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Abstract
Starting from the tenets of human imagination, i.e., the concepts of lines, points and infinity, we provide a biological

demonstration that the skeptical claim ‘‘human beings cannot attain knowledge of the world’’ holds true. We show that the

Euclidean account of the point as ‘‘that of which there is no part’’ is just a conceptual device produced by our brain,

untenable in our physical/biological realm: currently used terms like ‘‘lines, surfaces and volumes’’ label non-existent,

arbitrary properties. We elucidate the psychological and neuroscientific features hardwired in our brain that lead us humans

to think to points and lines as truly occurring in our environment. Therefore, our current scientific descriptions of objects’

shapes, graphs and biological trajectories in phase spaces need to be revisited, leading to a proper portrayal of the real

world’s events: miniscule bounded physical surface regions stand for the basic objects in a traversal of spacetime, instead

of the usual Euclidean points. Our account makes it possible to erase of a painstaking problem that causes many theories to

break down and/or being incapable of describing extreme events: the unwanted occurrence of infinite values in equations.

We propose a novel approach, based on point-free geometrical standpoints, that banishes infinitesimals, leads to a tenable

physical/biological geometry compatible with human reasoning and provides a region-based topological account of the

power laws endowed in nervous activities. We conclude that points, lines, volumes and infinity do not describe the world,

rather they are fictions introduced by ancient surveyors of land surfaces.
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Throughout the centuries, different skeptical claims have

been proposed, from doubts about the possibility of

knowledge/certainty, to the doctrine that true knowledge is

uncertain, to concerns about the limitations of human mind.

Here we will focus on the skeptical tenet that ‘‘human

beings cannot attain knowledge of the external world’’.

Throughout the centuries, such skeptical claim has been

just tackled through logical weapons (for a survey, from

Pyrrho to Erasmus, from Montaigne to Feyerabend and

Fogelin, see: Popkin and Maia Neto 2007). However, logic

does not describe the world, rather the human interpretation

of the world. Indeed, our brain works with models.

Demarcation among objects and things is somewhat arbi-

trary, because our mind tends to exclude the continuity

among the world’s structures. We tend to draw a line of

separation among things that we judge different, arbitrarily

excluding or including issues in our description, to achieve

positive demarcations that allow a pragmatic treatment of

the world based on regularity and uniformity (Bonzon

2017; Kim and Lim 2017). In touch with set theory, our

mind, equipped with logic weapons, tends to split the set of

the entire world in different, arbitrary subsets that do not

really stand, in terms of quantum dynamics, for different

things (Mizraji and Lin 2017; Peters et al. 2017). The same

scientific concept of ‘‘observable’’ is based on the choice of

variables in an experimental setting: scientists, putting

aside most of the variables, focus their efforts on a few

features. For example, elementary particles are fully

defined just in terms of three experimental observables, i.e.,

charge, spin and mass (Seiden 2005), putting aside, for

practical purposes, less ‘‘useful’’ features.
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We will proceed as follows. In the first section, we will

describe how the most successful description of the world,

i.e., mathematics, is based on Euclidean geometry. Then,

we will show how Euclidean geometry is intrinsically

unable to describe the physical and biological world sur-

rounding us. In the sequel, we will analyze feasible alter-

natives to Euclidean points and lines, in order to

quantitatively describe the world. Then, in Sect. 2, we will

provide an example of the feasible use of such novel

techniques, tackling the issue of removing the troublesome

concept of infinity from mathematical formulas.

Mining the authority of mathematics

Our physical and biological world can be described in

terms of mathematical definitions, postulates, relations,

theorems, formulas, equations and algorithms. Despite the

claims that math is a collection of abstractions invented by

our minds, it is astonishingly successful in order to explain

and quantify a lot of issues of our world (Wigner 1960).

Indeed, math elucidates many physical phenomena, such as

the interaction of photons and physical surfaces, the

diffraction of light with prisms, the apparent influence of

speed on moving masses, and so on. Novel branches of

math—such as algebraic topology, group theory and

functional analysis—leading to far-flung approaches that

include nonlinear dynamics in physics and chemistry—

start to unveil also the mysteries of otherwise previously

unclassifiable issues, such as weather, thrust, interactions

and structure of neuro-systems (albeit minds) and the col-

lective behaviors of societies.

A huge portion of our mathematics of the physical world

is based on the amazingly simple Euclidean geometry.

Indeed, starting from very straightforward assumptions and

theorems such as those found in Euclid’s geometry, it is

feasible to build also non-Euclidean geometries with the

convergence of parallel lines (Aleksandrov 1969) and

complex manifolds able to explain issues such as those in

quantum mechanics. One of the main components of

Euclidean geometry is the point, that stands for the most

fundamental object. The first definition of a point (prior to

Euclid) is given by the Pythagoreans: a point is a monad

having position. Euclid begins his geometry with the def-

inition of a point [that of which there is no part] (Def. 1,

Euclid 300 BCE) and the extremities of a line are points

(Def. 2). Euclid’s Def. 1 is interpreted by T.L. Heath to

mean that a point is that which is indivisible in parts.

Therefore, we are confronted with a primitive notion

defined only by axioms that it must satisfy, i.e., the point

upon which the whole apparatus is built, meaning that

geometry cannot be described in terms of previously

defined real objects or structures. Here we ask whether the

zero-substance point holds true in our physical world and

extend our analysis also to other Euclidean objects, such as

lines, surfaces, volumes and so on.

