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Abstract
Background  Vancomycin therapeutic drug monitoring (TDM) is based on achieving 24-h area under the concentration–time 
curve to minimum inhibitory concentration cure breakpoints (AUC​24/MIC). Approaches to vancomycin TDM vary, with no 
head-to-head randomized controlled trial (RCT) comparisons to date.
Objectives  We aimed to compare clinical and pharmacokinetic outcomes between peak–trough-based and trough-only-based 
vancomycin TDM approaches and to determine the relationship between vancomycin AUC​24/MIC and cure rates.
Methods  A multicentered pragmatic parallel-group RCT was conducted in Hamad Medical Corporation hospitals in Qatar. 
Adult non-dialysis patients initiated on vancomycin were randomized to peak–trough-based or trough-only-based vancomycin 
TDM. Primary endpoints included vancomycin AUC​24/MIC ratio breakpoint for cure and clinical effectiveness (therapeutic 
cure vs therapeutic failure). Descriptive, inferential, and classification and regression tree (CART) statistical analyses were 
applied. NONMEM.v.7.3 was used to conduct population pharmacokinetic analyses and AUC​24 calculations.
Results  Sixty-five patients were enrolled [trough-only-based-TDM (n = 35) and peak–trough-based-TDM (n = 30)]. Peak–
trough-based TDM was significantly associated with higher therapeutic cure rates compared to trough-only-based TDM 
[76.7% vs 48.6%; p value = 0.02]. No statistically significant differences were observed for all-cause mortality, neutropenia, 
or nephrotoxicity between the two groups. Compared to trough-only-based TDM, peak–trough-based TDM was associated 
with less vancomycin total daily doses by 12.05 mg/kg/day (p value = 0.027). CART identified creatinine clearance (CLCR), 
AUC​24/MIC, and TDM approach as significant determinants of therapeutic outcomes. All patients [n = 19,100%] with 
CLCR ≤ 7.85 L/h, AUC​24/MIC ≤ 1256, who received peak–trough-based TDM achieved therapeutic cure. AUC​24/MIC > 565 
was identified to be correlated with cure in trough-only-based TDM recipients [n = 11,84.6%]. No minimum AUC​24/MIC 
breakpoint was detected by CART in the peak–trough-based group.
Conclusion  Maintenance of target vancomycin exposures and implementation of peak–trough-based vancomycin TDM may 
improve vancomycin-associated cure rates. Larger scale RCTs are warranted to confirm these findings.
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Key points 

Compared to trough-based vancomycin TDM, peak–
trough-based vancomycin TDM was associated with a 
higher clinical success rate and less vancomycin dose 
requirements.

Maintaining AUC​24/MIC between 565 and 1256 has 
been associated with cure.

1  Introduction

Therapeutic drug monitoring (TDM) of vancomycin is 
essential in ensuring the attainment of positive clinical out-
comes and minimizing toxicity [1]. Vancomycin clinical 
pharmacokinetic parameters exhibit large inter-individual 
variability even with identical dosing regimens [2]. Tradi-
tionally, steady-state vancomycin peak (Cmax,ss) and trough 
(Ctrough,ss) concentrations were measured for vancomycin 
TDM. In 2009, a paradigm shift in clinical vancomycin 
dosing and monitoring practices emerged, following the 
release of a consensus guideline jointly by the American 
Society of Health-System Pharmacists (ASHP), the Soci-
ety of Infectious Diseases Pharmacists, and the Infectious 
Disease Society of America (IDSA) [3]. Based on limited 
clinical data and animal studies, vancomycin was considered 
‘concentration-independent’ and thus Cmax,ss monitoring was 
no longer recommended. Additionally, a 24-h area under 
the concentration–time curve (AUC​24) to minimum inhibi-
tory concentration (MIC) ratio (AUC​24/MIC) of ≥ 400 was 
defined as the target surrogate to attain clinical effective-
ness. These guidelines recommended Ctrough,ss monitoring 
as a surrogate for achieving AUC​24/MIC ≥ 400 with a value 
of 15–20 mg/L as an acceptable therapeutic range.

Published evidence after 2009 called into question the 
recommended target ratio (AUC​24/MIC ≥ 400) [4], as dif-
ferent AUC/MIC ratios have been found to achieve clini-
cal effectiveness [5–7]. This reported variability in AUC/
MIC breakpoints may be attributed to the genetic variabil-
ity between methicillin-resistant Staphylococcus aureus 
(MRSA) strains across different geographical areas [8–18], 
the differences in MRSA site of infection, and the vari-
ability of the populations studied in terms of comorbidi-
ties and ethnicities [19]. Hence, the generalizability of the 
published literature remains limited to different disease 
states, geographical regions, and populations. Further-
more, recent studies questioned the use of Ctrough,ss as an 
indicator of AUC​24/MIC optimal exposure, as discrepancies 
between optimal AUC​24 exposures and the associated trough 

concentrations have been reported [2, 20–24]. The superior 
clinical utility of multiple-concentration-based vancomycin 
dosing approaches compared to trough-only guided dos-
ing has been suggested [21–23]. One of those approaches 
is peak–trough-based pharmacokinetic dosing [20, 23, 25]. 
Collectively, these studies raised concerns regarding the 
optimal vancomycin AUC​24/MIC breakpoint for cure, and 
the best vancomycin TDM approach that would result in the 
attainment of the optimal AUC​24/MIC ratio associated with 
clinical effectiveness.

