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Abstract: The mechanical properties of lightweight aggregate concrete (LWAC) depend on the mixing
ratio of its binders, normal weight aggregate (NWA), and lightweight aggregate (LWA). To characterize
the relation between various concrete components and the mechanical characteristics of LWAC,
extensive studies have been conducted, proposing empirical equations using regression models
based on their experimental results. However, these results obtained from laboratory experiments do
not provide consistent prediction accuracy due to the complicated relation between materials and
mix proportions, and a general prediction model is needed, considering several mix proportions
and concrete constituents. This study adopts the artificial neural network (ANN) for modeling the
complex and nonlinear relation between constituents and the resulting compressive strength and
elastic modulus of LWAC. To construct a database for the ANN model, a vast amount of detailed
and extensive data was collected from the literature including various mix proportions, material
properties, and mechanical characteristics of concrete. The optimal ANN architecture is determined
to enhance prediction accuracy in terms of the numbers of hidden layers and neurons. Using this
database and the optimal ANN model, the performance of the ANN-based prediction model is
evaluated in terms of the compressive strength and elastic modulus of LWAC. Furthermore, these
prediction accuracies are compared to the results of previous ANN-based analyses, as well as those
obtained from the commonly used linear and nonlinear regression models.

Keywords: artificial neural network; compressive strength; elastic modulus; lightweight aggregate
concrete; prediction model

1. Introduction

Lightweight aggregate concrete (LWAC) represents a type of concrete which has a low unit weight
compared to that of normal weight aggregate concrete (NWAC). Because of the low mass density,
LWAC has the advantages associated with reduced self-weight of structures and has been applied
in long-span bridges and high-rise buildings [1]. Furthermore, structural LWAC, with a strength
that is similar to NWAC, enables the reduction of construction cost as it requires less reinforcement,
smaller supporting deck members, beams, and piers, and less earthquake damage. Another important
economic benefit of LWAC is the transportation cost savings achieved by improving the lifting efficiency
in the construction field and lowering shipping cost, compared to conventional NWAC products.
The unique advantages of LWAC allow a wide variety of real world applications that are continuously
increasing [2].

LWAC consists of the same concrete components as conventional NWAC with a partial or complete
replacement of normal weight aggregate (NWA) with lightweight aggregate (LWA). Commercially
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available artificial LWAs are generally produced by sintering pyroplastic materials such as slate, shale,
clay, and by-products of coal combustion materials at 1200–1300 ◦C [3]. These LWAs have an inherently
great porosity, resulting in low density, low strength, and deformable particles [4,5]. Following ASTM
C 330 standard tests [6], these LWAs conform to the specifications of a particle density not exceeding
2000 kg/m3, or a dry loose bulk density less than 1120 kg/m3, 880 kg/m3, and 1040 kg/m3 for fine, coarse,
and combined LWA, respectively. LWAC incorporating these LWAs generally has a density lower than
1920 kg/m3 [7]. A lower density of LWAC can be achieved by using a larger amount of porous LWA,
resulting in poor mechanical performance. Because the failure of LWAC is influenced by the friable and
deformable LWAs, most LWAC has a lower compressive strength and elastic modulus than NWAC.

Extensive efforts have been made to characterize the relation between LWAC constituents and the
mechanical properties of compressive strength and elastic modulus. A previous study showed that
the compressive strength and elastic modulus of LWAC were inversely proportional to the volume
fraction of LWA [8]. The compressive strength of LWAC also depends on not only the content of
LWAs, but also their type [9,10]. Hence, these experimental studies indicated that the properties and
amount of LWAs influenced the mechanical behavior of LWAC. Furthermore, the mix proportions of
LWAC are also essential parameters influencing the performance of LWAC, such as water-to-cement
ratio (w/c) and mass of aggregate, water, and binders including cement, fly ash, and silica fume [11].
Considering these factors, some guidelines were provided for estimating the mechanical properties of
LWAC, which were not consistently attainable due to the complexities associated with LWA properties
and mix proportions [7,12]. Therefore, the reliable prediction model for mechanical characteristics of
LWAC is required to extend its use in the construction with ensuring its performance.

To consider the highly complicated relationship between concrete constituents and properties of
cement-based construction materials, researchers have employed artificial neural networks (ANN).
An ANN is a numerical model using highly interconnected processing of simple computing elements,
referred to as neurons, imitating the structure and functions of biological neural systems of the
human brain [13]. In the field of construction materials, ANN methods were applied for modeling
concrete properties, including mechanical characteristics, fluidity, and durability using concrete
components-related information as input parameters [14–16]. Ni and Wang [14] reported that the
single-layer ANN model showed a good prediction accuracy for estimating the 28-day compressive
strength of NWAC. Note that the ANN models of 11-7-1 from Ni and Wang [14] and 7-5-3-2 from
Oztas et al. [16] in Table 1 indicate 11 inputs, seven neurons in one hidden layer, and one output
and seven inputs, five and three neurons in each hidden layer, and two outputs, respectively.
Douma et al. [15] likewise used a single hidden layer ANN model for the prediction of fluidity and
mechanical properties of self-compacting concrete, where results were well-matched to the target
value. In the case of LWAC, Alshihri et al. [17] and Tavakkol et al. [18] investigated the ANN-based
estimation of compressive strength of LWAC fabricated in the laboratory environment. In addition,
the ANN model having a single hidden layer structure was used for predicting the Poisson ratio [19]
and compressive strength based on measured ultrasonic pulse velocity [20]. These experimental results
provided the feasibility of the ANN to model the nonlinear relation between various parameters and
concrete properties. However, as prediction modeling for LWAC has not been fully studied, further
research is still desired, to evaluate the optimal ANN architecture and consider extensive data about
mix proportions, binders, and aggregates.

