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Abstract
Memristor is a nanoscale circuit element with nonvolatile, binary, multilevel and analog states. Its conductance (resistance)

plasticity is similar to biological synapses. Information sparse coding is considered as the key mechanism of biological

neural systems to process mass complex perception data, which is applied in the fields of signal processing, computer

vision and so on. This paper proposes a soft-threshold adaptive sparse coding algorithm named MMN-SLCA based on the

memristor, neural network and sparse coding theory. Specifically, the memristor crossbar array is used to realize the

dictionary set. And by leveraging its unique vector–matrix operation advantages and biological synaptic characteristic, two

key compositions of the sparse coding, namely, pattern matching and lateral neuronal inhibition are realized conveniently

and efficiently. Besides, threshold variability further enhances the adaptive ability of the intelligent sparse coding. Fur-

thermore, a hardware implementation framework of the sparse coding algorithm is designed to provide feasible solutions

for hardware acceleration, real-time processing and embedded applications. Finally, the application of MMN-SLCA in

image super-resolution reconstruction is discussed. Experimental simulations and result analysis verify the effectiveness of

the proposed scheme and show its superior potentials in large-scale low-power intelligent information coding and

processing.
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Introduction

Leon Chua proposed the theoretical concept of ‘‘memris-

tor’’ for the first time and pointed out that its resistance can

be adjusted by external stimulation (1971). In 2008,

researchers at HP laboratory in the United States reported

in Nature that the memristive effect could be achieved with

a nanometer double-layered TiO2-based structure,

confirming the physical existence of the memristor (see

Strukov et al. 2008). Since then, the memristor has

attracted great attention from scientific research, education

and industry. For instance, oxide memristors including

TiO2–TiO2-x-based, HfOx-based and WOx-based (see

Strukov et al. 2008; Long et al. 2013; Chen et al. 2013)

memristors, exhibit superior device performance and

excellent compatibility with complementary metal oxide

semiconductor (CMOS). Furthermore, more and more

physical memristor models based on different materials

and mechanisms have been proposed, such as the solid

electrolyte Si–Ag memristor with simple operating voltage

(see Muenstermann et al. 2010), the spintronic memristor

based on spin characteristic (see Wang et al. 2009), the

flexible memristor with the organic gel (see Zakhidov et al.

2010), the new grounded memristor emulator based on

MOSFET-C (see Yesil 2018), as well as the new one with

ultra-high temperature tolerance (see Wang et al. 2018),

etc. Compared with the conventionally charge-based

switching electronic devices, the conduction state of the
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memristor is determined by the internal ion channels under

the external stimulation. Furthermore, the formation and

disconnection of the conductive channel has a regulating

effect on its resistivity and overall performance (see Yang

et al. 2014). This programmable resistance ability is similar

to the variable biological synapse strength, therefore the

memristor becomes an ideal component of miniature arti-

ficial electronic synapses. Meanwhile, Kawahara et al. have

successfully developed memristor crossbar array models at

different nanometer scales and memory levels (2013) to

explore new integrated circuit technologies based on

memristors. At present, the memristor crossbar array has

been widely used in digital logic and analog circuits (see

Pershin and Di Ventra 2010). It can provide parallelism and

high density required by large-scale signal processing and

provide a highly integrated implementation scheme for the

synaptic connection, which will greatly simplify the circuit

design and implementation of neural networks (see Yang

et al. 2013). Snider team developed a new implementation

method of STDP learning rule using memristors (2011).

Consequently, scholars designed various types of memris-

tive neural networks and discussed their applications. For

example, Itoh and Chua (2014) studied passive nonlinear

cellular automata based on the memristor and discrete time

cellular neural network. Hu et al. (2017) developed the

multilayer cellular neural networks with memristor cross-

bar array synapses. Bao et al. (2017, 2018, 2019) designed

many memristor-based circuits, and artificial electronic

synapses. It can be seen that, based on the great similarity

between memristors and biological synapses, as well as the

unique storage and operation mechanism, memristor

crossbar array can facilitate realizing various neural net-

works (see Zhang et al. 2017; Yan et al. 2018). On the basis

of neurobiology, this paper proposes a new hardware-

friendly and low-power intelligent sparse coding

scheme by combining the memristor network with the

sparse coding technology for the requirement of efficiently

mass information processing.

Sparse coding originally refers to the significant sensi-

tivity in the receptive field of primary visual cortex cells,

where a single neuron responds to stimulus within its

receptive field, such as edges, line segments, stripes, and

other image features in a specific direction (see Field

1987). Mathematically, sparse coding is the way to

describe multidimensional data. Since 1961, people began

to study sparse coding and put forward many coding the-

ories. Field (1989) proposed the sparse distributed coding

method. Olshausen and Field (1997) developed a sparse

coding algorithm based on overcomplete basis and suc-

cessfully modeled the receptive field model of V1 simple

cells, by utilizing basis function and the probability density

model of coefficients. In recent years, many new sparse

coding algorithms have been proposed by researchers (see

Li et al. 2004; Donoho and Elad 2003); meanwhile, it has

been widely used in signal processing (see Candès and

Wakin 2008), neural computing systems (see Jo and Chang

2010), pattern recognition (see Wright et al. 2010), etc.