The use of vancomycin in the treatment of serious Gram-
positive infections has become very challenging in Asia, 
including the Middle East and North Africa (MENA) region 
[16, 26, 27]. A meta-analysis of 91 studies exploring the 
epidemiology of vancomycin intermediate-resistant S.aureus 
(VISA) strains during 1997 and 2014, reported higher VISA 
incidence rates in Asia, including MENA, compared to other 
regions [26]. Given that suboptimal antimicrobial therapy 
of MRSA contributes to the emergence of resistant strains 
[27], these findings highlight the potentially high prevalence 
of inadequate vancomycin treatment in MENA. This can 
be attributed to non-adherence to clinical practice guide-
lines or the limited generalizability of vancomycin AUC​24/
MIC targets reported elsewhere. Genetic and epidemiologic 
diversity between MRSA clones across various geographi-
cal regions and time-points have been reported worldwide, 
including MENA [12–18]. However, the currently applied 
vancomycin dosing nomograms in the MENA region are 
based on published Western vancomycin pharmacoki-
netic–pharmacodynamic targets, due to the lack of studies 
reporting MENA-specific targets. Expatriates from differ-
ent MENA and Asian countries constitute the majority of 
Qatar’s population, with nationals reported to be < 15% 
[28, 29]. Therefore, we aimed to explore MENA-specific 
pharmacokinetic–pharmacodynamic vancomycin targets to 
understand the reasons for vancomycin treatment failures in 
the MENA region.

Although the 2009 consensus guidelines recommend 
trough-only monitoring [3], to the best of our knowledge, 
no prospective randomized controlled trials (RCTs) have 
been conducted to compare the clinical and pharmacoki-
netic outcomes between the traditional peak–trough-based 
and the trough-only-based vancomycin TDM approaches. 
Additionally, the vancomycin AUC​24/MIC cure breakpoint 
in MENA-specific populations and bacterial strains has not 
yet been studied. Therefore, this prospective parallel-group 
pragmatic multicenter RCT was conducted to compare the 
clinical and pharmacokinetic outcomes of peak–trough-
based and trough-only-based vancomycin TDM approaches 
and to evaluate the relationship between vancomycin AUC​
24/MIC ratios and cure in the MENA population.
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2 � Methods

2.1 � Study Design and Setting

A multicenter pragmatic two parallel-group RCT was con-
ducted in three tertiary care hospitals under Hamad Medical 
Corporation (HMC) in Qatar—Al-Wakrah Hospital (AWH), 
Al-Khor Hospital (AKH), and Hamad General Hospital 
(HGH).

2.2 � Study Population and Sample Size Calculation

Inclusion criteria included hospitalized adults (≥18 years) 
with suspected/confirmed staphylococcal or other Gram-
positive infection requiring treatment with vancomycin for 
at least 3 days based on the attending physician’s judgment. 
Exclusion criteria included renal instability [abrupt abso-
lute increase in serum creatinine (SCr) ≥ 0.5 mg/dL from 
baseline or a percentage increase in SCr ≥ 50% within 48 h]; 
end-stage renal disease; transplant; immunosuppression; 
active malignancy; receiving antineoplastic agents; HIV or 
absolute neutrophil counts < 1000 cells/mm3; vancomycin 
allergy; history of recurrent resistant peritonitis; administra-
tion of < 4 doses of vancomycin or for < 72 h; vancomy-
cin administration for post-surgical infection prophylaxis; 
pregnancy; subjects not able to undergo blood sampling per 
clinician judgment; anuria (urine output < 100 mL/day); 
symptomatic anemia; and hemoglobin < 8 g/dL.

Sample size was calculated a priori to be 120 subjects 
(60 subjects per arm) [30]. The primary endpoint used for 
sample size calculation was clinical effectiveness (thera-
peutic cure). Based on the meta-analysis of Ye et al., we 
assumed 85% cure rates in the peak–trough-based vancomy-
cin TDM arm versus 60% cure rates in the control arm [31]. 
An attrition rate of 20%, a significance level of 5%, and a 
power of 80% were considered in the a priori power analysis 
[30]. Given the unexpectedly slow recruitment rate, interim 
analysis was conducted at 7 months. Statistically significant 
differences in the primary study outcome of clinical effec-
tiveness were achieved. Thus, the study was ended after the 
enrollment of 65 subjects since a significant difference was 
detected in the primary study outcome.

2.3 � Randomization and Blinding

Participants who provided informed consent and fulfilled 
the eligibility criteria were randomly assigned to one of the 
two study groups—(1) peak–trough (intervention) group or 
(2) trough-only (control) group. An allocation ratio of 1:1 
was applied using a computer-generated list of random num-
bers. Due to the pragmatic nature of this trial, blinding was 
not possible since the treating clinical team needed to apply 

the dose change recommendations after justification. Thus, 
the method used for dose adjustment was revealed as part 
of justification, when requested by the attending physician.

2.4 � Study Interventions

All subjects were initiated on vancomycin initial/empiric 
doses by the attending physician prior to enrollment in the 
study [3, 32–35]. Initiation or discontinuation of vancomy-
cin treatment was the sole decision of the treating primary 
team and was not influenced by the study investigators. This 
trial was pragmatic in nature; thus, subjects were treated as 
part of routine care. No co-medications, medical procedures, 
dietary restrictions or restrictions to participation in other 
concurrent research were applied.

In the two study arms, target Ctrough,ss was as per the rec-
ommendations of the HMC institutional guidelines and the 
clinical practice guidelines: > 10 mg/L for less serious infec-
tions such as skin and soft tissue infections (SSTIs); and 
15–20 mg/L for complicated infections such as bacteremia, 
infective endocarditis, osteomyelitis, meningitis, hospital-
acquired pneumonia, and serious SSTI (e.g., necrotizing fas-
ciitis) caused by S. aureus [3]. Creatinine clearance (CLCR) 
was calculated using the Cockcroft–Gault equation [36]. In 
patients with declined renal function or at risk of nephro-
toxicity, the lower end Ctrough,ss targets were used. In the 
intervention arm, target Cmax,ss was 20–40 mg/L [1], strati-
fied according to the patient’s renal function. In patients with 
normal CLCR, Cmax,ss ≥ 30–35 mg/L was targeted. Otherwise, 
a lower Cmax,ss was used, considering clinical judgment and 
dosing feasibility. This range was used with the objective 
of sufficient infected tissue penetration while preventing 
adverse drug reactions (ADRs), by accounting for possible 
declined renal function and other nephrotoxicity risk fac-
tors [1].