This study presents an ANN-based prediction model for mechanical characteristics of LWAC,
which enable us to produce high-quality LWAC that satisfies the target performance. First, detailed
and extensive data on the mix proportions and the mechanical behavior of LWAC are collected from
the literature. The vast amount of data allows to enhance the reliability and accuracy of the prediction
model. Input parameters for the ANN model are selected for better modeling of the LWAC, including
water-to-binder ratio, amount of binders, density of concrete, and volume fraction of aggregates.
Subsequently, the appropriate number of hidden layers and neurons are determined for developing
the optimal ANN architectures to obtain high prediction accuracy. Finally, the performance of the
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ANN-based prediction model is evaluated and compared to the results obtained from the commonly
used statistical models.

2. Research Background

2.1. Artificial Neural Network

An ANN is a network based on a collection of connected neurons used to model the complex
relationship between inputs and outputs. As shown in Figure 1, the basic structure of an ANN consists
of three types of layers: Input, hidden, and output layers. Depending on the number of hidden
layers, ANN is classified into single- or multi-layer perceptron, which has multi-connected neurons.
When neurons in the input layer receive an input, the weighted sums of the inputs are transferred to
interconnected neurons in the next layer and evaluated using activation functions [13]. The weight and
bias values can be determined as the solutions of the optimization problem to minimize the prediction
error using the back-propagation algorithm [15].
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Figure 1. Schematic diagram for artificial neural network [21].

To optimize the weight and bias, the back-propagation learning is repeated from the output layer
back to the input layer in each running step, until there is no further decrease in the mean square error
(MSE) of the prediction. After the training is completed with updated weight and bias, new inputs
from the test dataset are used in the network to produce the corresponding outputs. The prediction
accuracy can be evaluated by the mean absolute percentage error (MAE) and correlation coefficient (R).
MSE, MAE, and R are defined as:
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1
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where N is the number of training data, yi is the target value, ydi is the predicted result, yi is the mean
prediction value, and ydi is the mean target value. The correlation coefficient is introduced to evaluate
the linear dependence between the predicted and target values. Its value ranges from −1 to 1, where 1
indicates the perfect positive correlation and 0 means no linear relation among variables.
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2.2. ANN-Based Prediction of Concrete Properties

Previous ANN-based prediction models demonstrated the feasibility for predicting physical
and mechanical properties of concrete, as provided in Table 1. The most conventionally used
ANN-based prediction mainly focused on the characterization of properties of NWAC, such as the
compressive strength, elastic modulus, drying shrinkage, and fluidity [14,22–25]. As these ANN
models exhibited acceptable prediction accuracy, their applications were extended to high strength
concrete, self-consolidating concrete, recycled aggregate concrete, and LWAC. However, further
research on these types of concrete is still needed to enhance the reliability and the prediction accuracy
of ANN-based analysis considering various mix proportions and concrete materials. Furthermore,
determining optimal numbers of hidden layers and neurons for the ANN model is necessary to model
a complex relationship between the inputs and targets. Considering these aspects, this study mainly
focuses on the prediction of mechanical properties of LWAC using the ANN model.

Table 1. Previous studies using artificial neural network (ANN) analysis for predicting mechanical
behavior of cement-based material.

Literature Target
ANN Architecture

(Number of Neurons in
Input-Hidden-Output Layers)

Ni and Wang (2000) [14] Compressive strength (65 data) 11-7-1

Oztas et al. (2006) [16] Compressive strength and fluidity
(187 data) 7-5-3-2

Demir (2008) [22] Elastic modulus (159 data) 1-3-1, 1-5-1, 1-3-3-1

Alshihri et al. (2009) [17] Compressive strength (108 data) 8-14-4, 8-14-6-4

Atici (2011) [23] Compressive strength (27 data) 3-5-1, 4-6-1, 4-6-1
3-5-1, 5-6-1, 2-4-1

Bal and Buyle-Bodin (2013) [24] Drying shrinkage (176 data) 11-8-4-1, 11-8-6-1
11-9-4-1, 11-9-6-1

Khademi et al. (2016) [26] Compressive strength (257 data) 14-29-1

Douma et al. (2017) [15] Fluidity (114 data) 6-17-1

Hossain et al. (2018) [25] Compressive and tensile strength
(180 data) 12-8-1, 10-7-1

In the application of the ANN model, several issues have been identified with regard to the database,
input variables, and ANN architecture. First, many studies used the data obtained in the laboratory
environment, resulting in an acceptable prediction error [14,17,18]. However, the applications of
these ANN models are limited to the concrete using specific types of materials. To make a more
general ANN-based prediction model, this study collects various data of LWAC mixtures with different
mix proportions and concrete materials provided in Section 3. The selection of appropriate input
parameters is another important factor to consider for obtaining high prediction accuracy. Considering
the input variables used in previous studies and the unique material properties of LWAC, the inputs are
determined as shown in Section 4.1. Lastly, the investigation for designing optimal ANN architecture
for predicting mechanical properties of LWAC is necessary in terms of the numbers of hidden layers
and neurons. Previous studies, listed in Table 1, used various ANN models with one- and two-hidden
layers with 3–29 hidden neurons. As an example, 11-7-1 in Ni and Wang [14] depicts 11 inputs, seven
neurons in one hidden layer, and one output ANN architecture. Because these experimental studies
attained a good prediction accuracy, this study conducts the ANN analysis using the ANN model
with the range of these hidden layers and neurons, as provided in Section 4.2. Finally, vast data,
suitable input variables, and optimal ANN architecture are used for the ANN-based prediction model
for LWAC.
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3. Establishment of A Database

