Skip to main content
. 2019 Aug 21;16(17):3025. doi: 10.3390/ijerph16173025

Table 5.

Analysis of interaction ER ratio and ‘over-commitment’ based on the additivity criterion. ELSA-Brasil, 2012–2014.

Variable Prev. (%) PR * PR ** 95%CI Excess of Prevalence e Measure 95%CI
(1) E-R Ratio = 0,
‘over-commitment’=0
3.29 1.00 1.00 - -
(2) ER Ratio = 1,
‘over-commitment’=0
5.65 1.71 1.71 1.29–2.25 2.36
(3) E-R Ratio = 0,
‘over-commitment’=1
5.89 1.79 2.02 1.53–2.68 2.60
(4) E-R Ratio = 1,
‘over-commitment’ = 1
10.79 3.28 3.68 2.97–4.56 7.50
Expected combined effect a 8.25 2.01 2.73
RERI b 0.945 0.81–1.80
AP c 0.256 0.04–0.46
S d 1.543 1.00–2.39

Interaction exists if RERI ≠ 0 or AP ≠ 0 or S ≠ 1; p Value for RERI: 0.03; AP: 0.01; and S = 0.05. * PR without adjustment ** Adjusted for age, sex, marital status, race/skin color, education. a Expected combined effect: Prevalence rate = P01 − P00 + P10 − P00 + P00/Prevalence ratio: PR01 − PR00 + PR10 − PR00 + PR00. b Excess risk due to interaction (RERI) = PR11 − PR01 − PR10 + 1. c Attributable proportion due to interaction (AP) = (PR11 − PR01 − PR10 + 1)/PR11. d Synergy index (S) = (PR11 − 1)/(PR01 + PR10 − 2). e Excess of prevalence ratio = (EP = Pexposure − Pno exposure).