However, the processing efficiency could be further

improved and the low-power hardware implementation and

acceleration is still in urgent need (see Sheridan et al.

2017). Fortunately, the appearance of memristor brings

opportunities for the design of hardware-friendly, low-

power consumption and large-scale bionic sparse coding.

By combining the memristor crossbar array character-

istics and the principle of biological sparse coding, this

paper proposes a memristive neural network-based soft-

threshold adaptive sparse coding (MMN-SLCA) algorithm.

Specifically, two memristor crossbar array synapses are

constructed to realize the dictionary. Along with the input

and output neurons, these crossbar arrays can conveniently

execute pattern matching and lateral neuron inhibition,

efficiently achieving the sparse coding. On this basis, the

application of MMN-SLCA in the super resolution recon-

struction of natural images is discussed, which is effec-

tively verified by experimental simulation and result

analysis.

Memristor model and crossbar array

The threshold adaptive memristor model

Memristor is a kind of nonlinear device with variable

resistance, which can be defined by charge and flux flowing

through the memristor:

vðtÞ ¼ duðqÞ
dq

� dq
dt

¼ duðqÞ
dq

� iðtÞ ¼ MðqÞ � iðtÞ ð1Þ

where M(q) is the memristor resistance. The typical HP

memristor is composed of a two-layer TiO2–TiO2-x film

sandwiched between two Pt electrodes. Up to now, the

corresponding mathematical models include linear, non-

linear, exponential, adaptively piecewise linear model and

so on. There are also some models based on experimental

data, such as the Simmons tunnel potential barrier model.

However, due to the lack of ports and state equations, these

experimental models are not suitable for programming

simulation and mathematical derivation. Subsequently, the

threshold adaptive memristor model (TEAM) is obtained

through appropriate simplification of the Simmons tunnel

barrier model (see Kvatinsky et al. 2013). It has a relatively

simple mathematical expression but also can reflect the

actual physical device characteristics. Consequently, our

work is carried out based on the TEAM because of its

reasonable accuracy and computational efficiency. The

TEAM is shown in Fig. 1a, whose resistance depends on
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the tunnel barrier resistance and a resistance Rs. The

equivalent circuit is shown in Fig. 1b.

Its internal state variable is defined as the width of the

tunnel by Kvatinsky et al. (2013):

dwðtÞ
dt

¼
koff sinhð

vðtÞ
voff

Þ � foff ðwÞ; 0\voff\v

0 von\v\voff

kon sinhð
vðtÞ
von

Þ � fonðwÞ; 0\von\v

8
>>>><

>>>>:

ð2Þ

where koff denotes the amplitude parameter; koff is positive

and kon is negative. The matching parameters von and voff
represent the current threshold at switching time, respec-

tively. A typical set of parameter values are koff = 0.091 m/

s, kon= - 216.2 m/s, voff= 0.2 V and von= - 1.45 V. foff(w)

and fon(w) are two window functions characterizing ions

drifting:

foff ðwÞ ¼ � exp exp
w� aoff

wc

� �

� jvj
b

� �

� w

wc

� �

ð3Þ

fonðwÞ ¼ � exp exp
w� aon

wc

� �

� jvj
b

� �

� w

wc

� �

ð4Þ

where aoff = 1.2 ± 0.02 nm, aon = 1.8 ± 0.01 nm, wc

= 107 ± 4 pm and b = 0.2 V. The relationship between

voltage and current of the TEAM memristor can be

expressed as:

vðtÞ ¼ RL þ
RH � RL

woff � won

ðw� wonÞ
� �

� iðtÞ

MðwÞ ¼ RL þ
RH � RL

woff � won

ðw� wonÞ

8
>><

>>:

ð5Þ

where RL and RH are the low and high memristor resistance

state, respectively. Then memristor resistance M(w) chan-

ges linearly with inner state w:

MðwÞ ¼ RL

RH � RL

woff � won

� �

þ RH

w� won

woff � won

� �� �

ð6Þ

The internal state variable w can be changed accordingly

with external excitations. The programmability and

threshold characteristics of the TEAM provide theoretical

and experimental support for the synapse construction. At

the same time, the TEAM responses quickly at the order of

nanoseconds and has strong anti-interference ability. With

appropriate thresholds, it can effectively prevent the acci-

dental disturbance of feeble non-writing signal on its

resistance.

