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Abstract
We developed a framework to study brain dynamics under cognition. In particular, we investigated the spatiotemporal

properties of brain state switches under cognition. The lack of electroencephalography stationarity is exploited as one of

the signatures of the metastability of brain states. We correlated power law exponents in the variables that we proposed to

describe brain states, and dynamical properties of non-stationarities with cognitive conditions. This framework was

successfully tested with three different datasets: a working memory dataset, an Alzheimer disease dataset, and an emotions

dataset. We discuss the temporal organization of switches between states, providing evidence suggesting the need to

reconsider the piecewise model, in which switches appear at discrete times. Instead, we propose a more dynamically rich

view, in which besides the seemingly discrete switches, switches between neighbouring states occur all the time. These

micro switches are not (physical) noise, as their properties are also affected by cognition.
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Introduction

The study of the dynamics and integration of information

in the brain reveals fascinating coordination mechanisms.

Take for instance the integration of low level visual

information during the well-known feature binding process

(Treisman 1996; Schneegans and Bays 2017; Fitousi

2018). We will not describe in detail feature binding here,

but rather take enough elements from it to illustrate our

point. When perceiving an object, information from dif-

ferent sensory modalities is registered in physically sepa-

rated brain areas (Robertson 2003; Kondo et al. 2017).

Even considering only the visual modality, colour, shapes,

sizes and motion are registered in parallel at different

locations. Ungerleider and Mishkin [cited in Treisman

(1998)] proposed a ventral pathway registering colour and

shapes, and a dorsal pathway coding motion and space. Our

visual field is populated by a collection of objects that

usually change over time. It can be concluded then that as

objects or their properties change in our visual field, dif-

ferent brain regions engage and disengage in transient

states of coordination. In addition, visual perception does

not only involve low level signals, but also top-down

effects. The mere concept of an object requires us to

identify properties such as manipulability or topological

connectedness (Taraborelli 2002). Beyond the visual

modality, the environment that we perceive consists of a

broadband, high temporal resolution stream of information.

Furthermore, generally speaking cognitive functions

require the interaction of low level and high level infor-

mation, external and internal. Emotions, external stimuli,

intentions and memories all interact in a coordinated

fashion in our brain, and the mind can be thought of as the

workspace in which these interactions occur. Writing down

an idea (in a syllabic writing system), a simple everyday

task, can illustrate this intricate set of interactions. To

accomplish this task, an abstract idea needs to be phrased

in words in our mind, and further decomposed into its

constituent phonemes. The graphemes corresponding to the

phonemes must be retrieved from memory, and visual,

motor and haptic information must be integrated to perform

the actual writing.
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How does the brain manage to self organise to create

and annihilate these transient coordination involving low

and high level information? As early as 1974, Katchalsky

et al. [cited in Werner (2007)] wrote ‘‘waves, oscillations,

macrostates emerging out of cooperative processes, sudden

transitions, patterning, etc. seem made to order to assist in

the understanding of integrative processes of the nervous

system’’. More recently, the concept of metastability, or in

general that of transient spatio-temporal patterns has

attracted attention. Lehmann and his colleagues (Lehmann

1971; Milz et al. 2016) developed the concept EEG micro-

states, temporary patterns of electric activity observed in

EEG recordings. These EEG micro-states remain quasi-

stable at the sub-second scale, to later give rise quickly to

other patterns. EEG micro-states do not only appear during

ongoing activity, but they are known to be modulated by

cognitive activity (König et al. 1998; Lehmann et al.

2004), or conditions such as depression (Strik et al. 1995)

or schizophrenia (Strelets et al. 2003). In the context of

perception, Freeman and Holmes (2005) describes

metastability in the neocortex with the recurrence of spatial

patterns of phase and amplitude, or frames. These frames

(Freeman and Kozma 2010; Kozma and Freeman 2017)

carry the meaning of sensory information in spatial patterns

of cortical activity that resemble discrete film frames.

Buzsaki (2006, Chapter 5) suggests that the brain is in a

high complexity, critical state, as might be evidenced by

the power law (pink noise, in particular) in the EEG power

spectral density. He proposes as well that the most

important property of cortical brain dynamics is the ability

to rapidly switch between metastable pink noise and

oscillatory behaviour. Under this view, sensory or motor

activity are perturbations (which we will refer to as dis-

turbances) that can temporarily reorganize the effective

connectivity to induce ‘‘transient stability by oscillations’’.

An oscillatory, short-lived regime can hold information

required for psychological constructs, whereas the critical

state allows for an efficient switching between states. Co-

ordination dynamics (Kelso 2012; Bressler and Kelso

2016) is a theoretical framework in which complex systems

theory is used to model this transient coordination.

Metastability in this framework is a dynamical regime for

the relative phase of coupled oscillators in which all

stable fixed points have disappeared. Phase trapping, tem-

porarily convergent dynamics, and phase scattering, tem-

porarily divergent dynamics, are the result of competing

tendencies. On the one hand, segregation, or modularity,

promoting independent behaviour and local coupling; on

the other hand, integration, a global attempt for coopera-

tion. One of the reasons why the author proposes

metastability is that, unlike multistability (where

stable fixed points still exist), metastability does not require

disengage mechanisms (such as stochastic noise or energy

flow) for state switching. Tognoli and Kelso (2014) point

out that although the concept of phase locking1 has gained

increasing relevance in the study of neural assemblies’

synchronization, transients have not received an adequate

attention due perhaps to the lack of truly dynamical

approaches. According to them metastability has yet to be

demonstrated and fully treated from a spatiotemporal per-

spective. To go a step further in that direction, we propose

the framework presented in this study.

We propose that a suitable candidate to study brain

metastability is the lack of EEG stationarity. EEG is known

to be non stationary (Barlow 1985; Shin et al. 2015), it is

considered however that it is composed of a succession of

locally stationary segments. Kaplan et al. (2005) suggest

that these non stationarities might arise from the switching

of the metastable states of neural assemblies during brain

functioning. Surprisingly, although EEG non stationarity

might result from normal brain functioning, few research-

ers investigate directly whether non stationarities can

convey relevant information about cognition, or about

brain functioning in general. Most of the times, EEG

nonstationarity is either not discussed at all, or considered

as problem to circumvent given that many techniques such

as power spectral density estimations, complexity measures

and autoregressive models require stationarity. Common

approaches are signal segmentation into stationary epochs

(Agarwal and Gotman 1999; Florian and Pfurtscheller

1995; Azami et al. 2015), or the use of techniques that do

not assume stationarity (Hazarika et al. 1997; Krystal et al.