2.4.1 � Blood Specimen Collection for Initial Vancomycin 
Concentrations

In both study arms, five initial vancomycin blood samples 
were collected through venipuncture. Routine vancomycin 
trough concentrations were collected 30 min before the 
fourth dose (Ctrough,ss1). For the study purpose, four van-
comycin blood samples (10 mL of blood for each) were 
obtained at 1–2 h post fourth dose infusion (Cmax,ss), 30 min 
before the fifth dose (Ctrough,ss2), and two concentrations in 
between the peak and trough concentrations (C1, C2) after 
the fourth dose (i.e., at steady state). For instance, if the 
patient was receiving a 12-hourly vancomycin regimen, C1 
and C2 were drawn at 4 h and 8 h post fourth dose infusion. 
On the other hand, if the patient was taking an 8-hourly 
regimen, C1 and C2 were drawn at 4 h and 6 h post fourth 
dose infusion.



642	 F. K. Al‑Sulaiti et al.

2.4.2 � Biochemistry and Microbiology Specimen Analysis

Vancomycin blood specimens were collected and analyzed 
at HMC biochemistry laboratories using particle-enhanced 
turbidimetric inhibition immunoassay (PETINA) [37]. Speci-
mens from HGH and AKH were analyzed using the Architect 
c16000 (Abbott, USA) analyzer [38], while specimens from 
AWH were analyzed using the UniCel® DxC 600 (Beckman 
Coulter, USA) analyzer [39]. To determine vancomycin sus-
ceptibilities, microbiology cultures were processed using the 
broth microdilution test technique (BD Phoenix AP, USA) 
[40, 41]. Our institution uses the vancomycin MRSA sus-
ceptibly breakpoint (≤ 2 mg/L) set out by the Clinical and 
Laboratory Standards Institute (CLSI). For definitive sensi-
tive cultures, the institutional laboratories reported MICs as 
‘< 1 mg/L’ or ‘= 1 mg/L’. A survey of institutional vanco-
mycin MIC of sensitive MRSA isolates collected between 
April 2015 and January 2016 showed that the MICs for most 
cultures were reported as 1 mg/L. Thus, we assumed an MIC 
of 1 mg/L for all specimens in this study.

2.4.3 � Trough‑Only‑Based Vancomycin Dosing Adjustment

In the control arm, only trough concentrations were con-
sidered for dosing adjustments. If the target trough was not 
achieved, a new dose or a new dosing interval was calcu-
lated using trough-only linear method equations (Eqs. 1, 
2) as below [1, 42, 43], where Ctrough,ss is the target new 
steady-state trough concentration; Ct is the current trough 
concentration; Dold is the old dose that resulted in Ct; τold is 
the old dosing interval that resulted in Ct; and τnew is the new 
dosing interval. Either the ‘dose-only change’ or the ‘dosing 
interval-only’ change equation was used based on clinical 
feasibility and practicality.

Dose-only change:

Dosing interval-only change:

2.4.4 � Peak–Trough‑Based Vancomycin Dosing Adjustment

Based on both the peak and trough vancomycin concentra-
tions, a patient’s individualized pharmacokinetic parameters 
were calculated and used in dose adjustment calculations. If 
either the peak or trough or both concentrations were non-
therapeutic, a new vancomycin dosing regimen was calcu-
lated and administered. Intravenous (IV) bolus equations 
(Eqs. 3–7) were used provided that the vancomycin infusion 
time was short relative to the patient-specific vancomycin 

(1)New dose =
(

Ctrough,ss∕Ct

)

Dold

(2)New dosing interval (�new) =
(

Ct∕Ctrough,ss

)

�old

half-life [1, 42]. If this assumption was not valid due to aug-
mented renal clearance (ARC) or infusion durations > 1 h, 
IV intermittent infusion equations (Eqs. 8–13) were used 
as below [1, 42]; where Ke is the elimination rate constant; 
k0 is the infusion rate; t1/2 is the half-life; V is the volume 
of distribution; Cl is the clearance; D is the dose; C1 is the 
vancomycin concentration at time t1; C2 is the vancomycin 
concentration at time t2; Cp is the peak concentration; Ct is 
the trough concentration; Cmax,ss is the target steady-state 
peak concentration; Ctrough,ss is the target steady-state trough 
concentration; τ is the dosing interval; and t′ is the infusion 
duration.

IV bolus infusion equations:

IV intermittent infusion equations:

2.4.5 � Post‑Dose Adjustment Vancomycin Monitoring

After any dose adjustment, the time to new steady state was 
calculated and post-dose adjustment peak and trough vanco-
mycin concentrations were measured. If measured vancomy-
cin concentrations were not at target levels, additional dose 
adjustments were applied as discussed above. Otherwise, 
vancomycin peak and trough concentration monitoring con-
tinued every 24–48 h.