The physical unfeasibility of Euclidean points
and surfaces

Despite the huge influence of the Euclidean geometry in

current scientific approaches, its internal framework is

fatally flawed from the very beginning, if we want to use it

to describe physical (and also biological) phenomena. The

geometric points described by Euclid, originally defined as

‘‘that which have no part’’, are not equipped with any

diameter, area, volume, or other physical features such as

height, density, weight. Many constructs of Euclidean

geometry are represented by a set of points, that stand for

infinite collections of objects that conform to certain

axioms. In particular, the Euclidean point is posited as

something which has location but zero diameter. However,

it is widely recognized that our world is quantized, and that

a minimum length does exist, i.e., the Planck size. Instead

of a Euclidean point, we arrive at a region-based view of

points in which every point is a spatial region (Peters

2016b) with measurable diameter as well as location of its

centroid. The quantization of matter leads to one of the

hallmarks of spacetime, namely, Planck’s constant. This

allowed scientists to formulate frameworks, such as string

theories (Duff 1996; de Haro et al. 2013) and quantum

gravity (Rovelli and Smolin 1988; Muxin 2011), in which

our reality is quantized, and therefore discontinuous. Thus,

a real manifold must be made of separable units, and is not

a continuum with no holes. However, such an approach

does not hold true for the Euclidean manifolds. In the

sequel, we will show how and why an Euclidean geometric

structure (such as points, lines, surfaces, volumes) cannot

display a real counterpart, and are therefore useless in the

description of our physical world.

Paraphrasing Aristotle’s account of continuity and

indivisibility (ARISTOTLE PHYSICS Book VI, Part 1),

things are said to be ‘‘continuous’’ if their extremities are

one, ‘‘in contact’’ if their extremities are joined together,

and ‘‘in succession’’ if there is nothing of their own kind

intermediate between them (Bradwardine 1330). Nothing

that is termed ‘‘continuous’’ can be composed of ‘‘indi-

visibles’’: to make an example, an Euclidean line cannot be

composed of points, the line being continuous and the point

indivisible. Indeed, the extremities of two Euclidean points

can neither be one (since of an indivisible there can be no

extremity as distinct from some other part), nor together

(since that which has no parts can have no extremity, the

extremity and the thing of which the extremity is distinct).

Moreover, if that which is continuous is composed of

Euclidean points, these points must be either continuous, or
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in contact with one another. Therefore, indivisibles cannot

be continuous: one thing can be in contact with another

only if whole is in contact with whole or part with part or

part with whole. But since indivisibles have no parts, they

must be in contact with one another as whole with whole.

And if they are in contact with one another as whole with

whole, they will not be continuous. For Euclid, that which

is continuous has distinct parts, and these parts into which

it is indivisible need to be spatially separate. In particular,

concerning the line, an Euclidean point cannot be in suc-

cession to another in such a way that length can be com-

posed of points. Indeed, things are in succession, provided

there is nothing of their own kind intermediate between

them, whereas that which is intermediate between points is

always a line, or a region of a surface. Again, if the

Euclidean length (i.e., the line) could be composed of

indivisibles, it could be divided into indivisibles, since each

is divisible into the parts of which it is composed. But, as

stated above, no continuous thing is divisible into things

without parts. Nor can there be anything of any other kind

intermediate between the parts: if there could be any such

thing, it must be either indivisible or divisible, and if it is

divisible, it must be divisible either into indivisibles or into

divisibles that are infinitely divisible, in which case it is

continuous.

In sum, because the Euclidean line is either continuous

or depicted as an infinite set of zero-mass points, it does not

describe real lines, that are made of a set of contiguous

multi-mass regions.

The problem of a physical continuum becomes more

murky, if we consider what means mathematically for a

mapping between spatial regions to be continuous. Let f :

X ! Y be a mapping on X into Y; so that f ðxÞ 2 Y for x 2
X: In the context of proximity spaces, a point x is near a

region or set of points A, provided f ðxÞ is near

f ðAÞ(Naimpally and Warrack 1970). In other words, a

function proximally continuous, provided the function

preserves pairs of sets so that whenever xf g;A are near (in

the same proximity), so too f ðxÞ; f ðAÞ are near (Peters

2014). Put another way, a function f is continuous, pro-

vided the image f ðxÞ of every point of adherence x 2 X is a

point of adherence in the set f ðAÞ(Smirnov 1952).

Again from a mathematics perspective, it is an axiom in

proximity space theory that the closeness of a point to a

cell complex that is a collection of 0-cells (vertexes)

implies that the point is either on the boundary or within

the cell complex. By contrast, a physically continuous

mapping from a computational proximity perspective

(Peters 2016a) imply that the closeness of a physical region

such as an atom v to another physical region such as a

collection of atoms A means that v is the in the neigh-

bourhood of A, not that v is in A.In other words, as

anticipated by old philosophers too (Autrecourt and About

1340), closeness of points and sets in mathematics is quite

different from the closeness of points and sets in the

physical world. Instead of the conventional closeness of

points and sets, the axiomatic foundations of the descrip-

tive closeness of points and sets has been recently intro-

duced (Di Concilio et al 2018). In the context of descriptive

proximity, the closeness of points and cell complexes is

viewed in terms of overlapping descriptions of the points

and the sets. In other words, a feature vector that describes

a point and the feature vector that describes a cell complex

overlap without requiring that the descriptive closeness of a

point x and cell complex A implies the inclusion of the

point x in the cell complex.