1999). To list a few exceptions, Kaplan et al. (2005)

developed a technique estimating synchrony between any

two channels (operational synchrony) as the degree to

which they undergo simultaneous switches. Cao and Slo-

bounov (2011) studied the change of the dominant fre-

quency of the EEG signal over time, and used this measure

to detect residual abnormalities in concussed individuals.

Kreuzer et al. (2014) found in a study regarding depth of

anaesthesia, that during loss of consciousness stationarity is

heavily influenced by the anaesthetic used. Fingelkurts and

Fingelkurts further developed operational synchrony to

propose the framework of operational architectonics

(Fingelkurts and Fingelkurts 2001), aiming at characteriz-

ing the temporal structure of information flow in func-

tionally connected neural networks.

Most of the above cited research, from EEG micro-

states to EEG non-stationarity, assumes discrete timing.

Switches occur in an abrupt manner, and the region

remains in the same state until the next switch. Fingelkurts

and Fingelkurts (2006) discuss the differences between the

concepts of elements of thought and stream of conscious-

ness. They review psychophysical, electrophysiological,

1 Neurons functionally coupled, that spike at a constant delay
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neurophysiological and computational support for either

discreteness or continuity of timing in cognition. Lehman

and his colleagues postulate as well that the seemingly

continuous stream of consciousness is actually a concate-

nated sequence of building blocks (Lehmann 1990). While

acknowledging the existence of such discrete, abrupt

changes, we investigate the time scale at which transitions

happen, and whether small fluctuations around these states

are noise or, alternatively, driven by cognition, which

would be more compatible with continuous timing.

We take an empirical approach. We take a set of min-

imal assumptions about the spatiotemporal organization of

brain dynamics under cognition, and derive from them a set

of measurable properties. With said set of properties we

train a classifier and classify data recorded from subjects

undergoing specific (and known) aspects of cognition. If

the assumptions are true and the specific aspect of cogni-

tion targeted affects the proposed measurable properties,

then these properties will carry information about cogni-

tion. This information will allow classification with better

accuracy than a random classifier. Our datasets consist of

EEG recordings regarding Working Memory (WM), Alz-

heimer Disease (AD) and emotional valence.

Methods

We are interested in finding measurable physiological

variables that are related to brain states, in characterizing

the spatio-temporal properties of these variables, and in

correlating these properties with cognition. EEG micro-

states could be a candidate framework to study empirically

the dynamics of transient coordination and spatio-temporal

pattern formation under cognition. However, instead of

using directly voltage values that are expected to be erratic

individually, metastability can provide a hint to define

surrogate variables directly related to brain states.

In statistical physics, a metastable system is a system out

of equilibrium, with several available states (for instance

liquid, solid and gas for water), and near the boundary

between a subset of them. External inputs (energy, noise,

matter...) can drive the system into one state or the other.

As long as the system stays in a given state, the state

variables (the distribution of molecular velocities in the

case of water) of the system remain stationary, that is, the

underlying distribution of the state variables does not

change over time. Therefore, by definition,

metastable systems are piece-wise stationary. In the case of

the brain, ideally, we should take the electric activity of

single neurons as state variables, but due to this impossi-

bility, EEG measurements will be considered the state

variables. It is possible then to divide the brain into regions

corresponding to the EEG channels, and, assuming

metastability, define the appearance of a state switch as the

time at which the underlying EEG distribution changed.

Having identified the times at which switching occurs,

the next question is how to characterise a state. When a

statistical distribution changes, its statistical moments

(mean, variance, skewness, kurtosis, ...) change as well. If,

by definition, during the course of a state the underlying

distribution of the system remains constant, then the col-

lection of statistical moments can be used to characterise a

state. A statistical distribution has an infinite number of

moments, however, we suppose just as Von Bünau et al.

(2009) that changes in EEG stationarity are already visible

in the first statistical moments. To study these changes in

statistical properties, for a given channel, at a given time t,

we compute v(t), s(t), and k(t): the estimations of the

variance, skewness and kurtosis over a short time window2

centred at t. The length of the window depends on the

frequencies to be investigated, as will be explained in the

‘‘Methods’’ section. The vector v(t), s(t), and k(t) is a tra-

jectory parametrised by time. During the course of a state,

the elements of this vector are expected to remain constant,

and hence the system will remain in one point of the three-

dimensional space where the trajectory is embedded. When

the underlying distribution changes, the system will move

to another region of that space. We have then constructed

variables that are sensitive to metastable state switches.

As a graphical example, take a random variable drawn

from a normal distribution Nð�3; 1Þ. After a certain time

t0 ¼ 0, the underlying distribution changes to Nð2; 3Þ, as
we observe in Fig. 1a. Using a sliding window, we can

compute the estimation of the first two statistical moments:

the mean in blue, and the variance in red, in Fig. 1b. The

time series of the estimation of the mean and variance can

be considered a 2-dimensional trajectory, as shown in

Fig. 1c. In this 2-dimensional space, a point is a state, and

evidently there is estimation noise arising from the fact that

the window has a finite length. If switches occur in a dis-

crete manner, fluctuations in Fig. 1b at times other than t0
are artifacts due to this noise only. We will show in

‘‘Method 1: Temporal structure of the switches’’ section

that as these fluctuations correlate with cognition they are

not only estimation noise, and therefore the assumption that

switches occur at discrete times must be questioned.

We have shown that above trajectory is affected by

metastable state switching, and our working hypothesis is

that if these states are representative of cognitive opera-

tions, then cognition should affect the properties of the

trajectory in a predictable manner. In other words, we

2 The EEG time series have been detrended via high pass filtering,

therefore we do not estimate the mean. In addition, an ensemble of

identical brains is evidently an impossibility, therefore, by taking a

time window, we assume that the process generating the signal is

ergodic.
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expect these states to reflect the local underlying dynamical

regime, and how it changes to support different cognitive

requirements. The methods described in this work aim at

capturing these changes induced by cognition.

Data acquisition

Three datasets were used, a WM dataset, an AD dataset and

an emotions related dataset. All recordings performed by us

followed the principles outlined in the Declaration of

Helsinki. All participants were given explanations about

the nature of the experiment and signed an informed con-

sent form before the experiment started.