Accurate and reliable prediction using the ANN model generally depends on the amount and
quality of available data. This study conducted a literature review to collect extensive and detailed
information on mix proportions, physical properties of composites, and mechanical characteristics
of concrete. A total of 149 concrete mixtures (20 NWAC and 129 LWAC) produced with various mix
proportion and aggregates were prepared for ANN-based compressive strength analysis [2,4,8,10,27–37].
For the prediction of the static elastic modulus, data from 133 concrete mixtures (20 NWAC and
113 LWAC) were collected [2,4,8,10,27,28,32–37]. The obtained data are summarized in Table 2 listing
concrete density (kg/m3), water-to-binder ratio (w/b), content of water (kg/m3), cement (kg/m3), fly ash
(kg/m3), silica fume (kg/m3), coarse NWA (CNWA, kg/m3), fine NWA (FNWA, kg/m3), coarse LWA
(CLWA, kg/m3), fine LWA (FLWA, kg/m3), volume fraction of aggregate, and the specific gravity of
used materials. Detailed information on concrete mixtures is provided in the Appendix A. Note that
NWAC is included in the database as control concrete samples without CLWA and FLWA. Compared
to the mix proportion of LWAC, the selected data of NWAC have a similar w/b ratio, cement, fly ash,
and silica fume content. The variables of mix proportion and volume fraction provided in Table 2 are
generally considered as factors influencing the mechanical behavior of concrete [17].

Table 2. Database for ANN analysis.

Mix Proportion and Material Properties LWAC NWAC

Concrete density 1170–2280 kg/m3 2030–2430 kg/m3

w/b 0.23–0.55 0.25–0.45

Mass

Water 150–263 kg/m3 158–207 kg/m3

Cement 300–710 kg/m3 300–640 kg/m3

Fly ash 0–300 kg/m3 0–300 kg/m3

Silica fume 0–71 kg/m3 0–96 kg/m3

CNWA 0–810 kg/m3 810–1105 kg/m3

FNWA 0–1096 kg/m3 288–861 kg/m3

CLWA 0–898 kg/m3 0
FLWA 0–631 kg/m3 0

Volume fraction

CNWA 0–0.31 0.30–0.45
FNWA 0–0.42 0.12–0.34
CLWA 0–0.52 0
FLWA 0–0.39 0

Specific gravity

Cement 3100–3160 kg/m3

Fly ash 2060–2470 kg/m3

Silica fume 2000–2280 kg/m3

CNWA 2460–2740 kg/m3

FNWA 2460–2700 kg/m3

CLWA 600–2070 kg/m3

FLWA 1340–1790 kg/m3

Because several studies used different sizes of specimens for measuring the compressive strength
and elastic modulus, the size effect needs to be considered to assure data consistency. The size effect
generally presents a reduction of compressive strength and the elastic modulus of concrete with
an increasing the height-to-width ratio caused by failure of the heterogeneous concrete composite [38].
Therefore, the correction factors are used to convert the data of compressive strength and elastic
modulus to equivalent values for the widely used 100 mm by 200 mm cylindrical specimen, referring
to the empirical equations from previous studies [38–41]. Here, the correction factors for 28-day
compressive strength are 1.051 for fc,Ø100×200/fc,150×150×150, 0.874 for fc,Ø100×200/fc,100×100×100, and 1.230
for fc,Ø100×200/fc,Ø150×300 obtained from w/c = 0.49 high performance lightweight foamed concrete [42].
The correction equation for the static elastic modulus is Ec,Ø100×200 = (Ec,Ø150×300 − 1.9)/0.9 obtained
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from normal strength NWAC [41]. Because the investigations of size and shape effect for LWAC were
rare, the empirical equations from foamed concrete and normal strength NWAC are used considering
the similar failure mechanism induced by the concrete heterogeneity and internal defects of voids.
Using these correction factors for the compressive strength and elastic modulus, the database used for
the ANN model is updated.

4. Prediction Model for Compressive Strength and Elastic Modulus Using ANN

Because the ANN model has been used for modeling highly nonlinear and complex interactions
between input and output variables, the selection of appropriate input parameters and the ANN
architecture is critical for reliable and accurate prediction. This section mainly illustrates the selection
of input factors and the determination of the optimal ANN architecture for the prediction of mechanical
characteristics of LWAC.

4.1. Input Parameters

The selection of appropriate input variables is an important task for enhancing the prediction
accuracy of the ANN model, considering the relation between input and target values. Because
the strong correlation between mechanical properties of concrete and the amount of constituent
materials is generally known, these parameters were adopted as the input for predicting compressive
strength and the elastic modulus using ANN models, as summarized in Table 3 [15–17,26]. Commonly
used inputs are w/b ratio and mass of water, binders, aggregates, and chemical admixture, which
are likewise adopted in this study. However, other parameters such as the sand-to-aggregate ratio,
aggregate-to-binder ratio, replacement ratio of binders and aggregates, grade of cement, maximum
size of aggregates, and the fine modulus of sand are not included despite their possible relation with
mechanical properties, because of the difficulties in data collection, as in [14,43]. Even though previous
studies listed in Table 3 provide useful information about the selection of appropriate inputs, NWAC
was of primary interest in the prediction. Therefore, additional variables tailored to LWAC are needed
to improve the prediction performance.

Table 3. Input variables for the ANN model.