As for the line, the same applies also for other Euclidean

structures, such as two-dimensional surfaces and three-di-

mensional volumes. Indeed, every continuous Euclidean

manifold (whatsoever its dimensions may be) is divisible

into divisibles that are infinitely divisible: if it were

divisible into indivisibles, we should have an indivisible in

contact with an indivisible, since the extremities of closed

manifolds that are continuous with one another are one and

are in contact. This means that a collection of n-dimen-

sional Euclidean structures cannot give rise, when joined

together, to a n ? 1 dimensional manifold. Therefore, the

Euclidean points, lines, surfaces, volumes cannot exist in

the real world. In particular, considering that physical

space is quantized and that the minimum possible length is

the Planck one, a real ‘‘point’’ cannot exhibit zero mass.

Furthermore, at Planck length, another problem arises for

an hypothetical basic ‘‘point’’: many theories predict that

the minimum separable structure, i.e., the string, lies in

10–11 dimensions, rather than being a dimensional.

Therefore, in the real world, also the simplest structure, i.e.,

the real point, must be a spatial region that displays non-

zero mass in spacetime, otherwise it cannot exist. Fur-

thermore, as stated above, it is also difficult to talk about

real lines, surfaces, volumes, given the indefiniteness and

vagueness of their Euclidean definition and structure.

Further possibilities to cope with the physical
reality

In the previous paragraph, we showed that the concept of

Euclidean points and n-dimensional manifolds do not hold

true for the description of our real world, because every

physical structure cannot be built starting from nonzero

mass ones. An Euclidean line does not exist in the real

world, because a real line must be composed of spatial

subregions, and this is not compatible with the Euclidean

tenets. It might be objected that a line could be made of

points made of bosons, that, satisfying the Bose–Einstein

condensate theory, can be described as superimposed.

However, a real line in our world must be composed of
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matter, i.e., fermions that are subject to the principle of

locality: therefore, a point made of fermions cannot be

superimposed to another one, because they must occupy

different locations in space. It might also be objected that a

line could be made of different points that are not super-

imposed, rather they are separated by a small void, but it is

not the case of the Euclidean line’s description.

Our results suggest that it’s time to change our

approach. It is clear, from our account, that the Euclidean

axiomatic system cannot hold in the real world. The

Euclidean point is just a conceptual device, and the same

holds for its consequences: lines, surfaces, volumes. The

physical impossibility of points holds also for ‘‘surfaces’’.

For example, in weighting, since many years, there is the

problem to take into account where the mass surface ends,

because there are always, without solution of continuity,

‘‘layers’’ of air molecules more or less interacting with the

‘‘solid’’, part of which does influence the ‘‘weighted mass’’

also in the most accurate measurements. That is already a

fact long since in precision metrology: ‘‘the non-unique-

ness in these cases comes from thickness of the adherent

interface layer(s), having an effect different from zero on

the actual dimensions of the object, i.e., adding additional

mass to the object with possibly time-dependent variabil-

ity’’ (Pavese and Charki 2016).

Is it feasible to provide definitions of points and mani-

folds other than the Euclidean ones, in order to overtake its

fatal limitations in the description of physical matters?

Despite there exist several regions-based accounts of

space/time, due to Roeper, Menger, Tarski and others

(Shapiro and Hellman 2017), the most of them, contrary to

our approach, follow the Aristotelian theme that continua

are not composed of points. A more recent view of a point

by M. Simon (1901) moves closer to physical points.

According to such an approach, a point is the limit of

localization. More in keeping with the contemporary view

of a point as a property of duration, a theory of extensive

connection and atomicity of actual entities has been built

(Whitehead 1929). The notion of extensive connection

brings us full circle to an expansion of cellular topology

and physical proximity space theory, in which a point

stands for the minimal part of overlapping regions of

physical space, such as overlapping perimeters of vortex

atoms that live together in motion continua with limited

duration. In other words, a point is a finite region of space

with non-zero area, while a line is drawn from one region

to another (Peters 2016a).

One region A includes another region B, whenever

every region connected to B is also connected to A

(Whitehead 1929). In other words, region A is connected to

region B, provided there is a path from any subregion of B

to a subregion of A. The extremity of a connecting path

between subregions is itself a subregion with measurable

area, albeit a tiny subregion that has the appearance of a

point in Euclides’ surveyer-like geometry.

We may state that a region of space is the maximum

distance between subregions (intervals) of its bounding

edge. This definition allows the description of a point as a

single abstract spatial vertex: in other words, our physical

reality can be described in terms of multiple surface

spacetime vortices, in which each vortex is a funnel

reaching down to a physical limit, called a vertex. Exam-

ples are provided in Fig. 1. This approach permits us to

remove the unwanted Euclidean geometry from the quan-

titative assessment of our world.

A humanly reasonable Euclidean geometry

Despite the usefulness of Euclidean geometry, our results

suggest that it’s time to change our approach to the

geometry of physical surfaces, because Euclid describes

totally abstract surface regions. It is also feasible to deliver

a psychological explanation for the Euclid’s successful

mathematical description of the world. Indeed, taking into

account recent neuroscientific findings, we are allowed to

hypothesize why our mind seems to recognize in the sur-

rounding environment Euclidean points, lines, surfaces,

volumes, despite the fact that they cannot, according to our

account, exist in reality. Over the last few years, studies of

receptive field properties in several mammalian visual

brain structures, such as the lateral geniculate nucleus and

the primary sensitive cortex, have suggested the existence

of cell classes with unique functional response properties

(Van Hooser et al. 2005; Viswanathan and Nieder 2017).