2.5 � Study Endpoints

2.5.1 � Primary Outcome Measures

The primary outcome measures of clinical effectiveness 
were (1) vancomycin AUC​24/MIC cure breakpoint; (2) 

(3)Ke = −
(

lnC1 − ln C2

)

∕
(

t1 − t2

)

(4)t1∕2 = ln2∕Ke

(5)V = D∕Cp − Ct

(6)� =
(

lnCmax,ss − lnCtrough,ss

)

∕ke

(7)Dose = Cmax,ssV
(

1 − e
−ke �

)

(8)Ke = −
(

lnC1 − ln C2

)

∕
(

t1 − t2

)

(9)t1∕2 = ln2∕Ke

(10)V =
[

k0

(

1 − e
−ket�

)]

∕
{

ke

[

Cp −
(

Cte
−ket�

)]}

(11)Cl = KeV

(12)� =
(

lnCmax,ss− ln Ctrough,ss

)

∕ke + t
�

(13)Dose = Cmax,ssKeV
[(

1 − e
−ke �

)

∕
(

1 − e
−ket�

)]



643Peak-Trough-Based Versus Trough-Based Vancomycin TDM Approaches

therapeutic cure (composite endpoint); and (3) therapeutic 
failure (composite endpoint). Therapeutic cure was defined 
as clinical cure and/or microbiologic cure [6, 44–46]. Clini-
cal cure was defined as the absence of infection signs/symp-
toms without the need for additional antibiotic treatment. 
Microbiologic cure was defined as negative blood cultures 
at 5 days after vancomycin treatment initiation. Therapeutic 
failure included at least one of the following [6, 44–46]—
clinical failure, microbiologic failure, premature discontinu-
ation due to ADR or all-cause mortality. Clinical failure was 
defined as insufficient clinical response to initial vancomycin 
therapy necessitating antibiotic change. Microbiological fail-
ure was defined as a positive culture at ≥ 5 days after initia-
tion of vancomycin treatment. Neutropenia was defined as 
absolute neutrophil counts < 1000/μL [47, 48]. Nephrotoxic-
ity was defined as ‘a minimum of two or three consecutive 
SCr increases (defined as an increase of 0.5 mg/dL or at least 
50% increase from baseline) after several days of vancomy-
cin therapy’ [3]. All-cause mortality was defined as death 
from any cause during enrollment in the trial.

2.5.2 � Secondary Outcome Measures

Secondary outcomes included (1) length of hospital stay 
(LOS); (2) number of dose adjustments required; (3) cumu-
lative vancomycin doses received; and (4) duration of van-
comycin treatment.

2.6 � Statistical Analysis

Intention-to-treat analysis was applied. Descriptive and 
inferential statistics were conducted (SPSSv.23; IBM®, 
Armonk, NY, USA) to compare the differences in clinical 
outcomes between the intervention (i.e., peak–trough-based 
vancomycin TDM approach) and the control (i.e., trough-
only-based vancomycin TDM approach) arms. Skewness 
test was applied to ensure normality of data (choice of para-
metric vs nonparametric tests). For comparison between 
the groups, Student’s t-test, Mann–Whitney U-test or chi-
squared test was used as appropriate. All comparisons 
were carried out using an a priori significance level of 0.05 
(two-sided tests). AUCs were calculated using the nonlin-
ear mixed-effects population pharmacokinetics modeling 
approach (NONMEM v.7.3, ICON, USA) [49]. Classifica-
tion and regression tree (CART) analysis was conducted 
using SPSS v.23 (IBM®; Armonk). AUC​24/MIC, vancomy-
cin cumulative doses, treatment duration, infected physi-
ologic compartment, ethnicity, CLCR and TDM approach 
were tested against clinical effectiveness. To assess the pre-
dictive accuracy of the generated models, misclassification 
risk estimates with standard error were used [50].

3 � Results

3.1 � Baseline Characteristics of the Study 
Participants

Sixty-five subjects were enrolled (35 in the trough-only-
based vancomycin TDM group and 30 in the peak–trough-
based vancomycin TDM group). Baseline characteristics 
were similar between the study groups and are summa-
rized in Table 1. Central nervous system infections (n = 15, 
23.1%), lower respiratory tract infections (n = 16, 24.6%) 
and sepsis or septic shock (n = 11, 16.9%) were the most 
frequently occurring infections. Vancomycin was initiated as 
a definitive treatment in more than half of the cases (n = 35, 
53.3%). Of the identified bacteria (n = 35), MRSA (n = 17, 
48.6%), MSSA (n  = 8, 22.9%), S. epidermidis (n = 5, 14.3%) 
and Enterococcus faecium (n = 4, 11.4%) constituted the 
most frequent positive microbiologic cultures. Approxi-
mately half of the study participants were critically ill and 
hospitalized in critical care units (n = 31, 47.7%). Physician-
prescribed initial vancomycin dosing regimens were compa-
rable between the study groups.

3.2 � Clinical Outcomes of Peak–Trough‑Based 
Versus Trough‑Only‑Based Vancomycin TDM 
Approaches

Peak–trough-based vancomycin TDM was significantly 
associated with higher infection cure rates compared to 
trough-only-based vancomycin TDM [p value = 0.02; 
Table 2]. Compared to the control group (trough-only-based 
TDM group), the intervention group (peak–trough-based 
TDM group) required non-statistically significant shorter 
duration of vancomycin treatment and hospitalization by 
0.5 days and 4.5 days, respectively [p value > 0.05; Table 2]. 
No statistically significant differences were observed for 
other safety endpoints between the two monitored groups 
[p value > 0.05; Table 2].

