, et al., 2000), while amplification of MDM2 is detected at less than 

10% of RMS (Ognjanovic, Martel, et al., 2012, Seki, et al., 2015, Taylor, et al., 2000). 

Because ARMS rarely shows inactivation or mutations of TP53, other mechanisms may be 

responsible for reduced wtp53 activity. One such mechanism may be the overexpression of 

PAX proteins or the PAX-FHKR oncoprotein, since these proteins repress wtp53 

transcriptional activity in RMS (Stuart, Haffner, Oren, & Gruss, 1995). PAX3 specifically 

downregulates TP53 protein levels, but not transcription (Pani, Horal, & Loeken, 2002). 

Interestingly, PAX5 can directly inhibit TP53 mRNA expression by binding to the TP53 
promoter, a trait shared by PAX2 and PAX8 (Stuart, et al., 1995).

On the other hand, ERMS tissues and their derived cell lines have a relatively high frequency 

of mutations or aberrations in the TP53/MDM2 axis (Felix, et al., 1992). Specifically, Seki 

et al. (Seki, et al., 2015) reveal that the E2 subtype of ERMS has a high rate (>45%) of TP53 

mutation or copy number loss of TP53 (Seki, et al., 2015). Also, metastases of ERMS have 

high levels of TP53 expression (Leuschner, et al., 2003), and the presence of TP53 mutations 

significantly reduces survival of patients of the E1/E2 subtypes (Seki, et al., 2015). 

Intriguingly, in a kRASG12D-induced zebrafish ERMS model, deletion of TP53 enhances 

invasion and metastasis (Ignatius, et al., 2018), while expression of a dominant-negative 

mutp53 in mouse MSCs expressing PAX-FKHR fusion protein is sufficient to induce ARMS 

tumors in mice (Ren, et al., 2008). Thus, although clinical relevance of TP53 appears not to 

be robust, TP53 and its upstream regulators may contribute to malignant progression of 

RMS, in specific subtypes or cellular contexts. Additionally, DNp73, the N-terminal deleted 

dominant-negative form of a TP53 family member, is frequently overexpressed in RMS 

(>80%) and is also shown to inhibit myogenic differentiation and contribute to 

transformation of mouse myoblast cells and RMS progression in vivo (Cam, et al., 2006).

As mentioned above, prognosis of recurrent or metastatic RMS remains poor, and new 

treatment strategies should be developed (Shern, et al., 2014). CP-31398, a small molecule 

drug which enhances wtp53 activity and restores wtp53 function from mutp53, is shown to 

induce ROS-dependent cell cycle arrest and apoptosis in wtp53-carrying A204 and mutp53-

expressing ERMS cell lines to reduce their tumor growth in xenograft mouse models (Xu, et 

al., 2010). Given that ARMS and PRMS rarely have TP53 mutations, compounds that 

restore wtp53 activity would also be efficient. On the other hand, for ERMS which often 
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carries TP53 mutations, reactivating wtp53 activity from mutp53 may be an effective way to 

treat patients.

6. Leiomyosarcoma (LMS)

Leiomyosarcoma (LMS) is a soft tissue sarcoma arising from the smooth muscle cells lining 

small blood vessels (Danielson, et al., 2010, Rubio, et al., 2010). LMS most frequently 

occurs in the uterus (ULMS), but also arises in the abdomen, retroperitoneum, and large 

blood vessels (non-uterine LMS) (Beck, et al., 2010, Bleeker, Quevedo, & Folpe, 2012, X. 

Guo, et al., 2015). Although ULMS is considered distinct from non-uterine LMS, these two 

types are genetically more similar to one another than other sarcomas (Abeshouse, et al., 

2017, Miettinen & Fetsch, 2006). Individuals with LFS or the condition called hereditary 

leiomyomatosis and renal cell carcinoma (HLRCC) have a higher risk of developing LMS 

(Farid & Ngeow, 2016). Another risk factor for ULMS is tamoxifen exposure for unrelated 

conditions, such as breast cancer (Bleeker, et al., 2012). The prognosis for ULMS is worse 

than for other LMS, with a recurrence rate between 53%−71%, and the five-year overall 

survival for these patients is 15%−25% (D’Angelo & Prat, 2010). On the other hand, 39% of 

non-uterine LMS patients experience recurrence either locally or distantly, with 

retroperitoneal LMS cases having a higher recurrence rate of 51% (Gladdy, et al., 2013). The 

five-year overall survival for non-uterine LMS is 64% (Mankin, et al., 2004). The first line 

chemotherapy for LMS is presently a combination of gemcitabine and docetaxel 

(Momtahen, Curtin, & Mittal, 2016, Seddon, et al., 2017); however, a recent study suggests 

that doxorubicin may have better outcomes in combination with gemcitabine than docetaxel 

(Seddon, et al., 2017).