To make an example, the cells of the cortical visual area

V1 display basic receptive field properties, such as orien-

tation selectivity, direction selectivity, bar length and end-

stopping (Duffy and Hubel 2007). Further, similar to the

primary visual cortex, orientation sensitivity was closely

reflected by the receptive fields properties also in extra-

cortical structures, such as the lateral geniculate nucleus

(Li et al. 2018). Therefore, many experimental suggestions

dating back just a few years suggest that our brain is

equipped with neurons, located in cortical and extra-cor-

tical areas, that selectively fire when our sight perceives

angles, surfaces, lines, contours. And such angles, surfaces,

lines, contours do not exist in the real world, provided that

the borders of the objects cannot be as well sharply

delimited as suggested by Euclidean geometry.

Our perception is perhaps an evolutionary mechanism

that permits us to cope with our external, rather visual,

world, in order to avoid dangers and harms. The detection

by sight of geometrical issues in the environment (such as

points, lines, contours and so on) does not necessarily

describe the real world, but rather stands for a sort of

internal map based on species-specific, innate
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interpretations of the physical reality. We are rather firmly

wired, if not actually hardwired, to think of the abstractions

represented by such programs as realities. The whole idea

in biology is after all to respond to survival situations

quickly and effectively, rather than to question or con-

template their deeper nature. In Karl Friston’s terms

(2010), the brain is an inferential machine that compares

the real world with an internal map, pre-existent in our

mind. Therefore, it might be suggested that what we see is

just partially real: indeed, we might ask whether other

animals, such as, e.g., an ant equipped with olfactive-tactile

perceptions rather than our visual ones, or a bat (Nagel

1974), are able to recognize points and lines. Indeed, some

response properties, such as linearity of spatial summation,

contrast gain, dependence of receptive field size on

eccentricity and interlaced arrangement of cortical neurons,

vary from species to species (Van Hooser et al. 2005;

Mazade and Alonso 2017). To make an example, despite

the fact that a squirrel has greater visual acuity and a

physically larger V1 than some mammals that have ori-

entation maps in V1, it is not provided of such maps (Van

Hooser et al. 2005). In turn, electrophysiological record-

ings in awake and anesthetized turtles reveal that their

dorsal cortex is sensitive to the spatial structure of natural

images, and their receptive fields are not entirely uniform

across space (Fournier et al. 2018). Therefore, the mapping

and representation of visual space in turtle’s three-layered

cortex differ from those found in mammalian primary

visual cortex. This means that, contrary to the mammalian

primary visual cortex, the turtle dorsal cortex performs a

global, rather than local, analysis of the visual scene

(Fournier et al. 2018). This means that, in animals different

from us, spatial information can be found both at the sin-

gle-neuron and population scales and a clear retinotopic

mapping of thalamocortical projections is not detectable.

Our sensations and perceptions (and therefore our

world) depend on the activity of our cortex. A recent study

points towards this hypothesis. Indeed, Armenta Salas et al.

(2018) showed that intracortical microstimulation in pri-

mary somatosensory cortex (S1) is a method of inducing

discriminable artificial sensation. In a tetraplegic human

with microelectrode arrays implanted in S1, the Authors

reported replicable elicitations of sensations in both the

cutaneous and proprioceptive modalities. Therefore, the

direct activation of the cortex is able to achieve naturalistic

percepts that closely mimic the body’s natural physiolog-

ical capabilities.

Tackling the problem of infinity in physics
and biology

We showed, in the previous paragraphs, that infinity does

not exist in our physical and biological world, rather it is a

technical device correlated with our mathematical formu-

lations of the world issues. In their theories and models

dealing with formulas that describe finite, measurable

quantities, physicists do not appreciate the occurrence of

unwished infinite values. Indeed, with the exception of

various forms of conformal infinity (Frauendiener 2000;

Sommers 1978), mathematical infinity—indeterminate

infinite results in which, for example, solutions of the

Fig. 1 Examples of sample vortices. Left: a Weierstrass-Zeta math-

ematical model for multiple surface spacetime vortices, in which each

vortex is a funnel reaching down to a physical limit called a vertex.

Right: black hole vortex (initial mass radius 0.44 km) formation. It

results from steadily increasing strong gravitational force that pulls

neighboring chunks of matter into its funnel winding down to the

squish level. Therefore, massive chunks of matter are squeezed to the

diameter of a vortex
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gravitational field equations cannot be continued (Berg-

mann 1989)—prevents scientific issues to provide practical

formulas that correspond to, or at least approximate, the

real observables. For example, in case of bodies with

infinite gravitational mass and/or energy, equations become

intractable and useless, since their results would be always

the same, regardless of objects’ position, mass and move-

ment. In some cases, infinite results mean that the used

theory is approaching the point where it fails. A classic

example is the black holes’ mathematical singularity: the

commonest solutions of the general relativity’s equations

allow for zero-size finite mass distributions, leading to

infinite density, e.g., a point where general relativity breaks

down and is incapable of appropriately describing events.

Other examples are the Newtonian gravity and Coulomb’s

law of electrostatics at r = 0. Although infinity can be used

in physics, scientists require for practical purposes the final

result being physically meaningful: e.g., in quantum field

theory, infinities are treated through procedures such as

renormalization (‘t Hooft 1971).

The concept of infinity is a painful concern also, e.g., in

fullerenic issues. To make an example, Chan et al. (2016)

carried out large-scale computational quantum chemistry

calculations to obtain heats of formation for C60 and some

higher fullerenes, using the DSD-PBE-PBE/cc-pVQZ

double-hybrid density functional theory method. However,

they noticed a slow convergence to the graphene limit,

which they attributed to the relatively small proportion of

fullerene carbons that are in ‘‘low-strain’’ regions. Indeed,

it would take tens, if not hundreds, of thousands of carbons

for a fullerene to roughly approach the limit. Other prob-

lems linked with infinity arise when researchers try to

assess asymptotic shapes of symmetrical fullerene ball, that

is a flat-sided polyhedron whose edges have an average

curvature radius of order R2/3 (Witten and Li 1993).