Memristor crossbar array

The memristor crossbar array is an expandable regular

structure, which is considered as a promising technology to

realize ultra-high-density non-volatile memory and ultra-

large-scale neural computing chip with low-power con-

sumption. As shown in Fig. 2, in the 4 9 4 crossbar array

schematic diagram, the horizontal and vertical lines trans-

mit the input and output signal, respectively. On the one

hand, the memristor is non-volatile, it can realize low-

power even zero-power weight storage by representing the

weight in memductance (memristor conductance). When

the input signal Vm is applied to the horizontal lines of the

memristor crossbar array, the total charge collected on the

n-th column line is linearly proportional to the weighted

input signal passing through the column, which can be

expressed as:

qn ¼
Xm¼4

m¼1

vm � Gmn ð7Þ

Voltage Pt

TiO2

TiO2-X

Pt

z L
h

(a)

(b)

Fig. 1 The threshold adaptive memristor model (a) and equivalent

circuit (b)

v2

v1

v 3

v 4

Gmn

Fig. 2 Memristor crossbar array
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where Gmn is the memductance in m-th row and n-th col-

umn (= 1/Mmn). Therefore, the crossbar array can realize

the dot product of input and weight vectors by a simple

reading operation. Furthermore, the crossbar array can

efficiently execute matrix multiplication operation by

leveraging its parallel structure advantage, which is very

high time-and power-consumption in traditional computing

architecture and technology. On the other hand, the pro-

grammability of the memristor is very similar to the plas-

ticity of biological synapses and thus facilitate realizing the

flexible weight updates. Therefore, it greatly improves the

adaptability and generalization ability of the computing

architecture.

The adaptive sparse coding based
on memristive neural network

Sparse coding

Sparse coding can effectively reduce the complexity of

input signals and improve the efficiency of signal pro-

cessing and storage. Particularly, it has been widely used in

feature extraction and pattern recognition. The purpose of

sparse coding is to obtain a set of sparse coefficients rep-

resenting an input image based on the feature dictionary

Dmn. And by using linear combination of the dictionary and

sparse coefficients, the original input x can be reconstructed

later. Meanwhile, the number of non-zero coefficients

should be as few as possible. As a whole, the sparse coding

target can be expressed as (see Rozell et al. 2008; Sheridan

et al. 2017):

E ¼ min
a
ðjjx� Dmna

T jj2 þ kjjajj0Þ ð8Þ

where jj � jj2 is the L2-norm and jj � jj0 is the L0-norm,

respectively. jjx� DmnaT jj2 represents signal reconstruc-

tion errors, that is, the errors between x and the recon-

struction signal DmnaT . kjjajj0 reflects the sparsity, which

denotes the number of active elements in the sparse coef-

ficient vector. It can be seen that this target not only

requires the difference between the reconstructed signal

and original signal to be smaller, but also requires the

coefficient vector to be sparser.

The combined constraint result is just the optimal

solution of sparse coding. It is worth noting that in this

work the L0-norm is adopted instead of the L1-norm used in

classical sparse coding algorithm (see Wright et al. 2010).

For most of the traditional mathematical problems, the

initial values of the parameters are greater than zero, so the

optimal process is to gradually reduce to close to zero.

Therefore, the L1-norm denoting the summation of the

absolute value of elements can achieve sparsification.

However, in our MNN-SLCA, all coefficient parameters

start from zero and only a few will increase, therefore, the

L0-norm calculating the number of non-zero elements is

more suitable. Different from many compression algo-

rithms that only focus on reconstruction errors, the MNN-

SLCA can not only realize sparsity of the input, but also

characterize its hidden component features, which is con-

ducive to advanced data analysis such as pattern

recognition.

The memristive neural network based adaptive
SLCA sparse coding algorithm

Adaptive soft-threshold locally competitive algorithm

(SLCA) is one of the important sparse coding algorithms,

which can code temporal and spatial signals. It has plas-

ticity, adaptability, and compatibility with the crossbar

array structure. In this paper, the SLCA algorithm is used

to optimize the energy function (8), and implemented

based on the memristive neural network. In specific, the

image pixel values are converted to appropriate voltage

pulse vector x, applied on the memristors at the cross points

via the input neurons on the row lines, and weighted by the

memristor synaptic weights (Dmn). Based on the accumu-

lation–stimulation learning rule, the current accumulation

of each vertical line determines the membrane potential,

namely activity state of the corresponding output neuron,

which is expressed as the sparse coefficient a.
Theoretically, the dynamic change of output neuron

membrane potential is jointly affected by a leakage term

and inhibition term from other active neurons, which can

be expressed as (see Rozell et al. 2008; Sheridan et al.

2017):

uið0Þ ¼ 0

uiðt þ 1Þ ¼ uiðtÞ þ xTDmn �
P

m 6¼n

dmd
T
n ai

(

ð9Þ

ai ¼ TkðuiðtÞÞ ¼
uiðtÞ � k

1þ e�rðuiðtÞ�kÞ ð10Þ

where ui and ai are membrane potential and activity

coefficient associated with the i-th output neuron, respec-

tively; k is the threshold of output neuron membrane; Tk is

the soft threshold function and r is the parameter control-

ling threshold conversion speed; dm and dn are m-th and

n-th column vectors of the dictionary, respectively. It is

worth noting that the activity coefficient will approxi-

mately be zero unless ui(t) exceeds the threshold according

to Eq. (10). And when ui(t) exceeds the threshold, the

activity coefficient will change slightly instead of jumping,

which makes the whole algorithm more adaptive and

robust (see Rozell et al. 2008). Take r = 1, the soft-

threshold function (10) exhibits the characteristic shown in
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Fig. 3 and its circuit realization based on memristors is

designed in next part.