Unlike other sarcomas, LMS does not have a key fusion protein driving its tumorigenesis, 

although a small group of ULMS (<2.5%) is found to express an ALK fusion protein 

(KANK2-ALK, ACTG2-ALK) (Davis, et al., 2019). Rather, the general molecular 

alterations in LMS affect activities of the tumor suppressors TP53, PTEN, and/or RB1 with 

deletion of PTEN and RB1 and mutations of TP53 (Chudasama, et al., 2018, Grossmann, 

Layfield, & Randall, 2012, Gunderson, et al., 2016, Yang, et al., 2009). Cytogenetic studies 

of LMS suggest that loss of tumor suppressors can be an initiating event in LMS, while 

oncogene activation may occur at a later stage of malignant progression, because low-grade 

tumors contain more DNA copy number losses, while high-grade tumors have more copy 

number gains (Grossmann, et al., 2012). Interestingly, loss of TP53, but not RB1, is 

sufficient to transform MSCs and induce LMS formation in mice (Rubio, et al., 2010). 

Besides these tumor suppressors, LMS often has mutations in ATRX (Alpha thalassemia/

mental retardation syndrome X-linked) with a mutation rate of ~30% in ULMS (Gunderson, 

et al., 2016, Mäkinen, et al., 2016). ATRX is a SWI/SNF chromatin remodeling protein 

which acts as a tumor suppressor (Kadoch & Crabtree, 2015). ULMS also harbors mutations 

in MED12 (mediator complex subunit 12), a coactivator involved in the interaction of 

transcription factors with RNA polymerase II, at a ~20% frequency, but this does not occur 

in non-uterine LMS (Mäkinen, et al., 2016, Mäkinen, Kämpjärvi, Frizzell, Bützow, & 

Vahteristo, 2017). MED12 mutation is also common in the benign tumor leiomyoma 

(Ravegnini, et al., 2012), suggesting that ULMS harboring MED12 mutations may represent 

the small population of tumors known to originate from leiomyoma (Mäkinen, et al., 2017). 
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Intriguingly, ULMS tumors frequently have one or more hallmarks of “BRCAness”, 

enabling the use of a PARP inhibitor for ULMS treatment (Chudasama, et al., 2018, 

Seligson, et al., 2018).

TP53 is mutated in ~50% of all LMS and ~35% of ULMS (Abeshouse, et al., 2017, Gao, 

Seebacher, Hornicek, Guo, & Duan, 2018, O’neill, McBride, Connolly, & McCluggage, 

2007). LMS frequently shows gene amplifications near the gene locus of MDM2, 12q15 

(Ragazzini, et al., 2004); however, MDM2 amplification is rare in LMS (Miura, et al., 2012, 

Miyajima, et al., 2001, Yang, et al., 2009). Importantly, there is a correlation between 

abnormalities in TP53 and an advanced clinicopathological stage or poor prognosis in LMS 

(Konomoto, Fukuda, Hayashi, Kumazawa, & Tsuneyoshi, 1998, Patterson, et al., 1994), 

suggesting potential value for TP53-tageting therapies. Indeed, a mutp53 reactivator, 

PRIMA-1, is shown to reduce viability of IB134 ULMS and IB138 soft tissue LMS cell 

lines harboring TP53 mutations, while it is less effective in the wtp53-expressing IB139 

LMS cell line (Grellety, et al., 2015). Also, Gendicine, a recombinant adenoviral vector 

expressing wtp53, is clinically used in China and shows a 66.7% remission rate and a 91.7% 

responsive rate in combination with chemotherapy in ULMS (Y. Xia, Du, Wang, & Li, 2018, 

W.-W. Zhang, et al., 2018). These results support the idea that restoring wtp53 activity in 

tumors may be beneficial for LMS patients.

7. Synovial Sarcoma

Synovial sarcoma comprises up to 10% of all soft tissue sarcomas and is the second most 

common soft tissue sarcoma in patients younger than 30 years old, although the majority 

(70%) of patients are older than 30 years old (Mark D. Murphey, et al., 2006, Stacchiotti & 

Van Tine, 2017). The prognosis of synovial sarcoma is worse with increased age (Jang, et 

al., 2007, Stacchiotti & Van Tine, 2017). Tumors frequently occur in the lower half of the 

body, particularly near the knee joint, but can occur in the head and neck areas of the upper 

body (Gopalakrishnan, et al., 2017, Mark D. Murphey, et al., 2006). MSCs are thought to be 

the cell of origin for synovial sarcoma (Garcia, et al., 2012, Norifumi Naka, et al., 2010). 