WM dataset

20 subjects performed a WM task as described in Mora-

Sánchez et al. (2015). The dataset consists of 530 trials

lasting 10 s each. 281 of them correspond to low WM load

and the rest to high WM load. All the artifacted trials were

discarded, and eye blinks were removed with Independent

Component Analysis (Bell and Sejnowski 1995). The

sampling rate was 500 Hz, and 16 channels of the inter-

national 10–20 system were used: Fp1, Fp2, F7, F3, Fz, F4,

F8, Cz, CP5, CP6, P3, Pz, P4, O1, Oz, and O2.

AD dataset

We used the same dataset as Vialatte et al. (2005).

Recordings from 61 subjects were collected, 23 of which

were AD patients, and the rest healthy, age-matched con-

trols. For each subject 20 s of continuous recordings were

available. Data was sampled at 200 Hz, using 21 channels:

Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8,

P7, P8, Fz, Cz, Pz, FPz, and Oz. Each 20 s recording was

divided into 8 epochs. In total 488 epochs were analysed,

184 corresponding to AD patients and the rest to healthy

controls.

Emotions dataset

We used the processed version of the DEAP dataset for

emotions (Koelstra et al. 2012). 32 participants watched

videos and rated them based on valence, arousal and

dominance, in an integer scale from 1 to 9. EEG data was

recorded while the subjects watched the videos, and our

objective was to classify valence in two classes, one cor-

responding to the first half of the range of the scores, and a

second class corresponding to the second half. Data was

sampled at 128 Hz, using 32 channels: Fp1, AF3, F3, F7,

FC5, FC1, C3, T7, CP5, CP1, P3, P7, PO3, O1, Oz, Pz,

Fp2, AF4, Fz, F4, F8, FC6, FC2, Cz, C4, T8, CP6, CP2, P4,

P8, PO4, and O2. EOG artifacts were removed as indicated

in Koelstra et al. (2012). The original 60-s trials were

divided into 10-s epochs, which gave rise to 7680 epochs,

3876 of which corresponded to negative valence.

The framework

For a schematic representation of the type of measures that

we want to derive, we can imagine that we divide the brain

into N regions: r1; r2; . . .; rN . We consider the state of

region ri at time t to be siðtÞ. Whenever siðt1Þ 6¼ siðt2Þ, at
least one switch is said to have occurred for a given t in the

interval ½t1; t2�. We want these states to represent a partic-

ular operation, for the sake of concreteness, siðtÞ might be

for instance registering colour red in brain region i at time

t. Suppose for simplicity that we study only 3 regions, that

time is discrete and that region 1 has access to states

A, B and C; region 2 has access to states D, E and F; and

region 3 has access to states G, H and I. Now imagine two

different cognitive conditions (see the ‘‘Methods’’ section

for more details about what we call cognitive conditions),

for instance low WM load and high WM load. If we follow

the dynamics for a few time steps, we might observe

something similar to what is depicted in Fig. 2:
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Fig. 1 a A synthetic signal. The underlying statistical distribution

changes in the middle. b The time series of the evolution of the

estimation of the two statistical moments over time, when using a

window of 50 time points. c The process viewed as a trajectory in the

space of states. Each dimension of this space is the estimation of a

statistical moment
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Evidently in the brain the number of accessible states is

not necessarily finite and time is not necessarily discrete.

Nonetheless, this toy example allows us to observe the

behaviour that we expect to capture. We can follow over

time any of the regions, let us take r1. At the boundary

between conditions a dynamical change occurs, the suc-

cession of states becomes slower, and more states become

available (state C in particular). In addition, while r1 was

engaged with r3 in condition 1 (they had similar dynamics),

in condition 2 it disengages from r3 and engages with r2.

We ask the following questions:

1. Do regions experience state switches more often in one

cognitive condition than in the other? Do state switches

occur in a discrete manner, or continuously?

2. Are pairs of regions more or less engaged depending

on the cognitive condition?

3. Is there some underlying criticality affecting state

switching dynamics? Do critical parameters depend on

cognition?

4. Does the cognitive condition affect the available states

and the time spent in each state?

A way to address these questions is to construct spatially

localized variables that represent the time evolution of

brain states in the region of the cortex whose activity was

inferred by the scalp recordings. We will then derive

measurable properties from the above questions. We

hypothesize that the vector ðvðtÞ; sðtÞ; kðtÞÞ 2 R3 described

in ‘‘Methods’’ section can be seen as a three-dimensional

feature vector sensitive to brain-state switches. In general,

by considering n moments, each trajectory is embedded in

an n-dimensional space, and we expect to test whether

cognition affects the spatiotemporal structure of these tra-

jectories. We will call this vector time series the channel

state surrogate time series (CSS(t), or simply CSS). There

are references throughout this text to small or large tran-

sitions, and the distance between states (or switch size) can

be defined as being proportional to the norm of the velocity

of the CSS (the speed time series velðtÞk k ¼ d
dt
CSSðtÞ

�
�

�
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v0ðtÞ2 þ s0ðtÞ2 þ k0ðtÞ2
q

), because the signal is sampled at

a constant rate and the window size remains constant over

time. Therefore the more the next states differs in its sta-

tistical properties from the current one, the larger the value

of the speed time series will be at every time point. Another

important property of the speed time series is that, as the

CSS remains constant over the course of a state, the speed

time series vanishes except around state-switching time

points.

Once a biologically plausible way to numerically char-

acterize states and transitions has been developed, we can

go back to the questions. All of them, except the one about

discreteness or continuity, can be rephrased as does cog-

nition affect property X? In the next section we will derive

from each property X a measurement, or feature (feature

being taken here in its machine learning sense, not to be

confused with the feature binding problem discussed

above). Then we will investigate the potential of each of

these properties to correctly classify cognitive conditions.

Regarding the question of continuity versus discrete-

ness, we will assume discreteness and provide inconsistent

evidence in the following way. We will only keep the

switches considered spurious (due to estimation noise) if

discreteness holds, and assess whether we are still able to

classify cognitive conditions with performance above ran-

dom classification.

For methods 1, 2 and 4, before computing the CSS, the

EEG signal spectrum was segmented into the usual phys-

iological bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12

Hz), lower beta (12–20 Hz), upper beta (20–30 Hz) and

lower gamma (30–45 Hz). For bandpass filtered data, we

computed the CSS using a sliding window of length L ¼
1=fmin s, where fmin is the minimum frequency of the cor-

responding band, so that each window contains at least one

full oscillation of the smallest frequency. Method 3 did not

involve bandpass filtering, as its purpose is to estimate the

shape of the power spectrum of the CSS. For method 3 the

window length was 0.1 s, considering the length of sta-

tionary EEG segments reported in the literature (Klo-

nowski 2009).