Here we propose a different way to cope with the

enigmatic results of the infinity in the description of

physical equations, holding out the possibility of a physical

geometry (Peters 2016a) that is region-based instead of

point-based. This approach leads to a form of Desarguesian

affine space in which locally parallel lines converge (Zaka

and Peters 2019). We infer scaling of the shape and energy

of a space-enclosing elastic sheet such as a large fullerene

ball of linear dimension R. Stretching deformation is cru-

cial in determining the optimal shape, in conjunction with

bending. The asymptotic shape of a symmetrical fullerene

ball is a flat-sided polyhedron whose edges have an average

curvature radius of order R2/3. The predicted asymptotic

energy is concentrated in these edges and is of orderR1/3.

Analogous edges with this scaling property should occur

generally in elastic sheets with discrete disclinations.

Infinity as the continuation of a straight line
in affine geometry

As stated above, unqualified infinity cannot be any of the

physical observables which we either can assess or mea-

sure: when we set out to investigate the infinity, we must

leap beyond simple physical concepts and use mathemat-

ics. Inspired by Nicholas de Cusa’ treatment of infinity (de

Cusa 1440; Tozzi and Peters 2017a), here we illustrate how

to use mathematical and geometrical features to undertake

physical infinity. If one wants to assess finite physical

measurements leading to infinity, one needs at first to

consider finite mathematical figures and topological man-

ifolds, together with their features and relations. Next, one

must apply these relations in a projective way. Thirdly, one

must thereafter, in a still more highly transformed way,

apply the relations of these infinite figures to the general

concept of mathematical infinity, which is altogether

independent even of all figures and manifolds.

Let us start, in touch with de Cusa’s accounts, with the

picture of mathematical infinite, which will be represented

by a straight line. One can maintain that, if there were an

infinite line, it would be a straight one, or, for example, an

infinite triangle, circle or sphere. Since the latter three

figures display infinite sides, as will be shown, they can

also be described in terms of infinite lines. First of all, an

infinite line would be a straight one. The circle’s diameter

is a straight line, and its circumference is a curved line

greater than the diameter. If the curved line becomes less

curved in proportion to the increased circle’s circumfer-

ence, then the maximum circle’s circumference, which

cannot be greater, is minimally curved and therefore

maximally straight (Fig. 2a). Indeed, in the Figure, the arcs

of the larger circle are less curved than the smaller ones.

Therefore, the straight line will be the arc of the maximum

circle, which cannot be greater. An infinite line is neces-

sarily the straightest; and to it no curvature is opposed. In

the same way, every manifold with positive curvature, such

as, for example, a triangle, or a circumference, or a sphere,

can be described in terms of an infinite line standing for a

maximum triangle, or a maximum circle, or a maximum

sphere. Indeed, an infinite line is whatever is present in the

curvature of a finite line: a line finite in length can be

longer and straighter, therefore the maximum line is the

longest and straightest. If figures are describable by a finite

line, and if an infinite line is all-the-things-with-respect-to-

which a finite line is in infinity, then it follows that an

infinite line stands also for a triangle, a circle, and a sphere.

How is it possible that an infinite line is a side of a

triangle? Since any two sides of any triangle cannot, if

conjoined, be shorter than the third, this means that, in the

case of a triangle whose one side is infinite, the other two
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sides are not shorter, i.e., they are both infinite. Since there

cannot be more than one infinite thing, an infinite triangle

cannot be composed of a plurality of lines, even though it is

the greatest and simplest triangle. And because it is a tri-

angle—something which it cannot be without three lines—

it will be necessary that the one infinite line be three lines,

and that the three lines be one most simple line. And

similarly, regarding the angles: for there will be only one

infinite angle; and this angle is three angles, and the three

angles are one angle. Nor will this maximum triangle be

composed of sides and angles; rather, the infinite line and

angle are one and the same thing, so that the line is the

angle, because the triangle is the line. The larger the one

angle, the smaller are the other two. Now, any one angle

can be increased almost but not completely up to the size of

two right angles. Nevertheless, let us hypothesize that it is

increased completely up to the size of two right angles,

while the triangle remains nonetheless a triangle. In that

case, it will be obvious that the triangle has one angle that

comprises the three angles and that the three angles are

one. In the same manner, one can state that a triangle is a

line, and an infinite line is a maximum triangle. For any

two sides of a quantitative triangle are, if conjoined, as

much longer than the third side as the angle which they

form is smaller than two right angles. Hence, the larger the

angle, the less the lines and the smaller its surface.

Therefore, if, by hypothesis an angle could be two right

angles, the whole triangle would be resolved into a simple

line. Hereby it is evident that an infinite line is a maximum

triangle. Next, by applying the same reasoning and the

proper rotations, it is feasible to show that an infinite tri-

angle is also an infinite circle and an infinite sphere.

In sum, an infinite line has been shown to be all that

which is in the possibility of every finite line and manifold:

a triangle is extracted from a line, and an infinite line from

an infinite triangle. Hence, an important speculative con-

sideration can be inferred: infinity is correlated with finite

manifolds. Because infinite curvature is infinite straight-

ness, this means that an infinite manifold can be described

in opposite terms: it is not a thing and is not any other

thing; it is not here and is not there; it is unqualifiedly free

from all things and is beyond all things; is above the

negation of all things. By a physicist’s standpoint, this

explains why physical theories leading to infinite values are

awfully problematic and difficult to cope with. In the next

paragraph, starting from the above-mentioned de Cusa’s

account, we propose a geometrically-framed method to

solve the problem of infinity in physical systems.