In Eq. (9),
P

m6¼n

dmdn
T calculates the similarity of the

receptive field between the active neurons and the rest

neurons (Fig. 4). When it multiplies the activity coefficient,

they can be rewritten as:
X

m6¼n

dmd
T
n ai¼aiðDT

mnDmn � IÞ ð11Þ

where I is identity matrix;aiðDT
mnDmn � IÞ is also the

inhibition term, and it reflects the effect of lateral neuron

inhibition of the biological visual system.

The inhibition intensity is proportional to the similarity

of the receptive fields. Based on the inhibition feature, the

SLCA is able to guarantee the sparsity of coding, by pre-

venting simultaneous neuron activation with the similar

receptive fields. However, if based on the traditional

hardware computing architecture, the computational

intensity of the inhibition item is large and the memory

occupation is very high. Therefore, the Eq. (9) can be

rewritten into Eqs. (12) and (13) to effectively reduce the

computational complexity (see Sheridan et al. 2017). They

are given as follow:

uið0Þ ¼ 0

uiðt þ 1Þ ¼ uiðtÞ þ ðx� x̂ÞTDmn þ ai

�

ð12Þ

x̂ ¼ Dmna
T
i ð13Þ

where x̂ is the reconstructed signal represented by neuron

activity coefficient a and dictionary set Dmn. Traditional

sparse coding algorithm realizes de-duplication by

inhibiting synapses, while the SLCA sparse coding directly

inhibits activity of neurons to inhibit repeated expression

with similar neurons. Equation (12) redefines the inhibition

term as the difference between the original signal and the

reconstructed signal, and then the difference will be taken

as the input signal for the new iteration. This is equivalent

to deleting the similar characteristic information between

input and reconstruction, and thus it can inhibit the activity

of other neurons with similar receptive fields. In addition, it

transforms the matrix–matrix product into the vector–ma-

trix product. The computational intensity is thus reduced to

some extent. By taking advantage of the unique crossbar

structure, it can conveniently perform the vector–matrix

dot multiplication, significantly cutting down the compu-

tational complexity and improving the efficiency.

The equilibrium point of the sparse coding network will

appear after some iterations. When ui(t) is approximately

equal to ui(t ? 1), the iteration is completed, which means

that the membrane change rate approximately equals to

zero. Now x̂ extremely matches x and the network is in

stable state. Consequently, according to (10), the final

coefficients a associated with the output neurons will be

obtained and the sparse representation of the original input

signal can be achieved.

Sparse coding with hardware-friendly MNN-SLCA

Combining the characteristics of the adaptive SLCA cod-

ing theory and the memristor network, the sparse coding

can be achieved by repeated forward matching and back-

ward inhibition, where we use one memristor to achieve

forward pass, meanwhile, another one is used to realize

backward inhabition. The schematic diagram is shown in

Fig. 5. In each iteration, the forward matching of the input

signal can be represented as xTDmn (Fig. 5a). Then, the

membrane potential of the output neuron with integral

ability substantially changes in the continuous iteration.

Meanwhile, the coding coefficient a representing the

activity state of the output neurons is obtained based on

(10). After that, the current signal is transmitted back again

to reconstruct the signal (x̂ ¼ DmnaT ). The new input signal

(x� x̂) deleting the residual term of the already matchedFig. 3 Characteristic curve of Soft-threshold function (10) (r = 1)

Fig. 4 The similarity of the receptive field
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feature inhibits the neurons with similar receptive field in

the following iteration. Finally, after several forward–

backward iterations, the stable activity state of the output

neurons can be obtained and sparse coding is completed.

Furthermore, the adaptive SLCA sparse coding (10–13)

based on the memristive neural network (MNN-SLCA) is

designed. As shown in Fig. 6a, the memristor crossbar

network A (MemA) and B (MemB) store the same dic-

tionary set for realizing forward-pattern matching and

backward-inhibition reconstruction, respectively, where the

dictionary elements are the synaptic weights (memduc-

tance) (Dmn ¼ Gmn ¼ 1=Mmn). The dictionary set is

implemented by using two memristor crossbar arrays

mainly for two reasons. Firstly, the effect of reading pro-

cess can be minimized and the system’s robustness can be

enhanced. Secondly, forward and backward operations can

be performed simultaneously, improving the processing

speed.