For every method, after feature extraction, relevant

features are selected by Gram–Schmidt Orthogonalization.

In particular, we implemented the algorithm described in

citepstoppiglia2003ranking, where features are ranked in

order of decreased relevance to the output. The selected

features were then feed to a Linear Discriminant Analysis

(LDA) (Fisher 1936) classifier. The task of the classifier is

to discriminate between cognitive conditions: high versus

low WM load in the first dataset, AD versus control in the

second dataset, and positive versus negative valence in the

Fig. 2 A simplified illustration

of the spatiotemporal

organization that we expect to

capture. There are three regions:

r1, r2 and r3. Each region has

three available states. If we

follow the state of r1 over time,

we will observe that not only

did the temporal behaviour

change when condition 2

started, but also r1 engaged in

joint activity with a different

region
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third dataset. If, after cross-validation, the performance of

the classifier is better than that of a random classifier, we

can conclude that the features carry information about

cognition and hence are modulated by cognition. The

results of the process are the classification performance

estimated by cross-validation, and the set of most infor-

mative features.

Due to the imbalance of the AD dataset, the Area Under

the Curve (AUC) (Hanley and McNeil 1982) of a Receiver

Operating Characteristic (ROC) curve was used as the

measure of classification performance. A ROC curve is not

influenced by the imbalance of the classes, and its AUC

value is typically 0.5 for a random classifier, and 1 for a

perfect classifier. Values larger than 0.5 indicate perfor-

mance better than random. The statistical significance of

the performance of the classifier was estimated by replac-

ing the features with random numbers and iterating the

classification process 300 times. We counted the fraction of

times that the performance with the random features was

higher than the observed performance. For cross-validation

using the AD dataset, when classifying a subject, the whole

subject data was left out of the learning set, given that in a

real-life diagnosis task, there is no available information

about the subject to be diagnosed. On the other hand, only

half of the subject data was left out for the WM and

emotions datasets, simulating the calibration process

common in brain-computer interfaces. Half of the subject

data was left in the learning dataset for calibration, how-

ever, classification was done always on EEG epochs that

had not been ‘‘seen’’ by the classifier.

The implementations of all the algorithms were written

by us in Matlab 2017b, except for the following built-in

Matlab functions: fitcdiscr for the LDA classifier, filtfilt and

butter for creating a third order Butterworth filter for the

signal, and perfcurve to estimate the AUC.

Each of the following sections is an attempt to address

one of our main questions.

Method 1: Temporal structure
of the switches

The motivation behind Method 1 is to investigate the

temporal structure of brain state switches. In particular,

whether these switches occur at discrete or continuous

times, and to what extent cognition affects such continuous

or discrete dynamics. Discrete switching assumes that

small transitions are noise, whereas large transitions are the

result of brain functioning.

For each channel and for each band, the speed time

series (that, as it was mentioned before, vanishes except at

state-switching time points) was sorted by amplitude. Only

the fraction F of the samples for which the velocity was

smallest was used to compute the mean speed, and mean

speeds were used as features for classification. The per-

formance of the classifier was studied as a function of

F. For small values of F, we would pick only noise under

the assumptions of discreteness (and hence piece-wise

stationarity), and transition size larger than noise. As F in-

creases, if these assumptions are true, the classification

performance should start gradually improving and be better

than random classification above a certain threshold value.

Method 1 therefore consisted in using the parameter F that

maximises the performance of the classifier under cross-

validation. To compare how small transitions behave as

compared to large transitions, we studied also the perfor-

mance of the classifier when F represents the fraction of the

samples for which the velocity was largest.

Results specific to Method 1

Figure 3 shows the performance of the classifier using

Method 1, as a function of the fraction F, for the WM

dataset when using only the upper beta and lower gamma

bands (combined, for simplicity, to use a single window).

Only high frequencies were considered in order to use a

small sliding window, and only the WM dataset was used

for this figure due to its high sampling rate. The window

size used was L ¼ 1=20 s, or 25 points. The blue dots

correspond to the classification performance obtained using

only the fraction F of transitions that had the smallest

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction

0.58

0.6

0.62

0.64
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A
U

C

Small transitions kept
Large transtions kept

Fig. 3 WM dataset using only upper beta and lower gamma ranges. The

mean speeds of the CSSs were used as features. To compute the mean, the

smallest (blue) and largest (red) F fraction of amplitudes were used. The

classificationperformance is studied as a functionofF. (Color figure online)
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velocities. For the red dots, we used the fraction F that had

the largest velocities.

Figures 4, 5 and 6 show the performance of the classi-

fier, using Method 1, as a function of the fraction F when

using all the bands, for the three datasets. For each band

and for each channel there was a time series whose

amplitudes were sorted by size, hence the total number of

features of the classifier in these cases equals the number of

channels multiplied by the number of bands.

Discussion specific to Method 1

The blue lines of Figs. 3, 4 and 6 show that even for small

values of F, classification performance is well above ran-

dom, which means that small transitions are not noise.

Furthermore, not only these transitions are not noise, but

they are better predictors of cognition than large transi-

tions. To further elaborate on this we can analyse Fig. 3.

The blue curve reflects the behaviour when the fraction F

concerns the smallest transitions, while for the red curve

the fraction F pertains to the largest transitions. We can

observe two things. First, already in the left part of the blue

curve classification performance is above random and

therefore small transitions are not noise. Second, the blue

curve is always above the red curve, which means that

given any fraction F, it is always more informative to take

the F smallest transitions than the F largest transitions. As

we gradually increase F following the blue curve, we pick

larger transitions and classification performance increases,

up to a point, at which performance starts decreasing when

we add larger and larger transitions. As it was mentioned in
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Fig. 4 WM dataset. Performance of the classifier as a function of the

fraction of transitions kept. In blue, keeping small transitions only, in

red, keeping large transitions only. (Color figure online)
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Fig. 5 AD dataset. Performance of the classifier as a function of the

fraction of transitions kept. In blue, only the small transitions were

kept, in red, only the large ones. (Color figure online)
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Fig. 6 Emotions dataset. Performance of the classifier as a function of the

fractionof transitions kept. In blue, small transitions, in red, large transitions.