Tumors have the appearance of synovial tissue, but are unrelated to the synovium, and they 

are comprised of two main cell types: epithelial cells and mesenchymal spindle cells (El 

Beaino, Araujo, Lazar, & Lin, 2017, Mark D. Murphey, et al., 2006). The presence of one or 

both of these cell types as well as the degree of cellular differentiation defines the sarcoma’s 

subtype: monophasic (mesenchymal), biphasic (epithelial and mesenchymal), and small cell 

(poorly differentiated) (El Beaino, et al., 2017). Importantly, over half (50–70%) of synovial 

sarcomas metastasize, which makes overall survival for synovial sarcoma less than 40% 

(Krieg, et al., 2011).

A recent whole-genome sequencing analysis has revealed that 95% of synovial sarcomas 

express the fusion oncoprotein SS18 (synovial sarcoma translocation, chromosome 18)-

SSX, making it a defining characteristic of synovial sarcoma (Vlenterie, et al., 2015). The 

t(X:18)(p11.2;q11.2) chromosomal translocation creates an in-frame fusion of SS18 to 

SSX1, SSX2, or SSX4, leading to generation of a SS18-SSX protein (Clark, et al., 1994, de 

Leeuw, Balemans, Weghuis, & van Kessel, 1995, Skytting, et al., 1999). Although the SS18-

SSX lacks a DNA binding domain, it interacts with other chromatin regulators, including 
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components of the SWI/SNF complex (e.g., hBRM, BRG1), to act as an oncoprotein that 

drives synovial sarcoma progression (Clark, et al., 1994, de Leeuw, et al., 1995, Skytting, et 

al., 1999). To support this, SS18-SSX proteins have been found to bind with a non-canonical 

polycomb repressive complex 1 (PRC1.1) and co-associate with SWI/SNF and KDM2B 

complexes to aberrantly regulate the expression of developmentally regulated transcription 

factors and mesenchymal differentiation genes (Banito, et al., 2018). Additionally, SS18-

SSX plays roles in activation of the WNT/β-catenin and PI3K/AKT pathways and 

stabilization of MDM2, leading to inhibition of TP53 activity (Arcy, Maruwge, Ryan, & 

Brodin, 2008, Bozzi, et al., 2008).

Synovial sarcomas do not frequently display mutations in the TP53 gene (D’Arcy, Ryan, & 

Brodin, 2009). Despite its low rate of mutations (~6%), TP53 alteration may be an effective 

prognostic indicator because tumors with missense mutations in the TP53 gene show 

significantly reduced 5-year survival when compared to non-mutated tumors (Schhneider-

stock, et al., 1999). Also, over 3-fold gene amplifications of MDM2 and MDM4 are 

observed in 33% and 44% of synovial sarcoma tissues, respectively, which has an inverse 

correlation with TP53 mutations (Ito, et al., 2011). This is supported by the finding of that 

SS18-SSX1 induces TP53 degradation by MDM2 (Arcy, et al., 2008). Thus, TP53 activity 

appears to be lowered in synovial sarcoma through MDM2/MDM4.

Presently, synovial sarcomas are mainly treated with doxorubicin, ifosfamide, and 

pazopanib, a multi-targeted tyrosine kinase inhibitor, in addition to surgical resection (In, 

Hu, & Tseng, 2017). These therapies are mainly effective to non-metastatic synovial 

sarcoma but are limited in effectiveness in tumors with metastases. Hence, the overall 10-

year survival rates are 50–60% (Lewis, et al., 2000). Obviously, new therapeutic strategies 

must be developed for metastatic synovial sarcomas. Since TP53 mutation is uncommon in 

synovial sarcoma, restoration of wtp53 activity in tumors by MDM2/MDM4 inhibitors may 

be a rational strategy for this type of sarcoma. Indeed, Nutlin-3a and MI-219, two small 

molecule inhibitors of MDM2, are shown to inhibit the growth of synovial sarcoma cells in 
vitro (Banito, et al., 2018, D’Arcy, et al., 2009, Wade, Li, & Wahl, 2013).