3.3 � Clinical Pharmacokinetic Outcomes of Peak–
Trough‑Based Versus Trough‑Only‑Based 
Vancomycin TDM Approaches

Initial peak and trough vancomycin serum concentrations 
were not therapeutic in 30.2% (n = 19) and 80% (n = 52) 
of cases, respectively (Table 3). Individual vancomycin 
clinical pharmacokinetic parameters were comparable 
between the study groups (Table 3). Patients enrolled in 
the peak–trough-based group received TDM earlier than 
the trough-only-based group by 0.5 days [p value = 0.001]. 
Vancomycin dosing requirements significantly differed 
between the two vancomycin TDM approaches; compared 
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Table 1   Baseline characteristics 
of the study participants

Variable Trough-monitoring 
group

Peak–trough-
monitoring 
group

(n = 35) (n = 30)

Age (years), mean ± SD 41.7 ± 19.56 42.4 ± 14.47
BMI (kg/m2), median [IQR] 26.7 [5.2] 25.4 [7.8]
ABW (kg), median [IQR] 73.1 [23.6] 70 [19.3]
Height (cm), median [IQR] 169 [13] 168 [10.5]
Gender, n (%)
 Male 30 (85.7) 22 (73.3)
 Female 5 (14.3) 8 (26.7)

Ethnicity, n (%)
 MENA 23 (65.7) 8 (26.7)
 Asian (non-MENA) 11 (31.4) 20 (66.7)
 African (non-MENA) 1 (2.9) 2 (6.7)

Hospitalization ward, n (%)
 Intensive care unitsa 13 (37.1) 18 (60)
 Burns unit 2 (5.7) 0 (0)
 Medical ward 11 (31.4) 9 (30)
 Surgical/orthopedic ward 9 (25.7) 3 (10)

Diagnosis, n (%)
 CNS infectionb 5 (15.3) 10 (33.3)
 Bacteremia 4 (11.4) 2 (6.7)
 Skin and soft tissue infection 4 (11.4) 4 (13.3)
 Bone and joint infection 6 (17.1) 2 (6.7)
 Sepsis/septic shock 5 (14.3) 6 (20)
 Lower respiratory tract infection 7 (20) 5 (16.7)
 Infective endocarditis 1 (2.9) 0 (0)
 Intra-abdominal infection 3 (8.6) 1 (3.3)

Infected physiologic compartment, n (%)
 CNS compartmentb 5 (14.3) 10 (33.3)
 Blood compartmentc 13 (37.1) 9 (30)
 Lung compartment 7 (20) 5 (16.7)
 Other tissuesd 10 (28.6) 6 (20)

Vancomycin treatment type, n (%)
 Empiric 16 (45.7) 14 (46.7)
 Definitive 19 (54.3) 16 (53.3)

Positive microbiologic cultures, n (%)
 MRSA 8 (42.1) 9 (56.3)
 MSSA 5 (26.3) 3 (18.6)
 S. epidermidis 4 (21.1) 1 (6.3)
 S. constellatus 1 (5.3) 0 (0)
 E. faecium 1 (5.3) 3 (18.8)

Pre-enrollment vancomycin treatment details
 Pre-enrollment days on vancomycin treatment, median [IQR] 2 [0.5] 1.5 [1]
 Dose (mg/dose), median [1QR] 1000 [0] 1000 [0]
 Dose (mg/kg/dose), median [IQR] 14.3 [5.6] 14.6 [3.7]
 Total daily dose (mg/day), median [IQR] 2000 [1000] 2000 [125]
 Total daily dose (mg/kg/day), median [IQR] 28.6 [16.5] 29.2 [7.4]
 Cumulative doses received (mg), median [IQR] 4000 [1250] 5000 [2063]
 Cumulative doses received (mg/kg), median [IQR] 59.4 [25.04] 66.8 [29.6]
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BMI body mass index, ABW actual body weight, MENA Middle East and North Africa, MRSA methicillin-
resistant S. aureus, MSSA methicillin-sensitive S. aureus
a Includes trauma, medical and surgical intensive care units
b Involves meningitis, encephalitis and ventriculitis
c Includes blood, intra-abdominal and cardiac infections
d Includes skin, soft tissue, bone and joint infections

Table 1   (continued) Variable Trough-monitoring 
group

Peak–trough-
monitoring 
group

(n = 35) (n = 30)

Laboratory parameters
 White blood cells (×109 IU/L), mean ± SD 13.36 ± 7.9 12.8 ± 6.02
 Hemoglobin (g/dL), median [IQR] 11.53 [2.32] 11.7 [4.15]
 Neutrophils (×109 IU/L), median [IQR] 8 [9.8] 8.2 [7.7]
 SCr (µmol/L), median [IQR] 65 [36] 67 [30]
 Concomitant antibiotics, n (%) 18 (51.4) 22 (55)
 Beta-lactams 9 (25.7) 9 (30)
 Carbapenems 10 (15.4) 11 (16.9)
 Cephalosporins 9 (25.7) 12 (40)
 Clindamycin 2 (5.7) 1 (3.3)
 Linezolid 0 (0) 4 (13.3)
 Rifampicin 1 (2.9) 1 (3.3)
 Concomitant nephrotoxic agents, n (%) 12 (34.3) 12 (40)
 Amphotericin B 0 (0) 2 (6.7)
 NSAIDs 8 (22.9) 10 (33.3)
 ACEI/ARBs 4 (11.1) 1 (3.3)
 Loop/thiazide diuretics 4 (11.4) 6 (20)
 Acyclovir 1 (2.9) 0 (0)

Comorbidities, n (%)
 Diabetes mellitus 6 (17.1) 8 (26.7)
 Chronic kidney disease 1 (2.9) 2 (6.7)
 Hypertension 7 (20) 11 (36.7)
 Coronary vascular disease 2 (5.7) 4 (13.3)
 Heart failure 1 (2.9) 2 (6.7)

Table 2   Clinical outcomes 
of peak–trough-based versus 
trough-only-based vancomycin 
therapeutic drug monitoring 
approaches

a Chi-squared test or Mann–Whitney U-test

Variable Trough-only-mon-
itoring group

Peak–trough-
monitoring group

p valuea

(n = 35) (n = 30)