Due to the large size of the dataset, the performance of the classifier was

computed for a smaller number of values of F as compared with the other

datasets, and hence the figure is less smooth. (Color figure online)
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the previous section, only the b range was used, and the

window size used was L ¼ 1=20 s, or 25 points. If all the

points are informative, it means that there are at least 20

switches per second, because the sampling rate is 500 Hz.

More than twenty switches per second means that the inter-

switch duration (the lifespan of a state) is smaller than the

wavelength, and therefore the switching could be effec-

tively considered as continuous. We decided to focus only

on high frequencies aiming at contrasting the results with

the reported lengths of stationary segments, usually larger

than 1/20 s. Figure 4 reveals the same behaviour when

considering all the bands. Figure 6 shows a similar mech-

anism for the emotions dataset. The exception to this

behaviour in which small transitions are more informative

was the AD dataset, as shown in Fig. 5, suggesting that for

diagnosing AD large transitions are more relevant. The

latter could be explained by the fact that patients in this

database were not performing any cognitive task, therefore

localized activity of brain circuits during processing (likely

to cause the small transitions) was not present. Further-

more, it is compatible with findings of ‘‘slowing’’ of the

brain rhythms found on AD patients, for which has been

reported a decrease of the alpha power, and an increase in

the delta and theta power (slow rhythms) as compared to

healthy controls (Schreiter-Gasser et al. 1993). With

dominant slower rhythms, it would be expected that most

of the information is carried by slow transitions.

It seems clear that the temporal structure of the statis-

tical properties of EEG carry information about cognition.

This in turn provides evidence supporting the claim that

these metastable states correspond to brain states driven by

cognition. On the other hand, as mentioned in the intro-

duction, theoretical considerations such as the stability

required to sustain oscillations led other researchers to

postulate discrete timing. Based on this hypothesis they

found evidence that large transitions between states, as

observed by large changes in the EEG properties (rapid

transition processes or phase resetting events), correlate

with cognition. In this study, we provide evidence showing

that not only do small transitions convey information, but

indeed they seem to carry more information than large ones

under certain circumstances.

Method 2: Spatial synchrony between states

If regions engage and disengage in joint activity depending

on cognition, we can compute synchrony between pairs of

CSSs and test whether synchrony values are different for

different cognitive conditions. The CSS is 3-dimensional,

and therefore the norm of the CSS was used as a proxy-

CSS (pCSS) whenever a method required, for clarity, a

1-dimensional representation of the state. For each EEG

epoch, we computed the mutual information between pairs

of pCSSs, and these values were used as features to build

the classifier. Having six series per channel, and 16 (WM

dataset), 21 (AD dataset) or 32 (emotions dataset) chan-

nels, the potential number of combinations are in the order

of several thousands. To prevent overfitting, only the CSSs

whose time derivatives provided the best features for

Method 1 were taken into account for measuring the spatial

synchrony in terms of their mutual information estimation.

The number of combinations considered was set by cross-

validation, but was required to be lower than 10. While

Method 1 is meant to capture regularities in the temporal

structure of the proposed variables for each condition,

Method 2 aims to capture spatial structure by using mutual

information between selected pCSSs as features.

The results and discussion concerning this method will

be part of the global section.

Method 3: Power law of the power spectra

Power laws are not sufficient to guarantee criticality

(Newman 2005), however, scale-free behaviour, like power

laws, emerges from self-organized criticality. If indeed the

brain is in a critical state that allows effective switching in

the proposed states, we would expect a power law in the

Power Spectral Density (PSD) of the pCSS. If there is some

functional meaning of this power law, its properties should

be affected by cognition. An important property to look at

is the scaling factor of the power law, as it determines its

memory properties (Miramontes and Rohani 2002): the

extent to which past events affect the present, and hence

the extent to which disturbances (sensory or motor, in this

context) propagate.

A power law was fitted to the PSD of the pCSS. The

CSS used for the power law was not filtered in any par-

ticular band, as we are studying the whole spectrum,

therefore there is only one pCSS per channel. A linear fit in

a log–log plot of the PSD of the pCSS was performed and

the slope was used as a feature. The power law hypothesis

was tested using the criteria of Clauset et al. (2009). For a

given sample, the test developed by Clauset et al. fits the

sample to a power-law, and generates synthetic samples

drawn from the same power-law distribution. Afterwards, a

Kolmogorov–Smirnov test is used to decide whether the

real and the synthetic samples belong to the same distri-

bution (null hypothesis). The null hypothesis was accepted

when the Kolmogorov–Smirnov test yielded a p-value

larger than 0.1. The estimation of the coefficient suggested

by the same article was not used, given that it provided

significant, yet lower classification performance. As men-

tioned before, this method is meant to test whether there is

cognitive-driven scale-free behaviour in the proposed
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variables, and hence the slope of the fit was fed to the

classifier.

Results specific to Method 3

The Kolmogorov–Smirnov test failed to reject the null

hypothesis (power law) 98% of the time for the WM

dataset, 83% of the time for the AD dataset, and 62% of the

time for the emotions dataset. The fit of a randomly chosen

AD trial is shown in Fig. 7, x values are the amplitudes of

the PSD of the pCSS.

Discussion specific to Method 3

It is important to remember here that for Method 3 we

computed the PSD of the CSS, not the one of the raw EEG.

Therefore, high frequencies mean small transitions. EEG is

a particularly noisy signal, and for high frequencies the

noise might be larger than the signal. A power law fit

however allows us to infer the behaviour at the tail (large

frequencies, or small transitions in this case) by studying

more accessible regions of the system. In addition, the

power-law hypothesis supports the claim of criticality,

where information (such as sensory or motor) is optimally

transferred, as discussed in the introduction. Furthermore,

cognition modulates power law exponents, and therefore

the propagation of information.

Method 4: Most visited states,
and how many of them are available

Having variables that represents local brain states, it is

interesting to ask whether certain cognitive conditions

impose a richer set of states, and if these states are equally

present or not.

As we are in a dynamical framework, we can borrow the

concept of phase space. For an n-dimensional system, the

phase space is a 2n-dimensional space able to express all

the possible positions and velocities of all of the n com-

ponents. A point in the phase space is a particular dy-

namical state: a specific value of all the n positions and

velocities, that completely captures the instantaneous

dynamical properties. We will analyse each CSS sepa-

rately, in particular, the 1-dimensional pCSS, so that our

phase space is two-dimensional. To clarify, a dynamical

state is not exactly the same as the above mentioned brain

states. Here, a dynamical state is the 2-dimensional com-

bination of the pCSS(t) and its time derivative. In other

words, it is the surrogate of the current brain state plus

dynamical information about it.