After converting the original image to the appropriate

voltage pulse (the same amplitude, different widths), the

voltage signal is input into the array MemA, then the

current runs through every memristor synapses. The charge

flowing a memristor is proportional to the product of input

signal and memristor conductance (Qmn ¼ xmDmn). In

addition, based on the Kirchhoff’s current theory, the total

charge of flowing through the n-th column memristor

synapses is Qn ¼
P

m xmDmn ¼ xTDn. Since the input sig-

nal is converted into the voltage signal, it can also be

written as Qn ¼ GTVt, where GT is the memductance; V is

input voltage pulse amplitude and t is pulse width. In other

words, the charge accumulated on the output neuron cor-

responding to each column is proportional to the sum of dot

product of the input signal x and the receptive field Dn. It

reflects the degree of matching between the input vector

and the feature vector. Therefore, pattern matching can be

achieved efficiently in a reading operation. At the same

time, the accumulated membrane potential (xTDn) of the

output neuron is obtained by in each iteration. If the output

neuron’s membrane potential exceeds threshold value k,
the neuron will be excited, and then the sparse coding

network will adjust adaptively with the change of the

threshold value k. The threshold will directly affect the

sparsity of coding, which will be precisely analyzed later in

experiment part. It is noticed that the membrane potential

has the same unit as the charge. After forward matching is

completed, the membrane potential vector of all output

neuron will be obtained, and then the sparse coefficient

vector a will be got.

Next, the backward inhibition iteration is implemented.

The sparse coefficient vector a is converted into the cor-

responding current signal, which is input into the MemB

network. Similarly, the flux accumulated in each row line is

equal to the flux flowing through all the related memristor

synapses (Fm ¼
P

n Dmnai ¼ DmaT ). Since a is converted

into current amplitude I, it could be redefined as

Fi ¼ IT t=Gi ¼ MiI
T t, where t is the current pulse width.

Therefore, the backward reading operation performs the

weighted sum between the output neuron signal and its

receptive field. In addition, the final output column vector

is obtained, which is the reconstructed signal x̂(x̂ ¼ DaT ).
After backward iteration is completed, the reconstructed

signal x̂ is fed back to the MemA input terminal, whose

difference with the original input signal (x� x̂) is taken as

the input of the next new iteration.

In the new iteration, as the input signal is the residual

term, the membrane potential of neurons with similar

receptive fields is inhibited. Specifically, due to the elim-

ination of similar signals, the related output neuron’s

membrane potential accumulates a little

(ðx� x̂ÞTDmn ! 0). At the same time, because of the

attenuation term, the membrane potential of these neurons

will become smaller and smaller, realizing inhibition

effect. After a certain number of bidirectional iterations

and threshold adjusting, the network will be stable. At this

x1

x2

x3

x4

xi

uuuu

Dmn

(a)

x2

x1

x3

x4

xi

a a a a

Dmn

(b)

Fig. 5 Sparse coding with SLCA and the memristor network. a The

forward matching updates the neuron membrane potentials. b The

backward inhibition updates the residual input
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moment, the final coefficient vector a is anticipated optimal

sparse codes.

It should be noted that before sparse coding, the dic-

tionary is stored in the memristor synapses by one-to-one

transform. Based on the TEAM, the input signal (reading

signal) should be set to be lower than the memristor writ-

ing-threshold value. Therefore, the memristor conductance

can remain almost unchanged during each working itera-

tion. In conclusion, the memristor has nanoscale size and

non-volatility, and the crossbar array structure possesses

the advantages of parallel computing and easy of expan-

sion. Hence, the implementation scheme (MNN-SLCA)

can satisfy the requirements of large-scale image sparse

coding and low-power consumption.

Circuit design of the soft-threshold function

Figure 6b shows the characteristic curves of the adopted

memristor model. Furthermore, four memristors (M1, M2,

M3 and M4) are connected in reverse parallel (Fig. 6c) as a

combinational circuit (see Adhikari et al. 2012). Then,

through two transformations, i.e., uin ¼ u� k (u is flux) as

the input and qout= 100q - 1 (q is charge) as the output.

The combinational memristor circuit can approximately

realize the soft-threshold function in (10) with character-

istic curve presented in Fig. 6d. Here, relevant peripheral

differential and integral modules, amplification modules

and conversion modules are commonly-used and thus

omitted.

(a)

(b) (c) (d)

Fig. 6 Implementation of the proposed MNN-SLCA. a The complete

simplified schematic diagram. b The characteristic curves of the

TEAM model. c The circuit realization of the soft-threshold function

in (10) based on four memristors connected in reverse parallel and its

circuit characteristics in (d)
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Dictionary training and storage

Dictionary is a key part of realizing information sparse

coding. At present, dictionary construction methods are

generally divided into two kinds: analysis-based method

and learning-based method. The analysis-based dictionary

is constructed by harmonic analysis method and some

predefined mathematical transformation, where each ele-

ment in the dictionary can be described by a mathematical

function and a small number of parameters. Compared with

the dictionary from analysis-based method, the number of

dictionary elements obtained by learning-based method can

be determined adaptively. The learning-based dictionary

has richer morphology and better matches the memristive

network structure. Certainly, MNN-SLCA can also be used

to train the dictionary set but could cause overfitting

problem like other sparse coding based training methods

(see Olshausen and Field 1997). Therefore, in this paper,

the Winner-take-all and Oja’s Rule are used to train the

dictionary set. (see Lazzaro et al. 1989). Specifically, the

theoretical expression of the learning-based method is

given as follows:

y ¼ sTDW ð14Þ
DDW ¼ bðs� yDWÞy ð15Þ

where DW is dictionary set;DDW is change of the dictionary

set during training; y is output neurons of Winner-take-all;

b is training rate and s is the training set. After offline

training, a proper image dictionary set can be obtained.