Input Variables

Oztas et al. [16]
w/b ratio, sand-to-aggregate ratio, replacement ratio

of fly ash and silica fume, mass of water,
chemical admixture

Alshihri et al. [17] w/c ratio, curing period, mass of FNWA, CLWA,
FLWA, silica fume, chemical admixture

Khademi et al. [26]

w/c ratio, aggregate-to-cement ratio, replacement
ratio of recycled aggregate, water-to-total materials

ratio, mass of water, cement, CNWA, FNWA, recycled
aggregate, chemical admixture

Douma et al. [15] w/b ratio, replacement ratio of fly ash, content of
binders, CNWA, FNWA, chemical admixture

ANN model
w/b ratio, concrete density, mass of water, cement, fly
ash, silica fume, volume fraction of CNWA, FNWA,

CLWA, FLWA

Accordingly, this study adopts the density of LWAC and volume fraction of aggregates as the
inputs due to the inverse proportional relation to the mechanical performance of LWAC [44]. Because
the linear and nonlinear empirical relation between the density of LWAC and compressive strength or
elastic modulus has been reported, the use of this value as an input parameter is expected to enhance
the prediction accuracy [45,46]. Furthermore, the volume fractions of aggregates are introduced as
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an input parameter regarding the amount of LWA in the mixture, replacing the mass. The volume
fraction that reflects the actual volume of added LWA can be viewed as another indicator of how much
LWA is contained in the mixture in addition to the mass. Thus, the volume fractions are included as
the input variables for NWA for comparison.

In summary, the selected input variables used for the ANN model are w/b ratio, concrete density,
mass of water, cement, fly ash, silica fume, and volume fraction of CNWA, FNWA, CLWA, and FLWA
as provided in Table 3. In the analysis of compressive strength and elastic modulus, these inputs are
adopted for the ANN-based prediction.

4.2. Determination of the Optimal ANN Architecture

Determination of the optimal ANN architecture in terms of the number of hidden layers and
neurons is the most fundamental part of ANN-based analysis. An excessive number of hidden neurons
can cause an over-fit problem due to overestimation in the complex relationship between inputs and
targets. An insufficient number of hidden neurons can cause an underfitting problem due to the lack
of neurons covering various inputs. Therefore, this study determines the optimal ANN architecture
with the minimum MSE value, conducting the tests with consideration to various numbers of hidden
layers and neurons. The testing ranges of the numbers of hidden layers and neurons are selected
by referring the proposed optimization methodologies and previously applied ANN models. First,
many optimized methodologies have been proposed to find appropriate numbers of hidden neurons
in the higher-order ANN. Among these methods, three empirical equations are selected to estimate
the number of neurons in hidden layers, considering the numbers of inputs and outputs in the ANN
models [47–49]. The equations are provided as

Nh =

√
1 + 8Ni − 1

2
(4)

Nh = Ni − 1 (5)

Nh =
4N2

i + 3

N2
i − 8

(6)

where Nh and Ni are the number of hidden neurons and inputs, respectively. Because a total of
10 input parameters are selected in the previous section, the corresponding numbers of calculated
hidden neurons are 4, 9, and 4.4 from Equations (4)–(6), respectively. Furthermore, the architectures of
previously applied ANN models (see Table 1) are considered to select the appropriate testing ranges.
The applied ANN architectures had a higher number of neurons ranging from 3–29 with one or two
hidden layers. Thus, to determine the optimal ANN architecture, this study considers the number of
neurons from one to 30, which includes the recommended values from Equations (4)–(6) as well as the
used ones in Table 1. In the case of hidden layers in the ANN model, previous studies adopted one-
or two- hidden layer ANN models, which showed acceptable prediction accuracy. To evaluate the
performance of multi-hidden layer ANN models, this study selects a wide range of hidden layers from
1 to 10.

To determine the optimal ANN architecture with the lowest prediction MSE for testing data,
detailed information of the ANN model is provided regarding the backpropagation algorithm,
activation function, five-fold cross validation, and used computing resources. This study employs the
scaled conjugate gradient backpropagation as a network training scheme that updates weight and bias
values according to the scaled conjugate gradient method provided in the MATLAB Deep Learning
Toolbox [50]. A nonlinear hyperbolic tangent sigmoid function is employed as an activation function in
the hidden layer, and a linear transfer function is used in the output layer. To enhance the reliability of
the ANN model, five-fold cross validation is used [51,52]. Once five sets of approximately equal-sized
samples are prepared through the random partition process, a subset of each sample is used to fit
the ANN model, and the remaining samples evaluate the prediction accuracy of the model. This is
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repeated five times. The network error is the average error obtained from the five-fold cross validation
method providing greater confidence in the error evaluation. The evaluation of prediction accuracy is
conducted using the following computing resources: Intel(R) Core i5-6600 ~3.3 GHz (4 CPUs), NVIDIA
GeForce GTX 1080, and 8 GB RAM.

In the determination of the optimal ANN architecture, the averaged MSE obtained is used for
reliable ANN-based prediction. To show the convergence of averaged MSE values, the relative MSE
defined as (MSE(1) −MSE(i))/MSE(1) is calculated for 50 repetitions, as shown in Figure 2. The results
of the relative MSE show a convergence of averaged MSE for multiple repetitions, compared to the
result of MSE(1). Due to the high computational cost during the test, the appropriate number of
repetitions needs to be selected based on the regression curve from the relative MSE of compressive
strength and elastic modulus, marked as “Comp” and “Els” in Figure 2, respectively. The regression
curve is −0.148x−3.812 + 0.148 for compressive strength and −0.176x−3.391 + 0.176 for the elastic modulus.
When the slope of 10−4 is selected as a threshold of convergence, the minimum numbers of the required
repetitions are 7 and 8 for the compressive strength and elastic modulus, respectively, which yield the
corresponding MSE values.
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In the prediction of the compressive strength and elastic modulus, the optimal ANN architecture
is determined considering MSE values for training and testing and computation time. The MSE
results for both training and testing are provided in Figure 3 obtained by the ANN models with the
1–30 neurons and 1–10 hidden layers. As expected, the prediction results for both the compressive
strength and elastic modulus show much lower MSE values in training than in testing. When the
optimal architecture of the ANN model is determined at the minimum test MSE, as provided in Table 4,
two hidden layers with 14 neurons in each hidden layer for compressive strength analysis show the best
performance with the training and a test MSE of 48.7 and 98.2, respectively. For the elastic modulus
analysis, the minimum training and test MSE values are 7.8 and 16.9, respectively, corresponding to
four hidden layers and 23 neurons. The training times depicted in Figure 3e,f show that a greater
number of hidden layers for given number of neurons increases the computational cost significantly
due to more numerical calculation. An overfitting problem at small numbers of hidden neurons and
many hidden layers is related to the vanishing gradient problem due to slower optimization in earlier
layers than in later layers [53].
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5. Evaluation of Prediction Accuracy

Using the input variables and optimal ANN architecture determined in the previous section,
the performance of the ANN-based prediction model is evaluated with respect to the compressive
strength and elastic modulus of LWAC. Furthermore, the prediction results are compared to those
obtained from the linear and nonlinear regression models using the same input data.