Vancomycin treatment efficacy outcomes, n (%)
 Therapeutic cure 17 (48.6) 23 (76.7) 0.020
 Therapeutic failure 18 (51.4) 7 (23.3)

Vancomycin treatment safety outcomes, n (%)
 Neutropenia 3 (8.6) 1 (3.3) 0.381
 Nephrotoxicity 1 (2.9) 1 (3.3) 0.912
 All-cause mortality, n (%) 3 (8.6) 2 (6.7) 0.774
 Length of hospitalization (days), median [min–max] 20 [6–117] 15.5 [4–68.9] 0.320
 Total duration on vancomycin treatment (days), median 

[min–max]
7 [1–28] 6.5 [1–32] 0.319



646	 F. K. Al‑Sulaiti et al.

to the trough-only-based vancomycin TDM group, the 
peak–trough-based group required lower average vanco-
mycin single doses and total daily doses by 370 mg/dose 
and 927  mg/day, respectively [p value < 0.05; Table  3; 
Fig. 1]. Despite the similar duration on vancomycin treat-
ment between the study groups, the trough-only-based 
vancomycin TDM recipients received clinically significant 
higher median cumulative vancomycin doses by 6,522 mg 
[p value > 0.05; Table 3]. Patients who received trough-
only-based vancomycin TDM required more dose adjust-
ments to achieve target serum concentrations compared to 
the intervention group [p value > 0.05; Table 3]. Further-
more, the trough-only-based monitoring was associated with 
recommended vancomycin dosing regimens of relatively 
low dosing frequencies and large single doses, necessitat-
ing longer infusion durations that exceeded 1 h (Table 3). 
The compared TDM approaches resulted in statistically 
and clinically significant different peak concentrations; 
peak–trough-based vancomycin dose adjustments compared 
to trough-only based vancomycin dose adjustments resulted 
in achievement of target peaks for 94.1% versus 69% of the 
time, respectively [p value = 0.006; Table 3]. Interestingly, 
peak–trough-based vancomycin doses resulted in similar 
rates of therapeutic troughs and AUCs compared to trough-
only-based vancomycin doses (Table 3).

3.4 � Association Between Vancomycin AUC​24/MIC 
and Cure

CART identified CLCR < 7.85 L/h, AUC​24/MIC, and the type 
of vancomycin TDM approach as significant determinants of 
therapeutic outcomes with 100, 58.4 and 45.8% normalized 
importance to the model, respectively. Maintaining AUC​
24/MIC between 565 and 1256 has been associated with 
cure. All subjects who achieved an AUC​24/MIC ≤ 1256 and 
received peak–trough-based vancomycin TDM achieved 
clinical success rates [100%, n = 19]. Maintenance of AUC​
24/MIC > 565 was identified to be correlated with cure in 
trough-only-based TDM recipients [84.6%, n = 11]. No mini-
mum AUC​24/MIC breakpoint was detected by CART in the 
peak–trough-based group. The predictive performance was 
high (88.6%) with low misclassification risks (11.4%), sug-
gesting robustness.

4 � Discussion

To our knowledge, this is the first pragmatic head-to-head 
RCT that (1) prospectively compared two routinely used 
vancomycin TDM approaches; (2) reported MENA-specific 
AUC​24/MIC targets; and (3) identified a maximum AUC​24/
MIC threshold for clinical benefit. Studies have suggested 
that vancomycin TDM was associated with higher clinical 

success rates and less nephrotoxicity compared to non-TDM 
groups [31, 51]. To date, studies in this area compared van-
comycin TDM recipients with non-TDM recipients, and 
were mostly based on observational research designs [31]. 
In addition, no studies reported MENA-specific AUC​24/MIC 
targets. The present pragmatic RCT aimed to address these 
questions.

Despite similar AUC​24 exposures, peak–trough-based 
TDM was associated with higher cure rates compared to 
trough-only-based TDM. This unexpected finding can be 
interpreted in two ways. First, it questions whether AUC​24/
MIC is the optimal vancomycin pharmacokinetic–pharma-
codynamic target. Fukumori’s group reported the area under 
the trough level as a novel pharmacokinetic–pharmacody-
namic parameter that more strongly correlates with vanco-
mycin clinical efficacy compared to AUC​24 [52]. Second, it 
suggests that cure may be more associated with the extent of 
consistency, sustainability and fluctuations of vancomycin 
exposure during the course of therapy, rather than a total 
single exposure estimate. This notion serves as the basis for 
studies advocating the administration of vancomycin as con-
tinuous infusion, rather than intermittent infusion [53–55]. 
Compared to intermittent infusion, continuous infusion 
resulted in more consistent and sustained exposure at the 
infection site, despite similar AUCs [54]. Furthermore, con-
tinuous infusion achieved target concentrations faster and 
was associated with less serum fluctuations [55]. Collec-
tively these studies align with the finding that a minimum 
cure breakpoint (AUC​24/MIC > 565) was only detected in 
the trough-only TDM arm, while peak–trough-based vanco-
mycin dosing was not associated with a minimum threshold. 
This suggests that peak–trough-based vancomycin dosing, 
using the specified peak/trough targets, is associated with 
more sustained and consistent vancomycin exposure that 
resulted in achieving the minimum AUC​24/MIC threshold 
for cure at most times, unlike trough-only based dosing. 
Vancomycin continuous infusion is not feasible for all clini-
cal settings or patient situations. For example, a patient may 
be on other vancomycin-incompatible intravenous therapy. 
Indeed, the peak–trough-based approach may serve as a 
more practical alternative to continuous infusion that needs 
to be explored in future studies.