Geometric removal of infinity in physical
and biological formulas: an example

In the previous section, the result was reached that infinity

can be expressed by a straight line with zero-curvature.

How to use this observation, in the mathematical treatment

of physical finite systems whose equations lead to the

unwanted infinity? When one has a physical system of

equations, he may project it into a positive-curvature

manifold through well-described geometrical procedures

(Frankel 2011). If the equations tend towards infinity, and

therefore give meaningless results, one is allowed to

remove the infinity by projecting the same physical equa-

tions on a negative-curvature manifold. Given equations’

trajectories moving in a convex phase space, when they

tend to converge towards a zero-curvature manifold, the

undesirable infinity is approximated. To remove the

obstacle, we could describe the same equations on an

Fig. 2 Curvature changes in biological and physical systems. a given

a physical system described by progressively increasing curves on a

positive-curvature manifold, the occurrence of infinity (straight line)

can be removed by taking into account progressively decreasing

curves on a negative-curvature manifold. b by placing physical

observables on a toroidal manifold, one achieves a correspondence

between positive and negative curvatures, thus erasing the unwanted

occurrence of infinity. c Time-reversal according to Lesovik et al.

(2019). From the second (‘‘developed state’’) to the third (‘‘time-

reversed state’’) panel, the Authors modified the phase of the wave-

function in every tiny area, so that the lines with positive curvatures in

the second panel become lines with negative curvatures in the third

one
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opposite, concave phase space. Indeed, recent work has

shown that the appropriate isometric space for embedding

complex networks—and in particular the neural multidi-

mensional ones, such as the human connectome (Tozzi

2019)—is not the flat Euclidean space, but rather a nega-

tively curved hyperbolic space (Sengupta et al. 2016; Tozzi

et al. 2018). Hyperbolic space has the property that power-

law degree distributions, strong clustering and hierarchical

community structure emerge naturally when random

graphs are embedded in positive-curvature manifolds. It is

therefore logical to exploit the structure of the hyperbolic

space for useful embeddings of complex networks: in touch

with this claim, it has been demonstrated that, when

applied to the task of classifying vertices of complex net-

works, hyperbolic space embeddings outperform the

Euclidean space ones (Chamberlain et al. 2017). To pro-

vide an operational example, the steps of the Langevin

equation (Langevin 1908) experimentally detected in the

three-dimensional (plus time) Euclidean space can be

transported to a hyperbolic manifold, though, e.g., Levi–

Civita or Ehresmann connections (Levi–Civita 1917;

Ehresmann 1950). This allows us to assess dynamics inside

abstract negative-curvature manifolds that mimic the real

physical phase space where such processes occur. This

procedure has been tackled by Tozzi et al. (2018), who

showed that biophysical activities, including cellular

metabolic pathways, protein folding and brain function,

can be described in terms of curved trajectories in hyper-

bolic spaces which are constrained by energetic require-

ments. The transition and the relationships between the

positive- and negative-curvature manifolds are described in

Fig. 2b, for sake of simplicity, as taking place on the

opposite sides (one convex, one concave) of a single

multidimensional torus. A recent, very interesting approach

shows that changes in curvatures, apart from removing

infinity from physical equations, are able to reverse time

too. Indeed, Lesovik et al. (2019) used variations in cur-

vatures to reverse the arrow of time (Fig. 2c). This means

that, once again in touch with the 1440 de Cusa’s account,

a trajectory taking place on a positive-curvature manifold

can be counteracted by one taking place on a negative-

curvature manifold.

Other solutions to the problem of infinity were intro-

duced in Geroch et al. Kronheimer Geroch, Penrose (1972),

leading to computable solutions (Frauendiener 2000; Zen-

ginoglu 2007). The basic approach is to rewrite metrics

defined in terms of points at infinity with tractable, com-

putable metrics that sidestep infinite planes and points at

infinity such as those shown in Fig. 3.

Here is an example. The Minkowski spacetime metric in

polar coordinates is g ¼ dt2 � dr2 � r2dr2; where dr2 is

the metric of the unit sphere. To achieve confomal

rescaling of g; the null coordinates u ¼ t � r and v ¼ t þ r

are introduced, to obtain

g ¼ dudv� 1

4
v� uð Þ2dr2:

The coordinates u and v range over the complete real

line, provided v� u� 0: This infinite range is compacti-

fied, using u ¼ tanU; v ¼ tanV; and new null coordinates

ranging over � p
2
; p
2

� �
; resulting in

g ¼ 1

4 cos2 U cos2 V
4dUdV � sin2ðV � UÞdr2
� �

;

which is not defined at U ¼ � p
2
;V ¼ � p

2
: To resolve this

problem, a new metric is extracted from g; namely,

gnew ¼ 4dUdV � sin2ðV � UÞdr2:

gnew is the tractable metric of the Einstein cylinder, which

means that Minkowski space is now conformable embed-

ded into the Einstein cylinder (Frauendiener 2000).

A foremost topic: nervous fractals
and power laws

In this paragraph, we will tackle the issue of a point-free

description of (spatial) fractals and (temporal) power laws.