5.1. Prediction Results Using the ANN Model

Prediction accuracies for compressive strength and elastic modulus of LWAC are evaluated using
the selected inputs and ANN architectures with respect to the square error, MAE, and correlation
coefficient. Figure 4 shows the ANN-based prediction results with the square errors of each input data,
when the ANN models have two hidden layers and 14 neurons, and four layers and 23 neurons for
estimation of the compressive strength and elastic modulus, respectively. For the compressive strength
analysis, the square error ranges from 1.3 × 10−3 to 6.2 × 102 and from 3.6 × 10−2 to 2.9 × 102 for
training and testing, respectively. MAE values are 9.6% and 14.5% for training and testing, respectively.
Furthermore, 87% of the testing data has MAE values of less than 30%, while the correlation coefficient
of the predicted and reference data is 0.930. Prediction results for the elastic modulus show better
accuracy. The square error ranges from 1.5 × 10−4 to 8.5 × 10 for training and from 6.5 × 10−5 to
4.4 × 10 for testing. MAE values are 6.9% and 8.5% for training and testing, respectively, which
depicts results that are much lower than those for the compressive strength. In addition, the square
error of the individual testing data does not exceed a MAE of 30%, resulting in a high correlation
coefficient of 0.977. Note that the large variations of square error for compressive strength are derived
from its raw data of compressive strength having larger variation than that of the elastic modulus.
These prediction errors obtained from the ANN models are summarized in Table 5. Compared to
the prediction accuracy of the ANN model for NWAC, less than 12.4% of MAE, reported by previous
studies listed in Table 1, the present ANN-based model for LWAC exhibits acceptable performance for
predicting the compressive strength and elastic modulus.
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Figure 4. Prediction results from ANN model: (a) compressive strength and (b) elastic modulus.
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Table 5. Prediction accuracy of ANN-based models.

Error
Configuration

Compressive Strength Elastic Modulus

Training Test Training Test

Square error 1.3 × 10−3–6.2 × 102 3.6 × 10−2–2.9 × 102 1.5 × 10−4–8.5 × 10 6.5 × 10−5–4.4 × 10

MAE 9.6% 14.5% 6.9% 8.5%

Correlation
coefficient 0.930 0.977

5.2. Comparative Analysis

In Section 5.1, the prediction performance of the ANN model is validated, and the results are
compared to those obtained from the commonly used regression algorithms: The statistical models
of linear and nonlinear regression. These regression models have typically been used for modeling
the relationship between constituents and concrete properties [18,45,46]. Thus, this study adopts the
linear and nonlinear (i.e., second-order polynomial) regression models for the evaluation of prediction
performance. Furthermore, their prediction accuracies are compared to those obtained from the ANN
models using scale-independent MAE.

In the linear regression model, multiple linear regression (MLR) is employed to identify the
relationship between two or more independent variables and the dependent variable. The equation for
the generally used MLR model is provided as

y = α0 + α1x1 + α2x2 + · · ·+ αixi (7)

where y depicts the properties of LWAC being predicted, xi depicts the independent variables, α0 is the
y-intercept, and αi is the regression coefficient. Using the same input variables and data randomly
divided into an 8:2 ratio for training and testing likewise the ANN model, the coefficients are optimized
with respect to minimizing the summed square error between predicted and target values. The residuals
from MLR model are equally distributed and homoscedastic. Due to the variance of network errors at
every analysis, MLR-based predictions are repeated 10 times. The linear regression model with the
minimum MAE value for test is provided, as shown in Figure 5. The prediction-accuracy indicators
for the compressive strength are 87.3, 16.4%, and 0.841 for the MSE, MAE, and correlation coefficient,
respectively. For the elastic modulus, Figure 5b shows the MLR-based prediction as 12.9, 14.4%, and
0.921 for the MSE, MAE, and correlation coefficient, respectively. The relatively high prediction errors
from MLR-based analysis could be related to the assumption that the relationship between the mixture
components and concrete properties is linear.

Considering the complex and nonlinear relationships between the constituents and concrete
properties, the nonlinear models employing higher-order polynomials help improve the prediction
results. In this study, the multiple nonlinear regression (MNLR) model contains constant, linear, and
quadratic terms as follows:

y = α0 + α1x1 + α2x2 · · ·+ αixi + β1x2
1 + β2x2

2 + · · ·+ βix2
i (8)

where βi is the coefficient for x2
i . The coefficients of the nonlinear regression model are likewise