Maintaining AUC​24/MIC between 565 and 1256 has been 
associated with cure. This breakpoint is higher than the min-
imum AUC​24/MIC cure breakpoints that ranged from 398 to 
451 in seven observational cohort studies [19]. Additionally, 
this work is the first to identify a maximum AUC​24/MIC cure 
threshold that, if exceeded, no extra clinical benefit is likely 
as long as the CLCR is < 130 mL/min. This concurs with the 
emerging concept of ARC (CLCR > 120–150 mL/min), that 
is associated with decreased vancomycin exposure and nega-
tive clinical outcomes [56–60]. Although studies reported 
that targeting, higher AUC​24/MIC ratios was associated 
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Table 3   Clinical pharmacokinetic outcomes associated with peak–trough-based versus trough-only-based vancomycin therapeutic drug monitor-
ing approaches

Variable Trough-only-monitoring group Peak–trough-moni-
toring group

p valuea

(n = 35) (n = 30)

Pharmacokinetic parameters at treatment initiation
 Vd (L), mean ± SD 48.5 ± 10.7 51.14 ± 9.96 0.311
 Ke (h−1), mean ± SD 0.094 ± 0.05 0.089 ± 0.051 0.702
 Cl (L/h), mean ± SD 4.15 ± 2.22 4.24 ± 2.20 0.861
 t1/2 (h), median [IQR] 8.01 [11.12] 7.23 [9.75] 0.722
 CrCl (L/h), median [IQR] 6.51 [3.44] 6.45 [3.12] 0.374
 AUC per initialb dose (mg*h/L), median [IQR] 227 [195.6] 228 [273.01] 0.590

Initialb vancomycin serum concentrations (mg/L), median [IQR]
 Trough-1 9 [8.3] 8.4 [12.9] 0.732
 Peak 25 [10] 27.9 [17.8] 0.863
 Random-1 18.9 [9.4] 18 [18.1] 0.837
 Random-2 11.9 [8.7] 11.1 [13.28] 0.638
 Trough-2 10.6 [10.5] 8.9 [15.1] 0.844

Interpretation of initialb peak vancomycin concentrations, n (%)d

 Therapeutic 27 (77.1) 17 (60.7) 0.158
 Non-therapeutic 8 (22.9) 11 (39.3)

Interpretation of initialb vancomycin trough concentrations, n (%)
 Therapeutic 6 (17.1) 7 (23.3) 0.534
 Non-therapeutic 29 (82.9) 23 (76.7)
 Minimum number of dose adjustments required to first therapeutic 

serum concentrations, median [min–max]
2 [1–5] 1 [1–3] 0.105

Overall vancomycin dosing requirements
 Single dose (mg/dose), mean ± SD 1385.71 ± 530.62 1015 ± 332.221 0.001
 Single dose (mg/kg/dose), mean ± SD 19.03 ± 7.76 14.09 ± 5.68 0.005
 Total daily dose (mg/day), mean ± SD 3834.49 ± 1,362.83 2907 ± 1,416.08 0.009
 Total daily dose (mg/kg/day), mean ± SD 52.83 ± 21.59 40.78 ± 21.25 0.027
 Cumulative doses received (mg), mean ± SD 26,275 ± 24,190 19,753 ± 21,893 0.192

Vancomycin dosing interval, n (%)
 Q6 h 6 (17.1) 11 (36.7) 0.091
 Q8 h 16 (45.7) 12 (40)
 Q12 h 13 (37.1) 4 (13.4)
 Q18 h 0 (0) 1 (3.3)
 Q24 h 0 (0) 1 (3.3)
 Q36 h 0 (0) 1 (3.3)

Vancomycin infusion duration, n (%)
 Infused over 0.5 h 1 (2.9) 0 (0) 0.297
 Infused over 1 h 19 (54.3) 22 (73.3)
 Infused over 1.5 h 10 (28.5) 8 (26.7)
 Infused over 2.5 h 2 (5.7) 0 (0)
 Infused over 3 h 2 (5.7) 0 (0)
 Infused over 4 h 1 (2.9) 0 (0)
 AUC per TDM adjusted dose(mg*h/L), median [IQR] 270 [156.02] 223 [168.82] 0.590
 AUC​24/MIC, median [IQR] 772 [412.95] 708 [260.87] 0.762
 Post-dose adjustment peak concentration (mg/L), mean ± SD 35.94 ± 7.7 30.38 ± 5.17 0.021
 Post-dose adjustment trough concentration (mg/L), mean ± SD 16.8 ± 3.09 15.6 ± 3.49 0.596
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with better clinical outcomes [19, 61], the question regard-
ing a maximum AUC​24/MIC for clinical benefit remained 
unanswered in the current literature. It should be carefully 
noted that pharmacokinetic–pharmacodynamic targets (i.e., 
AUC​24/MIC) serve only for clinical efficacy outcomes while 
absolute vancomycin exposure measures should be moni-
tored for safety [1, 3, 62, 63].