Theoretically, due to its synaptic behavior and non-

volatility, the memristor can realize analog storage with

infinite precision. However, based on the current process

and controlling accuracy, it has reported only two states,

four states, 128 states and 256 states. Hence, for nature

image, this paper chooses 256-state memristors to store

dictionary by one-to-one transform shown as in Fig. 7a–d.

When the reading-writing circuit is in writing state, the

converter output is writing voltage correspondingly and

applied to memristors. When the reading–writing circuit is

in reading sate, the corresponding reading voltage is

applied, then the current data can be read out. Through the

reading/writing operations, the pixel of the dictionary

image can be realized in the form of the corresponding

memristor resistance (conductance) and store here. The

detailed descriptions are given as follows.

• Transform function

In digital image processing, the gray value of the

initial image is usually preprocessed with a pre-set

transform function. For gray pixel, the relation between

gray value and corresponding voltage pulse width are

designed as follows:

Wwrite ¼ Widthon þ eg ð16Þ

where Wwrite is writing voltage pulse width; Widthon is

initial pulse width; e is pulse width coefficient and g is

gray value. According to the corresponding linear

relation, 256 gray values in the range [0,1] are trans-

formed into writing voltage pulse width successively.

The gray values are correspondingly converted to the

write voltage pulse width, as shown in Fig. 7d. It should

be noticed that each voltage amplitude is greater than

the memristor writing threshold of the TEAM to change

the memristor conductance.

• Dictionary Storage (the binary dictionary set shown as

Fig. 7a: 25 9 20 and the gray shown as Fig. 7b:

16 9 32)

• Step_1 Apply the refresh voltage (Vref[ von) onto both

terminals of the memristor, then keep the memristor

resistances in high resistance state.

• Step_2 Read a dictionary, and then select a memristor

size correspondingly.

• Step_3 Enable writing state of the reading–writing

circuit, then employ the writing voltage to obtain the

gray value comparison current, which is used for later

reading operation. Convert each element of the dic-

tionary matrix to different voltage pulses according to

Eq. (16).

• Step_4 Under the writing voltage, the memristor

resistance in the crossbar array will change correspond-

ingly. When memristor resistance keeps stable, one of

memristors is written down.

• Step_5 Repeat the above steps to write the two

memristors (due to bi-memristor scheme).

Figure 8 demonstrates an example of applying a writing

voltage pulse sequence (with the same amplitude, different

pulse widths) to a memristor. Theoretically, it is possible to

use the memristor crossbar array to store dictionary sets of

any size. Meanwhile, with the programmability of mem-

ristor, the dictionary set can be updated flexibly without

changing the circuit structure. Consequently, the

scheme based on memristor crossbar array has better

adaptability and generalization ability.

Super resolution image reconstruction

In the previous sections, the proposed MNN-SLCA algo-

rithm and hardware implementation scheme are interpreted

in the above. Next, its application in super resolution (SR)

image reconstruction will be further explored.

The flow chart of super resolution image reconstruction

based on MNN-SLCA is shown in Fig. 9. The SR recon-

struction is an optimizing process in entire learning sample
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space, through sparsely representing the Low Resolution

(LR) and High Resolution (HR) training images samples

and decreasing their dimensions. Compared with com-

pression and perception process, the proposed sparse rep-

resentation exhibits more advantages. On the one hand,

sufficient prior knowledge can be guaranteed, which is

useful to reduce the amount of data for reconstruction and

to improve process efficiency. On the other hand, overfit-

ting and underfitting can effectively overcome.

Firstly, for each HR sample image, the corresponding

LR image is obtained by under sampling and fuzzy pro-

cessing. The problem to be solved in super resolution

reconstruction is how to reconstruct the corresponding HR

image based on a given single LR image. The recon-

struction model is given as follows:

Y ¼ khX þ v ð17Þ

(a) (b)

(c) (d)

Fig. 7 The procedure of memristor crossbar array storage. a Binary dictionary set. b Gray value dictionary set. c The distribution of dictionary

elements set. d The voltage vector of input and the theory of memristor crossbar array storage

Fig. 8 The relationship between input voltage pulse width and

conductance in time domain
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X ¼ fx̂iH jj
n
i¼1g ð18Þ

x̂iL ¼ DLa
T ð19Þ

x̂iH ¼ DHa
T ð20Þ

where Y is a complete reconstructed super-resolution

image; h represents the fuzzy operator; k is under-sampling

operator; v is additive noise; X represents the complete HR

reconstruction image; x̂iH is HR image patch. According to

the relation between HR image dictionary set DH and

image patch x̂iH , as well as LR image dictionary set DL and

image patch x̂iL, the two dictionaries can be obtained (DH

and DL) by the local sparsity relation model (Eqs. 19, 20).