Scale-invariant behaviors have been shown to be ubiqui-

tous in nature, as well as in the brain, and explain well the

underlying dynamics of many natural phenomenon, and

how we perceive the surrounding environment (Papo 2014;

Fox et al. 2015; de Arcangelis et al. 2006; Lübeck 2004). It

is noteworthy that fractals display an astonishing analogy

with de Cusa’s logical concept of ‘‘coincidentia opposito-

rum’’, both displaying self-similarity at all scales and

magnitudes of observation. The frequency spectrum of

cerebral activity exhibits a scale-invariant behavior

S(f) = 1/fn, where S(f) is the power spectrum, f is the fre-

quency and n is the power spectral density. The latter is

termed fractal ‘‘dimension’’ and equals the negative slope

of the line in a log power versus frequency scatter plot

(Milstein et al. 2009; Pritchard 1992). Power law distri-

butions contain information on how large-scale physio-

logical and pathological outcomes arise from the

interactions of many small-scale processes. leading also to

self-organized criticality (de Arcangelis and Herrmann

2010; Jirsa et al. 2014). A recently introduced version of

the Borsuk-Ulam theorem (BUT), termed re-BUT, states

that there is a continuous mapping between regions in

topological spaces (Peters 2016a). In simpler words, a

single region in lower dimensions maps to two matching

regions in higher dimensions, provided the function is

continuous (Tozzi and Peters 2016). Note that, instead of

the canonical points described in the standard BUT, in re-
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BUT a point-free description (i.e., based on regions) is

provided (Fig. 4a). Is it suitable to make use of re-BUT

(and therefore of point-free geometry) in the description of

fractals and power laws? Tozzi and Peters (2016) showed

that the dimensions involved in BUT and re-BUT could be

Hausdorff (fractal) as well as spatial (Fig. 4b). Indeed, the

fractal account gives rise to a dimension greater than the

‘‘classical’’ one-dimension which is generally attributed to

the ‘‘normal’’ curves embedded in a standard Euclidean

space. In Fig. 4b, we used, as an example, a dimension

corresponding to the value of 1.3.

In sum, point-free descriptions, through the use of

topological weapons such as the re-BUT, can be extended

to encompass the description of brain’s fractal dynamics

too.

Fig. 3 Conformable infinity at computable points near, but not at

ideal points. Left side: Tractable point on spheres in spacetime that

are sliced by an infinite plane. Ideal points on the infinite plane are

replaced with non-ideal points that are computable. Right side: Those
parts of a sheaf of infinite places that intersect with computable lines

are computable up to but not including the ideal points

Fig. 4 A point-free topology

allows description of fractals.

a the novel BUT variant, termed

re-BUT, describes a pointless

feature (blue shape) on a two-

dimensional circle S1. When

projected onto a sphere S2, two

pointless features with matching

description are achieved (blue

shapes). b the pointless feature

on S1 can be projected not just

to S2, but also to the fractal

structure S1.3. Therefore, we

achieve two pointless features in

S1.3 (blue shapes): they stand for

two matching descriptions,

because they depict the same

fractal structure, self-similar at

different magnifications and

coarse-grained scales. (Color

figure online)
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Conclusions: removing points, lines
and infinity

Here we ask whether one of the basic building blocks of

Euclidean geometry, i.e., the point, holds true in our

physical world. Given our negative answer, we concluded

that the Euclidean manifolds cannot properly describe the

real world. Our observation suggests the need for a viable

alternative to Euclidean geometry, despite its current

utmost importance in the description of the reality sur-

rounding us. Indeed, the Euclidean geometry, after many

centuries from its first formulation, still stands for the main

tenet of the ensuing mathematical and physical develop-

ments. Starting from its postulates and theorems, it has

been feasible to consider exception conditions, such as

curved space, that are more in keeping with the relativistic

spacetime. Furthermore, Euclidean geometry allowed to

work our way toward non-Euclidean geometries (Johnstone

1983), R. Descartes’s vortex geometry, sweeping compre-

hensive cellular complexes in Whiteheadean closure finite

weak topology, V.G. Boltyanskii and V.A. Efremovich

intuitive combinatorial topology, Edelsbrunner-Harer

computational topology, Cech-Efremovich-Lodato-Naim-

pally-DiConcilio proximity spaces (Di Concilio 2013), K.

Borsuk shape theory (Borsuk 1958, 1969), P.G. Tait’s

knots (1877). Such improvements led to J.S. Birman’s

braids, links, knots and mapping class groups that allow

amazingly simple solutions to problems in quantum

mechanics and to W.T. Kelvin’s knotted and knitted vortex

atoms (Kelvin 1867). This also led to a deep understanding

of Helmholz’s discovery (Helmholz 1858) of simple vortex

rings and the vexing problem of vortex motion in perfect

liquids, as well as the elucidation of thermodynamic

properties of gases.

Further, we showed that points and lines are programs

running in mammalian brains, able to capture pre-

dictable consistencies in the external world, in forms that

are both compact and supportive of fast, first-level

approximations even in slow, neuron-based brains. So,

while a ball is not much like a point, it is enough like a

point for a human or canine brain to use a point-like

approximation of it to move a hand (or snout) to the right

location to catch it when thrown (Bollinger 2018). Even

though quantum uncertainty adamantly informs us that

higher levels of detail always requires higher energy costs,

our mammalian-brain mathematics treat this paradox as

‘‘minor detail’’ that can be overlooked in our formal

treatments of the physical world (Barranca et al. 2018).

It is assumed by physicists, due to pragmatic issues, that

no measurable quantity or event might have infinite values.