8. Liposarcoma (LPS)

Liposarcoma (LPS) is the most common adult soft tissue sarcoma and represents ~25% of 

all soft tissue sarcomas. It is a tumor derived from the mesenchymal adipogenic lineage, and 

most commonly arises in the limbs, retroperitoneum, and the paratesticular areas of the body 

(Brill, et al., 2010, Bui, et al., 2011, Peng, et al., 2011). LPS is often confused for a benign 

tumor (L. G. Dodd, 2012), posing a threat for patient care. There are four key subtypes of 

LPS which have been identified based on cytogenetic features: myxoid/round cell LPS, 

pleomorphic LPS, well-differentiated LPS, and de-differentiated LPS (Bui, et al., 2011, 

Genadry, Pietrobono, Rota, & Linardic, 2018). The subtypes can be distinguished by the 

presence of the FUS-CHOP fusion oncoprotein (myxoid/round cell LPS), MDM2 

overexpression (well-differentiated, and de-differentiated LPS), and chromosomal 

abnormalities (pleomorphic LPS) (L. G. Dodd, 2012). LPS has about a 20% rate of 

recurrence overall, with de-differentiated LPS showing a higher local recurrence rate of 

37.6% (Vos, et al., 2018). Distant metastasis occurs in ~20% of all LPS, while in the 
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pleomorphic subtype metastasis occurs in ~45% of tumors (Vos, et al., 2018). Although LPS 

has a relatively good prognosis overall with a five-year overall survival rate of ~80%, de-

differentiated and pleomorphic LPS show significantly worse prognosis with overall 5-year 

survival rates at ~40% (Ng, Scharschmidt, Mayerson, & Fisher, 2013, Vos, et al., 2018). 

Pleomorphic LPS also tends to have highly variable karyotypes (Mandahl, et al., 2017).

A chromosomal translocation t(12;16)(q13;p11) results in the creation of a fusion 

oncoprotein, FUS-CHOP (also referred to as TLS-CHOP), which is present in myxoid/round 

cell LPS but not in other types (Rodriguez, et al., 2011, Tornin, et al., 2018). In rare cases, 

t(12;22)(q13;q12) translocation creates the EWS-CHOP fusion protein (Rodriguez, et al., 

2011). FUS is an RNA-binding protein involved in regulation of gene expression, genomic 

integrity, and mRNA/microRNA processing, while CHOP is an ER-stress response 

transcription factor (Nishitoh, 2011). Overexpression of FUS-CHOP in the mouse genome 

under the human EF1α promoter is shown to induce LPS in 100% of mice (Pérez-Losada, et 

al., 2000). LPS tumors developed in FUS-CHOP transgenic mice express high levels of the 

adipocyte regulatory protein PPARγ (Pérez-Losada, et al., 2000). FUS-CHOP–

overexpressing primary mesenchymal progenitor cells (MPC) also form tumors resembling 

human myxoid LPS (Riggi, et al., 2006). Transcription profile analysis of these tumors and 

non-xenografted MPCs expressing FUS-CHOP reveals repression of CTGF, PERP, and 

TFPI, as well as induction of growth factors (PDGFA, HGF), cytokines (IL6), growth factor 

receptors (MET), cell cycle regulators (CDK4, MDM2), proteolytic enzymes (MMP-11, 

CTSD, PLAT), and adipocyte differentiation-associated factors, (ADFP, FASN, HMGCR, 

RGS2) (Riggi, et al., 2006). Moreover, the FUS-CHOP fusion protein enhances invasiveness 

of LPS cells by activating the SRC/FAK/RHO/ROCK pathway, and enhances metastatic 

potential of LPS cells by transcriptionally upregulating MMP2 proteases (Patil, et al., 2014, 

Tornin, et al., 2018).

Intriguingly, supernumerary ring chromosomes and giant rod marker chromosomes are 

observed in myxoid/round cell, well-differentiated, and de-differentiated LPS (Laroche-

Clary, et al., 2017, Macchia, et al., 2018, Mandahl, et al., 2017, Pedeutour, et al., 1999). 

These supernumerary chromosomes frequently amplify the CDK4, HMGA2, and MDM2 
genes from chromosome 12q (Mandahl, et al., 2017, Pedeutour, et al., 1999, Szymanska, et 

al., 1996). Also, well-differentiated and de-differentiated LPSs carry neochromosomes due 

to amplifications and rearrangements of chromosome 12q encoding oncogenes (MDM2, 
CDK4, YEATS2) and adipocytic differentiation factors (HMGA2, CPM) (Beird, et al., 

2018). A recent study with exome and RNA sequencing analyses using 17 patients with both 

well-differentiated and de-differentiated LPSs reveals that the two subtypes share only 8.3% 

of their somatic mutations between matched tumors, suggesting the possibility that these 

tumors arise from a common origin and diverge at an early stage of tumor development 

(Beird, et al., 2018). Moreover, de-differentiated tumors show greater genomic instability 

attributed to an early clonal divergence from well-differentiated LPS tumors (Beird, et al., 

2018).