We discretized the phase space in the following way.

The full range of the pCSS was divided into 20 bins, the

range was from 0 to 25. Its time derivative was divided into

20 bins, ranging from – 2 to 2. The ranges were chosen

after analysing the intervals in which the pCSS and its time

derivative usually fell. The number of bins was not thor-

oughly optimized, given that results were robust to dif-

ferent number of bins. For each pCSS, such discretization

scheme produced a 20 9 20 grid (see Fig. 8) spanning the

phase space. The element i, j of the grid is a dynamical

state si;j.

With the discretised version of the phase space, we used

an entropy measure to characterize it:

H ¼ �
X20

i¼1

X20

j¼1

pðsi;jÞlog pðsi;jÞ
� �

where pðsi;jÞ is the probability of dynamical state si;j,

measured as the fraction of time that the system spent in

dynamical state si;j.

The above measure is small when, for a given period of

time, the dynamical system is found only in a small set of

dynamical states. It is large on the other hand when the set

of states is large and the probability of observing each of

the states is similar. The values of H for each of the pCSS

were used as features for this method.

Results specific to Method 4

Figure 8 provides visual information of how the dynamical

states are visited for each cognitive condition. For
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Fig. 7 Power law fit of a randomly selected AD trial. The x values are

the amplitudes of the PSD of the pCSS
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generating the figure, we selected for each dataset only the

feature ranked first by the OFR algorithm, i.e, the feature

that carries the largest amount of information about the

output. In this case, it is the particular channel and the

particular band at which the entropy measure related to the

phase space changed the most across cognitive conditions.

For the WM dataset the best feature was channel F4 filtered

in the lower beta range, for the AD dataset the best feature

was channel Oz filtered in the alpha range; finally, for the

emotions dataset, the best feature was electrode T8 in the

lower gamma range. For a given condition we performed

the grand average with data from all the subjects, and

plotted how the discretised phase space was visited as a

logarithmic heatmap. Red tones represent states that were

more visited. For the sake of visual clarity, for generating

the images the ranges were slightly modified as compared

to the above description of method 4. The pCSS was

divided into 20 bins as before, but for each dataset, the

discretisation range was chosen as the interval ranging

from the minimum value to the maximum value of all the

pCSSs (from all the subjects and all the trials). The dis-

cretisation range for the time derivative of the pCSS was

chosen in the same manner.

Discussion specific to Method 4

The OFR method selected, for each dataset, features con-

sistent with other studies in the literature. Occipital alpha

activity had been reported as a marker of AD (Huang et al.

2000; Prinz and Vitiell 1989), lateralised activity elicited

by valence had been reported as well (Harmon-Jones and

Allen 1998) (Khalfa et al. 2005). However, a dynamical

approach allows us to go a bit further. Consider occipital

activity in AD disease. Healthy controls have access to a

richer set of dynamical states. Furthermore, if we ignore

the dynamical part (velocity-axis), and observe only how

the distribution of brain states changes across conditions,

the available number of states turns out to be also richer for

the healthy controls, suggesting loss of functions (both

dynamic and in terms of available brain states) related to

Fig. 8 Visual representation of

the most visited states of the

(discretized) phase pace for

each condition, for each dataset.

The feature (a specific channel

at a specific band) ranked first

by OFR was selected to

generate the image
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AD disease. It is important to consider that subjects

recorded for this dataset were not performing any particular

task, and therefore the observed states are due to sponta-

neous ongoing activity. By contrast, the other two datasets

were collected while subjects performed specific tasks, and

therefore the observed states might be task-specific. The

WM figures show that the low WM condition has the richer

set of states. The low WM condition did not require full

engagement, and subjects reported performing various

mental activities while completing the task: from planning

their evening activities to be attentive to possible back-

ground conversations. The high WM condition on the other

hand required full engagement, and the small set of states

may be specifically related to WM. Regarding valence, let

us observe the third row of images, corresponding to the T8

electrode, located in the right hemisphere. The dynamical

richness of the right hemisphere is much higher for positive

valence, as compared to negative valence. It has been

proposed that negative emotions are processed in the right

hemisphere (Ahern and Schwartz 1979). The right hemi-

sphere could be engaged in a small set of task-specific

states while exposed to negative valence material. On the

other hand, the observed large set of states related to the

positive valence condition could be ongoing activity. Evi-

dently the right hemisphere does not devote all its resour-

ces to the processing of emotions. We observe in the

figures only the most visited states, not the totality of them.

The same reasoning applies to the WM dataset. The above

findings can be summarized by stating that task-related

activity seems to elicit a small, perhaps more specific set of

states. The task-free AD dataset on the other hand suggests

that AD decreases the dynamical richness of ongoing

activity. Steyn-Ross et al. extended mean-field models3,

that consider only chemical synapses, to include diffusive

effects via electrical synapses (Steyn-Ross et al. 2009).

They found different patterns of self-organisation depend-

ing on the time-scale of somatic and dendritic dynamics. If

soma voltage remains almost constant during dendritic

integration, their model displays patterns consistent with

ongoing activity. On the other hand, if both time-scales are

comparable, they observe faster dynamics, consistent with

cognitive activity. They provide clinical evidence sup-

porting the findings of their model. In their model as well

as in our empirical analysis, patterns of self-organisation

are different in nature for ongoing and for cognitive

activity; in addition, cognition-driven activity exhibits

faster dynamics (with small, more frequent transitions

being more informative in our analysis).

Baseline: power spectral density

Although the aim of the study is not to develop a feature

extraction method, but rather to address questions about

brain dynamics, spectral features were used as a baseline to

compare classification performance. Spectral features

included power in the delta (1–4 Hz), theta (4–8 Hz), alpha

(8–12 Hz), lower beta (12–20 Hz), upper beta (20–30 Hz)

and lower gamma (30–45 Hz) ranges. The frequency bands

used were the same as in Methods 1 and 4, to maintain an

equal number of features. Table 3 shows the comparison

between methods, using power spectral density as baseline.