The input LR image is divided into patches, and each

image patch can be represented by DL sparsely. That

means, each patch of a single LR image can be represented

by sparse coefficients and a LR overcomplete dictionary.

The HR image patch is represented similarly. Finally, the

complete HR image is combined by the HR reconstruction

image patches. The premise of the basic idea is that the LR

and HR overcomplete dictionaries need to be jointly

trained to ensure the sparse representation consistency.

Therefore, as long as the images are jointly trained to

obtain the common sparse representation coefficient, the

HR image can be reconstructed using DH and LR image

coefficient aT . It is noticed that a LR image can lead to

more than one HR images based on the HR dictionaries.

Therefore, in this work, the reconstruction solution is

obtained by using the sparse prior knowledge above to

construct the relationship between LR image patches

sparse coding and HR dictionary. Then the SR recon-

struction based on local sparse representation model is

established. Specifically, the detail of local high frequency

information is reconstructed by Eq. (20), and each HR

image patch can be represented by HR image dictionary

DH and activity coefficient aT that is obtained by Eq. (19).

Combining the global restriction (Eq. 17) makes the output

image more natural and smoother. Finally, a complete

super resolution reconstruction image (Y) is obtained.

Experiment simulation and analysis

Parameter analysis and setup

SLCA-k selection analysis

As the threshold value (k) changes, the number of active

neurons in sparse coding will change adaptively. In order to

achieve the optimal sparse target (8), we use different

thresholds for contrastive analysis. For the experiment

analysis, we set the threshold gradient to be 10, and the

threshold range is between 0 and 140. As shown in Fig. 8,

the parameter k is the variable threshold, and N represents

the number of active neurons. Figure 10a, b show the

simulation results under different thresholds. When the

threshold is lower, the number of active neurons increases.

As the threshold increases, the number of active neurons

decreases. In the case of low threshold, the input signal is

expressed by more neurons and more redundant informa-

tion is reconstructed. In the case of high threshold, the

input signal will be reconstructed by fewer neurons and the

reconstruction distortion might appear. For the recon-

struction shown in Fig. 10b, when the threshold value k is

40, the reconstruction efficiency is the best. This phe-

nomenon is also the adaptive feature of SLCA. Therefore,

the selection of k will directly influence the reconstructed

signal, namely the solution of sparse target (8).

Binary image sparse coding with MNN-SLCA

Simple image refers to the image that can be constructed

by binary dictionary set. Firstly, a simple image is read and

its numerical matrix will be obtained, which is a size of

5 9 5 numerical matrix. The binary value of the simple

image matrix is converted into the corresponding voltage

pulse signal. Then the voltage pulse signals are applied into

the memristor crossbar array storing the binary dictionary

Training Sample 
Extraction

High Resolution 
Image HR

Low 
Resolution1

LR1

Low 
Resolution 
Image LR

HR Patch LR Patch Extraction

Sample Patch
XH XL

Fuzzy

Under 
Sample

Interpolation 
Amplification

Dictionary Training
Winner-Take -All

Oja s Rule

Reconstruction High 
Resolution Image

Input Image
LR

Feature 
Extraction

Low Resolution 
Image Patch

ai
Sparse 

Representation

Dictionary
DH DL

Input 
StageDictionary 

Training

Reconstruction 
Stage

Fig. 9 Flow chart of super resolution image reconstruction based on

MNN-SLCA
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set (Fig. 7a). After a certain number of iterations, the

memristor networks are stable. Only a small number of

output neurons are active whose membrane potential is

greater than the threshold. The active neuron coefficient is

just the goal anticipated sparse code. Then,by combing the

coefficient and binary dictionary set through the proposed

reconstruction scheme, the reconstructed image of the input

will be achieved.

As shown in Fig. 11a, the different binary image is

reconstructed by the same way. Among the 12 groups of

images, the front one is the input image, and the back one

is the reconstructed image obtained by the MNN-SLCA.

Figure 11b shows the iterative curve of the No. 7 input

image corresponding to the membrane potential of output

neurons. It can be seen that the neurons (U(3) and U(9)) are

in active state finally. Certainly, the MNN-SLCA algorithm

can be also used in sparse coding and reconstruction of

other digital signals with its adaptability and versatility.

Table 1 shows the performance estimation and com-

parison between the novel MNN-SLCA solution and the

traditional CMOS circuits, which includes time, MSE and

energy (see Sheridan et al. 2017). It can be seen the

advantages of MNN-SLCA. Certainly, the measurement of

the practical performance will be more accurate on phys-

ical hardware circuits, but by leveraging the nanometer

memristor and efficient vector–matrix operation based on

memristor crossbar array, the hardware acceleration and

low power consumption are fully expectable.