An earlier study by Barretina et al. (Barretina, et al., 2010) identify mutations in TP53 and 

NF1, as well as PIK3CA mutations in myxoid/round-cell LPSs. To support their finding, 

SNP arrays, whole exome sequencing, and targeted exome sequencing by Kanojia et al. 
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(Kanojia, et al., 2015) identify carboxypeptidase M (CPM), which cleaves C-terminal 

arginine or lysine residues from polypeptides, as an oncogene which is involved in the 

EGFR pathway and is recurrently amplified in well-differentiated and de-differentiated LPS. 

They also report FGFR1 amplification at chromosome 8p11.23, classical CDK4, HMGA2, 

and MDM2 amplification at the chromosome 12q13–15 region, and deletion of TP53BP1 at 

chromosome 15q15 in de-differentiated LPS. Moreover, their functional analyses reveal the 

tumor suppressive role of neurofibromin 1 (NF1), which negatively regulates RAS through 

hydrolysis of RAS-GTP, in LPS, irrespective of subtype (Kanojia, et al., 2015).

Mutations in TP53 are not usually high in LPS (10–20%), except for pleomorphic LPS in 

which ~60% of cases show TP53 mutations. This is likely because the MDM2 gene is 

amplified in the majority of well-differentiated and de-differentiated LPSs, leading to 

functional inactivation of TP53 without mutations (Abeshouse, et al., 2017, Barretina, et al., 

2010, Ghadimi, et al., 2011, Kawai, et al., 1994, Nakayama, et al., 1995, Taubert, et al., 

1998). However, mutations in TP53 are associated with proliferation, tumor aggressiveness, 

reduced patient survival, and advanced disease in LPS (Antonescu, et al., 2001, Kawai, et 

al., 1994, Schneider-Stock, et al., 1999). Moreover, subcutaneous transplantation of mouse 

adipose-derived mesenchymal stem/stromal cells (ASCs) expressing FUS-CHOP results in 

formation of LPS-like tumors only when cells are null for TP53, although this is not 

observed in human ASCs (Rodriguez, et al., 2011). Since TP53-null mouse ASCs develop 

LMS, these data may indicate that FUS-CHOP predisposes TP53-null mouse ASCs to 

adipogenic differentiation (Rodriguez, et al., 2011). To support this finding, Charytonowicz 

et al. (Charytonowicz, et al., 2012) generate a mouse model expressing FUS-CHOP 
specifically in mesoderm tissues. Although the FUS-CHOP transgenic mice are not tumor-

prone, mice show development of sarcoma resembling myxoid/round cell LPS upon deletion 

of the TP53 allele(s). Clinically, TP53 mutations are detected in 15–30% of cases of human 

myxoid/round cell LPS and are correlated with unfavorable outcomes (Antonescu, et al., 

2001, Dei Tos, et al., 1997, Schneider-Stock, et al., 1999). Thus, FUS-CHOP and TP53 loss 

may have cooperative effects on myxoid round cell LPS progression.

Chemotherapeutic drugs for primary and metastatic LPS include doxorubicin and ifosfamide 

in the first-line setting, and other drugs including docetaxel and gemcitabine are also used 

(Kollár & Benson, 2014). However, due to high frequency of MDM2 amplification and low 

frequency of TP53 mutations in LPS, especially in well-differentiated and de-differentiated 

LPS, use of MDM2 antagonists to restore TP53 activity (e.g., Nutlin-3a, RG7112, 

SAR405838) can be a major therapeutic strategy (Ray-Coquard, et al., 2012). Nutlin-3a has 

been extensively studied in multiple cancers, including in MDM2-amplified LPS cells, to 

restore wtp53 activity and induce apoptosis (Muller, et al., 2007). A Nutlin-3a analog, 

RG7112, has been clinically tested for the treatment of patients with well-differentiated or 

de-differentiated LPS (Obrador-Hevia, et al., 2015, Ray-Coquard, et al., 2012). Although 

RG7112 stabilizes disease progression in many cases, it has significant adverse effects 

including neutropenia and thrombocytopenia, in as many as 40% of patients (Ray-Coquard, 

et al., 2012). SAR405838 is also shown to inhibit de-differentiated LPS progression in in 
vitro and in vivo mouse models; it induces stabilization of TP53, upregulation of TP53 

targets, and induction of apoptosis in de-differentiated LPS, which has enabled this drug to 

enter early-phase clinical trials for multiple malignancies (Bill, et al., 2016). As stated 
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above, TP53 mutation status is correlated with recurrence, metastasis, and advanced stage of 

LPS (Antonescu, et al., 2001, Kawai, et al., 1994, McGovern, Zhou, & Jones, 2017, 

Schneider-Stock, et al., 1999). Hence, mutp53-targeted therapies may be efficacious for 

these aggressive LPS, which should be tested clinically in the future.