Control tests

Control test 1: Destroying temporal structure
and assessing statistical significance

A large part of the motivation of this work is to investigate

the temporal structure of brain state switches. To provide

more convincing evidence that what we are measuring is

indeed a result of the time organization, we used shuffled

variables. We computed the CSS, and before computing its

time derivative we shuffled it. Then we applied Methods 1,

3 and 4 and tested whether classification power disap-

peared. Method 4 is a mixture of static (distribution of

states) and dynamic (states having a certain speed) infor-

mation, and therefore using shuffled data should not nec-

essarily destroy all the information. Method 2 is about

spatial synchrony and therefore is not concerned: in fact,

mutual information is not affected by the temporal struc-

ture of the data. We iterated the above procedure 300 times

for each dataset for each method, and observed how often

classification results were better than the ones we observed

with no shuffling. In addition to the shuffled data, random

features drawn from a uniform distribution were used too.

300 iterations were performed with random data, and we

computed the fraction of the iterations for which classifi-

cation performance was higher than the observed results.

While random features helped assess the statistical signif-

icance of the methods, by shuffling the data we explore the

validity of a particular claim, namely, that the observed

results arise from the temporal organization of the

switches. In the next section we further refine the control

tests by targetting not the general temporal structure of the

variables, but rather events that might be considered as

switches in the discrete model.

3 Instead of modelling individual neurons, the mean-field approach

considers the activity of space averaged cortical patches. These

models are expected to reproduce properties observed in space-

averaged brain imaging techniques, such as EEG, MRI or MEG.
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Control test 2: removing known discrete events

Models based on discrete switches assume that switches

between states occur at precise instants that can be tracked.

In Freeman’s work these points correspond to phase

resetting in the original EEG signal (Ruiz et al. 2010). In

Kaplan’s work they are the Rapid Transition Processes

(RTP) (Kaplan et al. 2005). To find candidates of RTPs,

two moving averages are created from the EEG time series.

One moving average uses a small sliding window, to track,

rapid cortical processes; and the other uses a larger sliding

window, to represent slower cortical processes. The times

at which the time series from both moving averages cross

are candidates to be a RTP. Further statistical testing is

required to discard false positives.

In general, for the control test 2, any segmentation

technique could be used as well. These transitions can be

removed from the time series, to assess their contribution

to classification performance. If classification is not sub-

stantially degraded, we could be even more confident in

saying that the majority of information comes from the

small transitions that occur continuously. We removed

points associated with phase resetting and rapid transition

processes with severe criteria, to reduce the risk of failing

to remove the postulated events. Due to the latter, more

than 80% of the signal was removed, as shown in Table 2.

We removed not only the phase resetting points but also

their neighbours. As for the rapid transition processes, the

segmentation algorithm proposed by Kaplan finds first a

large set of pre-candidates to be rapid transition processes.

The elements of this set are further tested and considered

rapid transitions processes only if they fulfil the remaining

criteria [for details see (Kaplan et al. 2005)]. We decided to

remove the whole set of pre-candidates to increase cer-

tainty. This test was performed in the WM dataset because

it had the highest temporal resolution.

Results specific to control tests

The results concerning Control test 1 are shown in Table 1.

For each cell, the first value corresponds to the percentage

of iterations for which random features outperformed real

features. The second number reflects the percentage of the

iterations for which shuffled data outperformed non-shuf-

fled data. As mentioned in ‘‘Control test 1: Destroying

temporal structure and assessing statistical significance’’

section, the shuffled data is not expected to completely

destroy all the information provided by Method 4, as it also

involves static information about the distribution of states.

Table 2 shows the results of Control test 2.

Global results

The summary of the performance of all the methods for all

the datasets is presented in this section. Table 3 shows

classification results reported as the area under the ROC

curve. As a reference, the baseline technique (spectral

properties of the EEG signal) is displayed for comparison.

The performance on the WM and emotions dataset was

non-deterministic, as the calibration step involved adding

noisy copies of the data. For all the non-deterministic

estimations of performance, 20 realizations were executed,

and the results displayed correspond to the average. The

number of features encompassed by each method is dis-

played in parentheses.

Discussion

We proposed and successfully tested certain assumptions

about brain dynamics motivated by the way different areas

of the brain engage in joint activity and disengage on

demand. First, we assume, as other authors do, metasta-

bility driven by cognition. Following the definition of

metastability, we propose local variables that reflect the

time evolution of brain states, and develop a framework to

study how cognition affects different properties of the

spatiotemporal organization of these variables. To our

knowledge this is the first time that the switching between

metastable brain states driven by cognition is investigated

in a fully data-driven manner for a range of cognitive

functions.

We can conclude by looking at Tables 1 and 3 that the

proposed properties of the spatiotemporal structure of the

proposed variables are affected by cognition in a manner

that cannot be explained by chance. An exception is

Method 3 in the AD dataset. However, it is worth noting

that the number of features computed for Method 3 is six

times lower than the number of features in the other

Table 1 Results of control test 1

Dataset Method 1 Method 2 Method 3 Method 4*

AD 0%/0% 0%/NA 89%/34% 0%/0%

WM 0%/18% 0%/NA 0%/0% 0%/18%

Emotions 0%/0% 0%/NA 0%/ 0% 0%/0%

Out of the 300 iterations, fraction of times in which random features

outperformed real data (first number of the cell), and fraction of times

in which shuffled data outperformed real data (second number of the

cell). Method 2 was not considered for generating shuffled data

because it deals with spatial synchrony, not with temporal structure.

*Shuffled data is not expected to destroy all the information provided

by Method 4
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methods, and therefore we cannot directly compare them.

As mentioned in ‘‘Baseline: power spectral density’’ sec-

tion, the main goal was not to develop a feature extraction

technique, therefore the hyper-parameters of the model

(e.g. size of the window length, number of statistical

moments) were not optimised. The latter would imply

losing statistical significance, and being the first time that

this techniques are applied, we favoured statistical power

over performance.

Concerning the debate of discreteness versus continuity,

we can observe in Table 2 that targeting specific events

recognised as candidates for state switching did not sub-

stantially degrade the quality of the information. Our

conservative approach, that removed as well neighbours

and false positives, discarded more than 80% of the data,

with only a small decrease in the classification perfor-

mance: 3.8% when removing phase resetting points, and

14.4% when removing rapid-transition-process points.