determined by minimizing the square error between estimated and target values. The same database
used in the ANN model is applied for MNLR-based analysis, with an 8:2 ratio for training to testing data
quantities. The residuals from MNLR model are also equally distributed and homoscedastic likewise
MLR model. The training data optimize the coefficients of the MNLR model, and the prediction
performance of this model is evaluated. The prediction results with the minimum prediction error
are selected on the basis of the 10 times repetitions, as shown in Figure 6. For the compressive
strength prediction, the prediction results are 64.2, 15.0%, and 0.880 for the MSE, MAE, and correlation
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coefficient, respectively. Figure 6b shows the results of the elastic modulus with values of 17.6, 13.4%,
and 0.944 for the MSE, MAE, and correlation coefficient. As expected, the quadratic polynomial-based
MNLR model demonstrates a better prediction accuracy than the result obtained from the MLR model.
Despite the improvement of prediction accuracy using the MNLR model, the ANN-based model shows
a better performance.Materials 2019, 12, x FOR PEER REVIEW 12 of 22 
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Figure 5. Prediction results from multiple linear regression (MLR)-based analysis: (a) compressive
strength and (b) elastic modulus.
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Figure 6. Prediction results from multiple nonlinear regression (MNLR)-based analysis: (a) compressive
strength and (b) elastic modulus.
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The prediction accuracies obtained from ANN, MLR, and MNLR models are summarized in
Table 6 in terms of the scale-independent MAE value. Compared to averaged MLR and MNLR models
from 10 times analyses, the ANN-based prediction shows the highest accuracy with MAE of 14.5% and
8.5% for the compressive strength and elastic modulus, respectively. High averaged MAE values from
linear and nonlinear regression models among 10 times repetitions show their wide range variations for
predicting mechanical properties of LWAC. These variations in prediction accuracies indicate that used
statistical models would not provide the reliable prediction results for LWAC. Thus, the ANN-based
prediction model is shown to be suitable for characterizing the complex and nonlinear relationship
between the concrete component materials and mechanical characteristics of LWAC.

Table 6. Prediction accuracies of ANN, MLR, and MNLR models.

Prediction Accuracy
(MAE)

Compressive Strength Elastic Modulus

Training Test Training Test

ANN model 9.6% 14.5% 6.9% 8.5%
Linear regression 17.0% 19.7% 19.0% 21.4%

Nonlinear regression 14.3% 19.9% 13.7% 20.1%

6. Conclusions

This study presents the ANN-based prediction model for the compressive strength and elastic
modulus of LWAC. The ANN model considers the complex and nonlinear relation between the
mechanical properties and the concrete components of binders, NWAs, and LWAs. The database for
the ANN model was constructed by collecting experimental data of various mix proportions, material
properties, and mechanical properties of LWAC from the literature. Suitable input parameters and
the optimal ANN architecture in terms of the number of hidden layers and neurons were determined
to obtain a better prediction accuracy. To enhance the reliability of the ANN model, the five-fold
cross validation was applied to all training and validation processes. The scaled conjugate gradient
back-propagation algorithm was applied to obtain the optimal weight and bias values in the ANN
model during the training stage. Subsequently, the prediction accuracy of the ANN model was
evaluated. In comparison to previous studies using the ANN-based prediction model for NWAC, the
ANN model used in this study showed acceptable prediction accuracy with respect to the compressive
strength and elastic modulus of LWAC. Furthermore, a comparative analysis showed that the highest
prediction accuracy is obtained by the ANN model compared to the use of statistical linear and
nonlinear regression models.
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Appendix A

Table A1. Data sources.

Literatures
Mix Proportion [kg/m3] Volume Fraction Density

[kg/m3]
σ28

[MPa]
E28

[GPa]w/b W C FA SF CNWA CLWA FNWA FLWA CNWA CLWA FNWA FLWA

Kim et al., 2010. [8]

0.38 175 460 0 0 810 0 861 0 0.30 0 0.34 0 2300 47 37.0
0.38 175 460 0 0 608 117 861 0 0.22 0.07 0.34 0 2280 44 29.0
0.38 175 460 0 0 405 234 861 0 0.15 0.15 0.34 0 2220 43 30.0
0.38 175 460 0 0 203 352 861 0 0.07 0.22 0.34 0 2200 42 33.0
0.38 175 460 0 0 0 469 861 0 0 0.30 0.34 0 2150 32 30.0
0.38 175 460 0 0 604 154 861 0 0.22 0.07 0.34 0 2280 44 31.0
0.38 175 460 0 0 402 308 861 0 0.15 0.15 0.34 0 2150 40 26.0
0.38 175 460 0 0 201 463 861 0 0.07 0.22 0.34 0 2100 40 24.0
0.38 175 460 0 0 0 617 861 0 0 0.30 0.34 0 2000 37 25.0

Bogas and Gomes
2013. [30]

0.50 225 450 0 0 0 374 676 0 0 0.35 0.26 0 1763 35 -
0.50 225 450 0 0 0 303 676 0 0 0.35 0.26 0 1686 27 -
0.35 158 450 0 0 0 374 847 0 0 0.35 0.32 0 1897 49 -
0.35 158 450 0 0 0 452 833 0 0 0.35 0.32 0 1942 66 -
0.35 158 450 0 0 0 247 846 0 0 0.35 0.32 0 1776 31 -

Bogas et al., 2015.
[31]

0.55 193 350 0 0 0 382 825 0 0 0.35 0.32 0 1897 38 -
0.55 193 350 0 0 0 208 825 0 0 0.35 0.32 0 1710 19 -

Nguyen et al., 2014.
[4]

0.45 190 426 0 0 0 445 554 0 0 0.45 0.23 0 1440 38 19.3
0.45 190 426 0 0 0 445 277 213 0 0.45 0.11 0.11 1380 36 18.6
0.45 190 426 0 0 0 445 0 427 0 0.45 0 0.22 1320 34 17.3
0.45 190 426 0 0 0 626 554 0 0 0.45 0.23 0 1490 35 19.1
0.45 190 426 0 0 0 626 277 177 0 0.45 0.11 0.11 1410 33 17.0
0.45 190 426 0 0 0 626 0 354 0 0.45 0 0.22 1340 31 15.3
0.45 190 426 0 0 0 558 554 0 0 0.45 0.23 0 1410 31 16.3
0.45 190 426 0 0 0 558 277 189 0 0.45 0.11 0.11 1290 26 13.6
0.45 190 426 0 0 0 558 0 379 0 0.45 0 0.23 1170 22 11.1
0.45 190 426 0 0 0 673 554 0 0 0.45 0.23 0 1520 40 18.2
0.45 190 426 0 0 0 673 277 189 0 0.45 0.11 0.11 1400 35 15.7
0.45 190 426 0 0 0 673 0 379 0 0.45 0 0.23 1280 31 13.6
0.45 190 426 0 0 1105 0 554 0 0.45 0 0.23 0 2030 52 32.7
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Table A1. Cont.