Emerging evidence suggests the promising clinical 
usefulness of the peak–trough-based vancomycin TDM 
approach [22, 64, 65], and questions the clinical benefit of 
trough-only-based vancomycin dosing [61, 66, 67]. Consist-
ent with other studies, this RCT suggests that peak–trough-
based vancomycin dosing may be associated with lower van-
comycin exposure, LOS and dose adjustments, which needs 
to be confirmed in larger scale trials. Finch et al. reported 

that 2-concentration-based AUC-guided vancomycin dos-
ing resulted in less vancomycin exposure, total daily doses 
and nephrotoxicity versus trough-only-guided dosing [22]. 
Similar clinical benefits of vancomycin peak concentra-
tion monitoring have been suggested elsewhere [64, 65]. 
Peak–trough-based TDM allowed significantly better attain-
ment of therapeutic vancomycin concentrations [64]. It has 
been reported that vancomycin-related ADRs (i.e., nephro-
toxicity and neutropenia) may be related to exposure [23, 47, 
48, 68–72], with trough concentrations > 15 mg/L having a 
significantly higher risk [69]. According to a meta-analysis 
of 17 observational studies, vancomycin dosing that targeted 
higher trough concentrations (> 15 mg/L) was associated 
with significantly more nephrotoxicity and no significant 
improvement in mortality or cure rates [66]. In deep-seated 

Table 3   (continued)

Variable Trough-only-monitoring group Peak–trough-moni-
toring group

p valuea

(n = 35) (n = 30)

Interpretation of post-dose adjustmentc peak concentrations, n (%)d

 Therapeutic 29 (69) 32 (94.1) 0.006
 Subtherapeutic 13 (31) 2 (5.9)

Interpretation of post-dose adjustmentc trough concentrations, n (%)
 Therapeutic 25 (44.6) 20 (54.1) 0.665
 Subtherapeutic 19 (33.9) 10 (27)
 Supratherapeutic 12 (21.4) 7 (18.9)

a Chi-squared test, Mann–Whitney U-test or Student’s t-test
b Initial represents pre-TDM doses and concentrations
c 56 dose adjustments were applied in the trough-only arm while 37 dose adjustments were applied in the peak–trough arm
d Missing values

Fig. 1   Vancomycin dosing 
requirements of peak–trough-
based versus trough-only-based 
vancomycin therapeutic drug 
monitoring recipients
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MRSA, trough concentrations > 15 mg/L did not result in 
shorter LOS, lower mortality rates, or higher treatment suc-
cess rates versus trough concentrations < 15 mg/L [67]. In 
fact, vancomycin trough concentrations > 15 mg/L were 
associated with a higher incidence of nephrotoxicity [67]. 
A meta-analysis of 14 observational studies showed that 
vancomycin dosing based on trough concentration targets 
(15–20 mg/L) was not associated with better clinical out-
comes in mortality, bacteremia persistence and treatment 
failure [61]. Therefore, peak–trough-based vancomycin dos-
ing provides a potential strategy to decrease vancomycin 
exposure, which will reflect into lower medication utiliza-
tion, less vancomycin-related ADRs, and decreased emer-
gence of vancomycin-resistant strains. Furthermore, the 
possibly lower LOS with peak–trough-based dosing would 
potentially result in a lower incidence of nosocomial infec-
tions. Thus, this approach provides a potential strategy to 
maximize clinical outcomes with vancomycin treatment, as 
well as decrease the economic burden on healthcare systems.

This study has several strengths. First, the present RCT is 
of a pragmatic nature. The key feature of pragmatic designs 
is the ability to assess the effectiveness of an intervention 
in routine situations to maximize the external validity of the 
study findings [73]. Due to the limited generalizability of 
exploratory RCTs to routine clinical practice, the concept of 
pragmatism has emerged during the past decades [73–75]. 
Exploratory RCTs are conducted under ideal circumstances 
in which an intervention is more likely to work, which is not 
how real-life situations are in clinical settings; thus, they 
possess limited generalizability and may fail in many routine 
clinical situations [73]. Therefore, it has been reported that 
the plethora of exploratory RCTs are of limited use to health-
care policymakers and clinicians [75]. Due to the pragmatic 
nature of this study, the researchers did not intervene on 
indication appropriateness and initial dosing of vancomycin; 
suspected or confirmed Gram-positive infections requiring 
vancomycin treatment were included, with no restrictions to 
MRSA like other AUC studies. The study setting included 
multiple centers and wards in order to be reflective of the 
variabilities in clinical practice. An important observation 
is the lack of initial vancomycin target attainment with phy-
sician-initiated dosing at most times, which may be due to 
deviations from the guideline-recommended empiric doses 
in our clinical setting. The reasons for such non-compli-
ance need to be explored in future audits. In addition, no 
restrictions on infection type, critical illness state, pharma-
cotherapeutic or mechanical co-interventions were applied. 
Thus, the implications of the study findings are of clini-
cal relevance, as it tested effectiveness rather than efficacy 
alone. Second, the prospective nature of the study allowed 
accurate vancomycin dosing and blood specimen collec-
tion. The accuracy of sampling times and dosing assures the 

internal validity of clinical pharmacokinetic studies. Unlike 
most clinical evaluations that estimated the AUC based on 
estimated renal clearance, which does not accurately predict 
vancomycin clearance [23], the present work used actual 
individualized vancomycin clearance to estimate the AUC. 
Together, these aspects suggest high internal validity of the 
study, with considerable generalizability.

The present findings need to be interpreted with caution 
due to some important limitations. This RCT was of limited 
sample size and was unblinded. The exact MICs were not 
available for all subjects since many received vancomycin 
as empiric therapy. For subjects with confirmed sensitive 
cultures, HMC laboratories reported MIC as 1 mg/L at all 
instances with values of < 1 mg/L rounded to 1 mg/L. Future 
larger scale double-blinded pragmatic RCTs are needed to 
confirm these findings.

5 � Conclusion

In conclusion, this is the first head-to-head pragmatic RCT 
that compared peak–trough-based versus trough-only-based 
vancomycin TDM approaches. Compared to trough-only-
based vancomycin TDM, peak–trough-based vancomycin 
TDM strategy was associated with higher cure rates and 
less vancomycin doses. Furthermore, maintaining an AUC​
24/MIC between 565 and 1256 was associated with cure. 
Future larger scale trials are warranted to confirm these 
study findings.
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