9. Angiosarcoma

Angiosarcomas are malignant endothelial-cell tumors originating from vascular or lymphatic 

tissues (Young, Brown, Reed, Hughes, & Woll, 2010). Angiosarcomas can occur 

spontaneously or secondarily to ionizing radiation or chronic lymphedema; they are 

subdivided into cutaneous, lymphoedema-associated, radiation-induced, primary-breast, and 

soft-tissue types (Behjati, et al., 2014, Young, et al., 2010). Surgical resection followed by 

high-dose radiotherapy, is the standard of care. However, recurrence is frequent, and most 

patients ultimately develop metastases, leading to poor prognosis (Florou & Wilky, 2018). 

Tyrosine kinase inhibitors and vascular-targeted therapies can be efficacious, but some 

patients still develop drug resistance (Florou & Wilky, 2018, Spiker & Ramsey, 2018, 

Young, et al., 2010). Better understanding of the molecular mechanisms of angiosarcoma 

malignancy is essential for discovery of new treatments and improvement of current 

therapeutic regimens.

Analyses of whole-genome, exome, and targeted sequencing with primary and secondary 

angiosarcomas have provided useful information in determining the potential causes of 

tumorigenesis. Behjati et al. (Behjati, et al., 2014) identify recurrent mutations of 

angiogenesis-related genes, PTPRB (receptor-type tyrosine-protein phosphatase β) and 

PLCG1 (phospholipase C, γ1) in angiosarcomas. The PTPRB gene has predominantly 

truncating mutations in 26% of tumors, with an activating R707Q missense mutation in 9% 

of cases (Behjati, et al., 2014). Also, Murali et al. (Murali, et al., 2015) report that more than 

50% of angiosarcomas carry some genetic alterations impacting the MAPK pathway. These 

include mutations in KRAS, HRAS, NRAS, BRAF, MAPK1, and NF1, as well as 

amplifications in MAPK1/CRKL, CRAF, or BRAF. Moreover, the most frequently detected 

genetic aberrations are mutations in TP53 (35%) and losses of CDKN2A (26%). MYC 
amplifications are detected in the majority (88%) of radiation-induced angiosarcomas, which 

is mutually exclusive of alterations in TP53 and CDKN2A. Additionally, FLT4 
amplifications and mutations or rearrangements of PTPRB, PLCG1, CIC, FLT4, and KDR 
genes are detected in angiosarcomas (S. C. Huang, et al., 2016). Thus, whole-genome 

sequencing analyses further confirm the molecular heterogeneity of angiosarcomas.

The involvement of TP53 in angiosarcomas is also shown by Naka et al (N. Naka, et al., 

1997), where frequency of TP53 mutations is dependent on the site of tumors with an overall 

occurrence of ~50%. In addition to TP53 mutations, upregulation of MDM2 is reported in 

two-thirds of angiosarcoma cases (Zietz, et al., 1998). Intriguingly, increased VEGF levels 

are observed in ~80% of cases, which is correlated with increased protein levels of TP53 and 

MDM2 (Zietz, et al., 1998). The involvement of TP53 in angiosarcoma is also shown by 

mouse studies showing occurrence of angiosarcoma in TP53 knockout mice (Landuzzi, et 

al., 2014, Lang, et al., 2004). Specifically, over 65% of alymphocytic TP53 knockout mice 

(Rag2−/−;II2rg−/−;TP53−/−, referred to as RGKO-TP53−/−) spontaneously develop 
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hemangiosarcoma (Landuzzi, et al., 2014). Furthermore, Li et al. (Q. Li, et al., 2014) 

observe that ~34% of mice carrying hypomorphic TP53 alleles with overexpression of 

MDM2 (MDM2Tg TP53Neo/Neo) spontaneously develop angiosarcoma. Moreover, cre-

mediated restoration of wtp53 expression in angiosarcoma developed in MDM2Tg 

TP53Neo/Neo mice results in inhibition of tumor growth in a syngeneic transplant model, 

suggesting that TP53 restoration is a potential therapeutic strategy for angiosarcomas (Q. Li, 

et al., 2014). Considering the high frequency of TP53 mutations in angiosarcoma, TP53-

targeted therapies may be an option for anti-angiosarcoma treatment. Meanwhile, continuous 

efforts to understand the genetic heterogeneity of angiosarcomas and the identification of 

molecular targets for each subtype of angiosarcoma are necessary to determine the best 

therapy for each subtype (Florou & Wilky, 2018). (Mehren & Joensuu, 2018)