We suggest two possible explanations. The first expla-

nation is that although the spatiotemporal structure of the

statistical properties of EEG, and in particular their

dynamics are relevant to predict cognitive conditions,

switches do not occur in a discrete manner. The brain

undergoes large transitions at seemingly discrete times,

however it keeps fluctuating between neighbouring states

in a way that is affected by cognition. In other words, these

small fluctuations are not artifacts due to any source of

noise, but rather induced by cognition. Computations in the

brain are analogue, and even under continuous switching,

the neighbourhood of a state could provide enough stability

to induce the oscillations thought to be required for psy-

chological constructs. Werner (2007) suggested that

metastability can be given an operational meaning: instead

of considering integration-segregation as two poles, a

continuous range of tendencies of neural coordination

seems more appropriate. This continuum, according to him,

seems to be supported at the neuronal dynamics level by

the flexibility of coupling coefficients amongst different

neuron groups. Assuming continuity might be thought of as

rejecting the existence of metastable states, as there are no

states of finite duration with constant statistical properties.

It is possible still to draw on the less restrictive concept of

metastable regimes in the dynamical systems point of view

(Tognoli and Kelso 2014): dynamics takes place in a region

where all attractors have disappeared.

A second explanation is that switches are discrete, but

due to volume conduction the recordings reflect the influ-

ence of neighbouring regions: continuity would be then an

artifact of the lack of spatial resolution of the measure-

ments. The further the region, the less its changes in sta-

tistical properties affect the local recording. EEG source

localization could be used to either support or rule out this

possibility. The CSS can be computed using the EEG

sources instead of the EEG raw recordings. If timing is

discrete, we should observe, at the level of the sources,

piecewise continuity in the statistical properties.

An argument favouring the first explanation is that the

power law fit of the PSD of the CSS demonstrates a fractal

temporal structure of the CSS. As mentioned above, the

power law coefficient is a parameter that expresses the

extent to which disturbances propagate. We showed that

this parameter is affected by cognition, which makes sense

if we consider, as other authors do, sensory and motor

information as disturbances in this context. The second

explanation requires an extra hypothesis then. The inter-

switch duration of a particular brain source should be

influenced by the neighbouring sources, as their joint

switching dynamics should still be fractal in time. In other

Table 2 Control test 2

Target Percentage of data removed (%) Decrease in classification performance (%)

Phase resetting points 80.8 3.8

Rapid transition processes 80 14.4

Results of removing known discrete events. Specific points associated with transition events acknowledged in the literature were removed. The

decrease in classification performance is shown in the third column

Table 3 Performance of the

different methods
Dataset Method 1 Method 2 Method 3 Method 4 Baseline

AD 0.70 (126) 0.71 (126) 0.48 (21) 0.71 (126) 0.54 (126)

WM 0.76 (96) 0.74 (96) 0.68 (16) 0.75 (96) 0.75 (96)

Emotions 0.70 (192) 0.70 (192) 0.64 (32) 0.76 (192) 0.68 (192)

Spectral properties of the signal (power at different frequency ranges) were used as a baseline. The number

of features is indicated in parentheses
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words, we require to translate the fractal time structure of a

single region (first explanation) into spatial organization of

sub-regions (second explanation). Postulating the latter

should involve postulating as well a mechanism producing

this spatial organization. Such mechanism should be at

least as parsimonious biologically as the one in which

dynamics evolve for allowing an efficient propagation of

disturbances under the first explanation.

The above discussion might be theoretically relevant at

different levels. We have discussed the biological impli-

cations of continuity and discreteness, however, other

aspects are concerned as well. Phenomenologically, a

fragmented flow of perception or consciousness is essen-

tially different from a continuous flow. Whereas a thought,

an action or perceiving an object might seem granular after

a quick exercise of introspection, microcognitive science,

or neurophenomenology at the sub-second level, suggests

otherwise. Petitmengin et al. (2013) investigate how elici-

tation techniques provide access to micro-states (not to be

confused with EEG micro-states), at the sub-second level,

where boundaries across sensory modalities and between

object and subject begin to blur. They advocate finding

correlations between these sub-second, first person expe-

riences and third-person, objective measurements. The

proposed spatiotemporal analysis of brain-state switches is

a possible candidate tool to investigate such correlations. In

addition, regarding the mathematical description of natural

systems, discrete and continuous mathematical models may

have very different properties. As a simple case in point,

we can consider the logistic map, one of the simplest dis-

crete dynamical systems able to exhibit chaos. Its contin-

uous version on the other hand, is never chaotic. For a

discrete system there is always a ‘‘next’’ value, whereas for

a continuous system this is not the case. On the other hand,

if continuity is an artifact of volume conduction, the pre-

sented framework has proven useful still. If the temporal

organization turns out being spatial organization disguised,

we have no reason to discard the information obtained from

small (far?) transitions. Evidently, the next step would be

to identify and investigate the biological mechanisms

generating this spatial organisation.

A continuous perspective is more compatible with an

analogue computer metaphor, and in this regard, our pro-

posals are compatible with the work of Spivey (2008). He

suggests that if we could take the activity of single neurons

as variables, cognition would be a continuous trajectory in

a high dimensional space, where each coordinate is the

activity of a neuron. He suggests as well abandoning the

digital computer metaphor in favour of a dynamical

framework. In his proposal a specific cognitive task would

be a point in this space, and performing such task would be

a trajectory moving towards this point. Perceiving a face

for instance, would be moving towards the point that

corresponds to that particular face. Interestingly, he claims

that we spend more time near such points than at them.

Experimentally, Chang and Tsao (2017) were able to

accurately reconstruct human faces by reading the activity

of 205 neurons in primates. Each neuron codes for a par-

ticular face feature, and the joint activity of the the 205

neurons, ie, a point in a space of dimension 205, represents

a specific face. While face recognition is so important that

evolution might have given it a sparse representation, in the

general case of cognition we do not have the experimental

and computational means to explore such points and tra-

jectories. Nevertheless, using a low number of statistical

moments and a few scalp recordings, we showed that the

idea of cognition as a continuous trajectory in an abstract

space is worth further investigation.

Our framework aims at producing evidence that can

enrich theoretical discussions about brain dynamics. As it

is important for us to show that cognition is driving these

phenomena, we developed tools for classifying cognitive

conditions on a single-trial basis, and therefore practical

applications such as cognitive brain-computer interfaces

can benefit too from these methods. In addition, the pre-

dictive power of this framework resides in a signal property

often overlooked, or even considered as a problem to

overcome: the lack of stationarity.
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