Literatures
Mix Proportion [kg/m3] Volume Fraction Density

[kg/m3]
σ28

[MPa]
E28

[GPa]w/b W C FA SF CNWA CLWA FNWA FLWA CNWA CLWA FNWA FLWA

Choi et al., 2006. [33]

0.38 175 460 0 0 810 0 861 0 0.31 0 0.34 0 2306 49 34.0
0.38 175 460 0 0 608 117 861 0 0.23 0.07 0.34 0 2221 46 27.0
0.38 175 460 0 0 405 234 861 0 0.16 0.15 0.34 0 2135 45 24.0
0.38 175 460 0 0 203 352 861 0 0.08 0.22 0.34 0 2051 46 25.0
0.38 175 460 0 0 0 469 861 0 0 0.30 0.34 0 1965 34 28.0
0.38 175 460 0 0 810 0 645 158 0.31 0 0.25 0.10 2248 46 30.0
0.38 175 460 0 0 810 0 430 316 0.31 0 0.17 0.20 2191 46 33.0
0.38 175 460 0 0 810 0 215 473 0.31 0 0.08 0.29 2133 53 31.0
0.38 175 460 0 0 810 0 0 631 0.31 0 0 0.39 2076 59 30.0

Yang and Huang
1998. [34]

0.28 178 626 0 0 0 292 1096 0 0 0.18 0.42 0 2192 41 23.0
0.28 178 626 0 0 0 299 1096 0 0 0.18 0.42 0 2199 44 23.8
0.28 178 626 0 0 0 311 1096 0 0 0.18 0.42 0 2211 50 24.7
0.28 178 626 0 0 0 389 939 0 0 0.24 0.36 0 2132 37 20.6
0.28 178 626 0 0 0 399 939 0 0 0.24 0.36 0 2142 41 21.5
0.28 178 626 0 0 0 415 939 0 0 0.24 0.36 0 2158 47 22.6
0.28 178 626 0 0 0 486 783 0 0 0.30 0.30 0 2073 35 18.2
0.28 178 626 0 0 0 498 783 0 0 0.30 0.30 0 2085 38 19.0
0.28 178 626 0 0 0 519 783 0 0 0.30 0.30 0 2106 45 20.3
0.28 178 626 0 0 0 583 626 0 0 0.36 0.24 0 2013 62 15.8
0.28 178 626 0 0 0 598 626 0 0 0.36 0.24 0 2028 36 17.2
0.28 178 626 0 0 0 623 626 0 0 0.36 0.24 0 2053 42 18.7

Kockal and Ozturan
2011. [10]

0.26 158 551 0 55 0 592 636 0 0 0.37 0.24 0 1860 42 19.6
0.26 157 548 0 55 0 567 633 0 0 0.36 0.24 0 1915 54 26.0
0.26 157 549 0 55 0 580 634 0 0 0.36 0.24 0 1943 56 25.7
0.26 158 551 0 55 981 0 636 0 0.36 0 0.24 0 2316 63 36.8

Gesoglu et al., 2007.
[36]

0.35 192 550 0 0 0 487 862 0 0 0.27 0.33 0 2101 36 20.0
0.35 192 547 0 0 0 646 624 0 0 0.36 0.24 0 2015 28 18.0
0.35 191 547 0 0 0 465 858 0 0 0.27 0.33 0 2070 60 29.0
0.35 193 550 0 0 0 624 628 0 0 0.36 0.24 0 2000 57 28.0
0.35 193 550 0 0 0 506 863 0 0 0.28 0.33 0 2122 50 25.0
0.35 193 550 0 0 0 675 627 0 0 0.38 0.24 0 2056 46 27.0
0.55 220 399 0 0 0 509 902 0 0 0.29 0.35 0 2032 23 17.0
0.55 220 401 0 0 0 681 658 0 0 0.38 0.25 0 1960 20 14.0
0.55 221 403 0 0 0 475 908 0 0 0.28 0.35 0 2010 37 19.0
0.55 220 399 0 0 0 631 657 0 0 0.37 0.25 0 1907 34 18.0
0.55 218 397 0 0 0 525 895 0 0 0.29 0.34 0 2038 29 19.0
0.55 219 399 0 0 0 706 657 0 0 0.39 0.25 0 1981 25 17.0
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Table A1. Cont.

Literatures
Mix Proportion [kg/m3] Volume Fraction Density

[kg/m3]
σ28

[MPa]
E28

[GPa]w/b W C FA SF CNWA CLWA FNWA FLWA CNWA CLWA FNWA FLWA

Chi et al., 2003. [32]