Fig. 10 Binary image reconstruction with different thresholds. a The

original input. b The output reconstruction images with different

thresholds. c The relationship between the number of neurons and the

thresholds

Fig. 11 Binary image reconstruction. a The sample of input and

output. b The seventh neuron membrane potential iteration
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Gray image with MNN-SLCA

Then, the grayscale image (Fig. 12a) is processed simi-

larly. However, the pixel of the entire grayscale image

relative to a dictionary set is not homologous, so we split

the input image matrix into smaller patches to match the

requirement. According to the corresponding dictionary set

(Fig. 7b), image should be divided into patches with size of

4 9 4 (Fig. 12c). Then, according to the above, the inte-

grated dictionary set (Fig. 12d) is stored in 16 9 32

memristor crossbar array.

According to the above, we know there are 32 neurons

associated with 32 receptive fields. Therefore, neurons are

numbered from 1 to 32 for conveniently observing their

membrane potential change.

The reconstruction detail of one patch is shown as

Fig. 13a, where the membrane potentials of 32 output

neurons are continuously iterated. When these active neu-

rons keep on stable, the iteration is completed with

stable network. The reconstruction of the whole gray image

is sparsely coded in this way. Then, the reconstruction

images patches are combined, achieving the whole recon-

struction gray image (Fig. 13b). Furthermore, color images

can also be reconstructed by three RGB dictionaries that

are trained by the same way, respectively. According to the

above sample, the size of the segmentation patch corre-

sponds to the dictionary set. The dictionary set with dif-

ferent dimensions can sparse the gray image to different

degrees. Therefore, it should be selected according to the

actual needs. If requires high reconstruction, one can

choose the overcomplete dictionary set with larger

dimensions.

Super resolution image reconstruction
with MNN-SLCA

It can be known from the sparse coding for the natural

images, the resolution of the reconstructed HR image is

Table 1 Performance estimation and comparison between the novel

MNN-SLCA and traditional CMOS circuit

Method/index Time MSE Energy

MNN-SLCA 0.0059 s 1.26e - 3 876.5 uJ

CMOS 0.0097 s 3.12e - 3 3.45 mJ

Fig. 12 Gray input image and dictionary. a Input image. b Segmen-

tation. c Patch. d Overcomplete set of the dictionary Dmn (4 9 4932)

Fig. 13 The procedure of gray image reconstruction. a The iteration

of neurons membrane potential. b The reconstruction output image
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determined by the dictionary set DH. According to the flow

of Fig. 9, the dictionary set DH and DL are trained. Then,

the MNN-SLCA and Classical sparse coding (Classical

SC) were used to prosses the input LR gray image and HR

gray image (Fig. 14), respectively.

Furthermore, we used PSNR and SSIM measurement

methods to evaluate image quality in Fig. 14, respectively.

According to the selected test samples, the PSNR and

SSIM value results are obtained as shown in Table 2. It can

be seen from the table, the HR image quality obtained by

the MNN-SLCA method is better (the PSNR and SSIM

values of the Classical SC are lower). On the one hand, the

main reason may be that the Classical SC method cannot

effectively simulate the visual complexity of natural ima-

ges. If the number of input training images is insufficient,

the performance will be affected badly in Classical SC. On

the other hand, different dictionary learning methods also

affect the quality of HR images. Therefore, the final effect

of super resolution reconstruction depends on dictionary

quality and specific sparse coding algorithm. By using

MNN-SLCA, the accuracy of image reconstruction is

improved, and the image quality of super resolution

reconstruction is higher. Therefore, the effectiveness and

superiority of the whole scheme proposed can be verified.

Conclusion and discussion

Combing the characteristic of memristor crossbar array and

the principle of biological sparse coding, this paper pro-

poses an adaptive sparse coding algorithm based on

memristive neural network with soft-threshold local com-

petition (MNN-SLCA). The scheme uses programmable

and non-volatile memristor crossbar array to realize dic-

tionary training and storage. It provides key technical

support for large-scale sparse coding. With the unique

advantages of vector–matrix operation and bionic synapse

characteristics, the efficient pattern matching and lateral

neuronal inhibition of biology can be achieved. Therefore,

neurons with impulse accumulation–stimulation mecha-

nism are constructed, and the sparse coding information

can be represented by the activity state of output neurons.

The hardware scheme of adaptive SLCA sparse coding

based on bi-memristor networks is fully designed. It is

expected to further realize hardware acceleration of sparse

coding algorithm and improve real-time processing

capacity of complex tasks. Finally, the application of the

MNN-SLCA in super resolution image reconstruction is

explored. A series of experimental results of image

reconstruction and objective analysis verify the effective-

ness of the scheme. With its superior potential in intelligent

information coding, it will be widely used into large-scale

and low-power consumption information-processing

applications.
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