Indeed, any physical theory needs to provide operational

formulas that correspond, to or at least approximate, reality

(e.g., Iyer and Petters 2007). As an example, if any object

of infinite gravitational mass were to exist, any use of the

formula in order to quantify the gravitational force would

lead to a useless infinite result. The formula would be

useful neither to compute the force between two objects of

finite mass, nor to compute their motions. Sometimes, an

infinite result of a physical quantity may mean that the

theory being used is approaching the point where it fails.

We provided a novel conceptual framework to theoretically

solve the problem of the occurrence of infinity in physical

equations. We compared (a) finite quantities to curved lines

endowed in positive-curvature manifolds, and (b) in-

tractable infinity to a straight line. In order to restore the

equations and erase the straight line of infinity, we project

the quantities onto curved lines endowed in negative-cur-

vature manifolds.

We achieved at first a physical system’s description on,

say, the convex surface of a manifold. In order to avoid the

occurrence of infinite when the curvature approaches the

zero, we projected such description to the concave surface

of a manifold, through a long list of available and well-

studied procedures of vectorial and tensorial transport: e.g.,

Ehresmann connections (Tozzi et al. 2017), parallel trans-

port on Riemannian manifolds (Sengupta et al. 2016), and

so on. In other words, we need at first to project a physical

phenomenon which tends to intractable infinity onto a

positive-curvature manifold, such as a triangle, or a sphere,

or a donut-like manifold, arriving at a physical geometry

useful in the physical sciences (see, e.g., Peters 2016a;

Tozzi and Peters 2017b). Indeed, when the phenomenon’s

calculations tend towards infinity, we achieve an unwanted

flat line. To go back to a tractable description, we need now

to introduce a negative-curvature manifold, corresponding

to a modified physical phenomenon, where finite opera-

tions might take place.

We would like to bring to an end with a prediction: an

intellectually satisfying and experimentally meaningful

resolution of the apparent conflicts between quantum

mechanics and classical physics, including general rela-

tivity, will not be possible until the Euclidean conceptual

barrier we have described in our paper is fully overcome

(Bollinger, personal communication). In particular, recog-

nizing that ‘‘time’’ must also be ‘‘unEuclidified’’ should

rather dramatically alter how we perceive and use to rep-

resent both quantum and classical time, making them more

of a continuum in which the level of temporal detail once

again depends on the resources applied. By then, using

mathematical abstractions that no longer relegate spatial

and temporal uncertainty ‘‘only’’ to the quantum domain,

many of the seemingly insurmountable barriers between

quantum and classical quite likely will disappear.
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Lübeck S (2004) Universal scaling behavior of non-equilibrium phase

transitions. Int J Mod Phys B 18:3977–4118

Mazade R, Alonso JM (2017) Thalamocortical processing in vision.

Vis Neurosci 34:007. https://doi.org/10.1017/

s0952523817000049

Milstein J et al (2009) Neuronal shot noise and Brownian 1/f2

behavior in the local field potential. PLoS ONE 4:e4338

Mizraji E, Lin J (2017) The feeling of understanding: an exploration

with neural models. Cogn Neurodyn 11(2):135–146

Muxin H (2011) Cosmological constant in loop quantum gravity

vertex amplitude. Phys Rev D 84(6):064010

Nagel T (1974) What is it like to be a bat? Philos Rev 83(4):435–450.

https://doi.org/10.2307/2183914

Naimpally SA, Warrack BD (1970) Proximity spaces. Cambridge

University Press, Cambridge

Papo D (2014) Functional significance of complex fluctuations in

brain activity: from resting state to cognitive neuroscience. Front

Syst Neurosci 8:112

Cognitive Neurodynamics (2019) 13:417–428 427

123

https://doi.org/10.7554/elife.32904
https://doi.org/10.7554/elife.32904
https://fqxi.org/data/essay-contest-files/Bollinger_FQXi_Essay_2017_.pdf
https://fqxi.org/data/essay-contest-files/Bollinger_FQXi_Essay_2017_.pdf
http://arxiv.org/abs/1705.10359
https://doi.org/10.1007/s11786-013-0140-2
https://doi.org/10.1007/s11786-013-0140-2
https://doi.org/10.1007/s11786-017-0328-y
https://doi.org/10.1007/s11786-017-0328-y
https://doi.org/10.1016/j.neuron.2017.11.017
https://doi.org/10.1016/j.neuroimage.2015.02.039
https://doi.org/10.1016/j.neuroimage.2015.02.039
http://www.springer.com/us/livingreviews/articles/volume3/2000-4frauendiener
http://www.springer.com/us/livingreviews/articles/volume3/2000-4frauendiener
https://doi.org/10.1007/bf03014898
https://doi.org/10.1007/bf03014898
https://doi.org/10.1016/j.neuroscience.2018.02.024
https://doi.org/10.1017/s0952523817000049
https://doi.org/10.1017/s0952523817000049
https://doi.org/10.2307/2183914


Pavese F, Charki A (2016) Some important features of the proposed

new definition of the International System of Units (SI):

realization and hierarchical problems that the users should know

about. Int J Metrol Qual Eng 7:403. https://doi.org/10.1051/

ijmqe/2016023

Peters JF (2014) Topology of digital images: visual pattern discovery

in proximity spaces. Springer, Berlin. https://doi.org/10.1007/

978-3-642-57845-2

Peters JF (2016a) Computational proximity. Excursions in the

topology of digital images. Springer International Publishing,

New York City. https://doi.org/10.1007/978-3-319-30262-1

Peters JF (2016b) Two forms of proximal, physical geometry.Axioms,

sewing regions together, classes of regions, duality and parallel

fibre bundles. Adv Math Sci J 5(2):241–268
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