10. Undifferentiated Pleomorphic Sarcoma (UPS)

Undifferentiated pleomorphic sarcoma (UPS) is an aggressive bone and soft tissue sarcoma, 

originally called malignant fibrous histiocytoma and later reclassified as UPS in 2002 by the 

World Health Organization (WHO) (Matushansky, et al., 2009, M. D. Murphey, 2007). UPS 

is categorized to four subtypes based on the histology: storiform-pleomorphic, myxoid, giant 

cell, and inflammatory types. The storiform-pleomorphic type is the most common (~70%), 

followed by the myxoid variant (~20%), while giant cell and inflammatory types are rare. Of 

these subtypes, the myxoid variant is the least aggressive and has the best prognosis. Most 

patients are between 50 and 70 years old, and the most common tumor location is the lower 

extremities (Dei Tos, 2006, M. D. Murphey, 2007).

Due to clinical and genetic heterogeneity, few studies have analyzed the molecular profiles 

of UPS (R. D. Dodd, 2016). Conventional comparative genomic hybridization (CGH) and 

gene expression profiling analyses reveal similarity between UPS and LMS including loss of 

13q14–21 as the most common deletion and alterations of the RB and TP53 pathways 

(Carneiro, et al., 2009). Using Ptch1, TP53 and/or RB1 conditional knockout mouse models, 

Rubin et al. (Rubin, et al., 2011) show that ERMS and UPS are a continuum of 

myodifferentiation, with satellite cells giving rise to UPS. Also, loss of RB1, but not TP53, 

promotes undifferentiated phenotypes to mimic UPS (Rubin, et al., 2011). However, recent 

multi-platform molecular landscape analyses using human soft tissue sarcomas identify 

molecular similarity between UPS and myxofibrosarcoma and suggest the involvement of 

the Hippo pathway in UPS pathogenesis (Cancer Genome Atlas Research Network. 

Electronic address & Cancer Genome Atlas Research, 2017). Moreover, some previously 

diagnosed peripheral UPSs, which do not have characteristics of well-differentiated LPS but 

have MDM2 gene amplifications, later turned out to be de-differentiated LPS (Le Guellec, et 

al., 2014). Overall, due to complex molecular heterogeneity and difficulty of diagnosis, the 

genetic and molecular profiling of UPS remains unclear. Nonetheless, Serrano et al. 

(Serrano, et al., 2016) recently show that the RAS/MAPK and PI3K/mTOR pathways are 

activated in the majority of cases of UPS, while activation of the RAS/MAPK pathway is 

correlated with an increased risk of disease recurrence and impaired overall survival (R. D. 

Dodd, 2016).
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Regarding the involvement of TP53 in UPS, a study using a large series of 143 soft tissue 

sarcomas identifies genomic deletion of the TP53 locus in 18.4% of tumors and TP53 
mutations in 32% (Perot, et al., 2010). Intriguingly, most UPS (87.2%) retain one wild-type 

TP53 allele. Furthermore, most tumors which do not have TP53 alterations show deletion or 

silencing of the p14ARF gene, a negative regulator of MDM2 (Perot, et al., 2010). These 

results suggest that the p14ARF-MDM2-p53 pathway plays crucial roles in UPS 

pathogenesis. Hence, restoring wtp53 activity may be one option for treating UPS.

11. Conclusions and future perspectives

In this review we have summarized the role of TP53 in bone and soft tissue sarcomas with 

emphasis on TP53 and mutations/deletions in TP53 as therapeutic targets. Alterations to 

TP53 or other genes in the TP53 pathway often occur in sarcomas. Notably, over 70% of 

osteosarcoma has structural variants or mutations in the TP53 gene, Ewing sarcoma is rarely 

mutated for TP53 due to EWS-FLI1’s inhibitory effect on TP53, non-uterine LMS has a 

high rate (~50%) of TP53 mutation, and well- and de-differentiated LPSs are defined by 

amplification of MDM2. Evolving new technologies, including next generation sequencing, 

would enable identification of novel therapeutic targets, some of which may directly or 

indirectly alter TP53 activity. While current TP53-targeted therapies have some drawbacks 

in a clinical setting, including bone marrow suppression and other side effects, improved 

TP53-targeted therapies to restore wtp53 activity, reactivate wtp53 activity from mutp53, 

deplete mutp53, and target vulnerabilities in TP53-mutated/deleted cells may prove effective 

in therapy-resistant bone and soft tissue sarcomas in the near future.
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Abbreviations

TP53 tumor protein p53

MDM2 mouse double minute 2

MDM4 mouse double minute 4

IHC immunohistochemistry

RMS rhabdomyosarcoma

ERMS embryonic rhabdomyosarcoma

ARMS alveolar rhabdomyosarcoma

PRMS pleomorphic rhabdomyosarcoma

LPS liposarcoma
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LMS leiomyosarcoma

ULMS uterine leiomyosarcoma

ASCs adipose-derived mesenchymal stem/stromal cells

LFS Li-Fraumeni Syndrome

LOF loss of function

GOF gain of function

PDB Paget’s disease of bone

MSC mesenchymal stem cell
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Table 1.

Strategy targeting TP53

TP53 status Targeting Strategy

Wild-type TP53 (reduced 
activity)

Restoration of wild-type TP53 activity
MDM2 antagonists (e.g., Nutlin-3a, RG7112, RG7388), MDM4 inhibitors, MDM2/4 dual inhibitors, RITA

TP53-null Target vulnerabilities in cells lacking wild-type TP53 activity
Inhibitors for wee1 kinase, Chk1, and polo-like kinase 1

Mutant TP53 Target vulnerabilities in cells lacking wild-type TP53 activity
Inhibitors for wee1 kinase, Chk1, and polo-like kinase 1
Reactivation of wild-type TP53 activity from mutant TP53
e.g. PRIMA-1, PRIMA-1Met, CP-31398, STIMA-1, Stictic acid
Mutant TP53 depletion
Statins, HSP90 inhibitors
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Table 2.

TP53 mutation rate in sarcomas and suitable targeting strategies

Sarcoma Overall 
TP53 
mutation 
rate

Notable TP53/MDM2 alterations Suitable TP53 targeting strategies

Osteosarcoma ~80% 1) TP53 intron 1 rearrangements, 2) 
MDM2/MDM4 gene amplification

1) MDM2/MDM4 antagonists to restore wild-type 
TP53 activity, 2) Targeting vulnerability imposed by 
TP53 deletion/mutations

Ewing sarcoma ~10% 1) Inhibition of wild type TP53 by EWS-
FLI fusion protein

1) Restoring wild-type TP53 activity

Chondrosarcoma ~20% 1) MDM2 gene amplification, 2) 
Alterations in the TP53 pathway in >50% 
of cases

1) Restoring wild-type TP53 activity by MDM2 
antagonists, 2) Targeting vulnerabilities imposed 
byTP53 deletion/mutations

Rhabdomyosarcoma < 15%
1) Reduced wild-type TP53 activity and 
expression by PAX-FHKR and PAX 
proteins, 2) TP53 deletions/mutations in 
E2 subtype of ERMS

1) Restoring wild-type TP53 activity, 2) Targeting 
vulnerabilities imposed by TP53 deletion/mutations, 
reactivating wild-type TP53 deletions/mutations in 
activity from mutant TP53, or depleting mutant TP53 
(ERMS)

Leiomyosarcoma ~50% 1) TP53 missense mutations 1) Targeting vulnerabilities imposed by TP53 
mutations, reactivating wild-type TP53 activity from 
mutant TP53, or depleting mutant TP53

Synovial sarcoma ~5% 1) Inhibition of wild-type TP53 by SS18-
SSX and MDM2/MDM4 gene 
amplification

1) Restoring wild-type TP53 activity by MDM2/
MDM4 antagonists

Liposarcoma 10–20% 1) MDM2 gene amplification, 2) TP53 
missense mutations in pleomorphic LPS

1) Restoring wild-type TP53 activity by MDM2 
antagonists, 2) Targeting vulnerabilities imposed by 
TP53 deletion/mutations, reactivating wild-type TP53 
activity from mutant TP53, or depleting mutant TP53 
(Pleomorphic LPS)

Angiosarcoma < 50% 1) TP53 missense mutations, 2) MDM2 
upregulation

1) Targeting vulnerabilities imposed by TP53 deletion/
mutations, reactivating wild-type TP53 activity from 
mutant TP53, or depleting mutant TP53, 2) Restoring 
wild-type TP53 activity by MDM2 antagonists

Undifferentiated 
pleomorphic sarcoma

~30% 1) Retaining one wild-type TP53 allele in 
> 85% or p14ARF deletion/silencing, 2) 
TP53 missense mutations

1) Restoring wild-type TP53 activity by MDM2 
antagonists, 2) Targeting vulnerabilities imposed by 
TP53 deletion/mutations, reactivating wild-type TP53 
activity from mutant TP53, or depleting mutant TP53
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