0.28 171 602 0 0 0 297 1096 0 0 0.18 0.42 0 2166 42 22.9
0.28 171 602 0 0 0 396 939 0 0 0.24 0.36 0 2108 38 21.5
0.28 171 602 0 0 0 495 783 0 0 0.30 0.30 0 2051 35 20.1
0.28 171 602 0 0 0 594 626 0 0 0.36 0.24 0 1993 32 18.7
0.39 202 517 0 0 0 297 1096 0 0 0.18 0.42 0 2112 33 20.3
0.39 202 517 0 0 0 396 939 0 0 0.24 0.36 0 2054 30 16.5
0.39 202 517 0 0 0 495 783 0 0 0.30 0.30 0 1997 28 16.5
0.39 202 517 0 0 0 594 626 0 0 0.36 0.24 0 1939 23 13.8
0.50 226 453 0 0 0 297 1096 0 0 0.18 0.42 0 2072 30 18.2
0.50 226 453 0 0 0 396 939 0 0 0.24 0.36 0 2014 26 15.5
0.50 226 453 0 0 0 495 783 0 0 0.30 0.30 0 1957 23 14.2
0.50 226 453 0 0 0 594 626 0 0 0.36 0.24 0 1899 21 13.3
0.28 171 602 0 0 0 304 1096 0 0 0.18 0.42 0 2166 44 22.8
0.28 171 602 0 0 0 406 939 0 0 0.24 0.36 0 2108 41 21.7
0.28 171 602 0 0 0 507 783 0 0 0.30 0.30 0 2051 39 18.9
0.28 171 602 0 0 0 608 626 0 0 0.36 0.24 0 1993 36 18.2
0.39 202 517 0 0 0 304 1096 0 0 0.18 0.42 0 2112 37 21.4
0.39 202 517 0 0 0 406 939 0 0 0.24 0.36 0 2054 33 18.2
0.39 202 517 0 0 0 507 783 0 0 0.30 0.30 0 1997 30 17.4
0.39 202 517 0 0 0 608 626 0 0 0.36 0.24 0 1939 28 16.1
0.50 226 453 0 0 0 304 1096 0 0 0.18 0.42 0 2072 27 17.1
0.50 226 453 0 0 0 406 939 0 0 0.24 0.36 0 2014 26 17.0
0.50 226 453 0 0 0 507 783 0 0 0.30 0.30 0 1957 25 15.2
0.50 226 453 0 0 0 608 626 0 0 0.36 0.24 0 1899 22 14.8
0.28 171 602 0 0 0 317 1096 0 0 0.18 0.42 0 2166 48 23.1
0.28 171 602 0 0 0 422 939 0 0 0.24 0.36 0 2108 47 21.9
0.28 171 602 0 0 0 528 783 0 0 0.30 0.30 0 2051 46 20.9
0.28 171 602 0 0 0 634 626 0 0 0.36 0.24 0 1993 43 19.8
0.39 202 517 0 0 0 317 1096 0 0 0.18 0.42 0 2112 38 21.9
0.39 202 517 0 0 0 422 939 0 0 0.24 0.36 0 2054 38 21.4
0.39 202 517 0 0 0 528 783 0 0 0.30 0.30 0 1997 39 20.6
0.39 202 517 0 0 0 634 626 0 0 0.36 0.24 0 1939 38 18.0
0.50 226 453 0 0 0 317 1096 0 0 0.18 0.42 0 2072 31 19.3
0.50 226 453 0 0 0 422 939 0 0 0.24 0.36 0 2014 30 17.9
0.50 226 453 0 0 0 528 783 0 0 0.30 0.30 0 1957 28 16.3
0.50 226 453 0 0 0 634 626 0 0 0.36 0.24 0 1899 30 15.4
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Table A1. Cont.

Literatures
Mix Proportion [kg/m3] Volume Fraction Density

[kg/m3]
σ28

[MPa]
E28

[GPa]w/b W C FA SF CNWA CLWA FNWA FLWA CNWA CLWA FNWA FLWA

Kayali, 2008. [35]

0.27 172 300 300 40 1001 0 288 0 0.37 0 0.12 0 2134 56 32.5
0.23 150 300 300 40 0 898 0 233 0 0.52 0 0.14 1540 45 16.7
0.30 193 300 300 40 0 766 0 162 0 0.45 0 0.10 1747 63 23.7
0.36 207 370 142 57 894 0 626 0 0.33 0 0.24 0 2260 58 32.5
0.36 207 370 142 57 0 481 0 476 0 0.28 0 0.28 1770 53 19.0
0.36 207 370 142 57 820 0 626 0 0.33 0 0.24 0 2280 56 31.5
0.36 207 370 142 57 0 440 0 511 0 0.28 0 0.32 1780 67 25.5

Guneyisi et al., 2012.
[29]

0.35 193 550 0 0 0 688 688 0 0 0.36 0.27 0 2124 48 -
0.35 193 468 83 0 0 677 677 0 0 0.35 0.26 0 2101 45 -
0.35 193 385 165 0 0 665 665 0 0 0.35 0.26 0 2078 42 -
0.35 193 523 0 28 0 684 684 0 0 0.36 0.26 0 2117 53 -
0.35 193 495 0 55 0 680 680 0 0 0.35 0.26 0 2109 54 -
0.35 193 440 83 28 0 670 670 0 0 0.35 0.26 0 2090 48 -
0.35 193 413 83 55 0 669 668 0 0 0.35 0.26 0 2085 48 -
0.35 193 358 165 28 0 661 661 0 0 0.34 0.26 0 2070 43 -
0.35 193 330 165 55 0 657 657 0 0 0.34 0.25 0 2062 43 -

Rossignolo et al.,
2003. [2]

0.34 263 710 0 71 0 447 192 0 0 0.34 0.07 0 1605 54 15.2
0.37 251 613 0 61 0 494 215 0 0 0.38 0.08 0 1573 50 13.5
0.41 245 544 0 54 0 533 228 0 0 0.41 0.09 0 1532 46 12.9
0.45 237 484 0 48 0 560 242 0 0 0.43 0.09 0 1482 43 12.3
0.49 238 440 0 44 0 585 250.8 0 0 0.45 0.10 0 1460 40 12.0

Aslam et al., 2016.
[37]

0.36 173 480 0 0 0 360 890 0 0 0.30 0.33 0 1790 36 7.9
0.36 173 480 0 0 0 375 890 0 0 0.30 0.33 0 1810 37 9.6
0.36 173 480 0 0 0 390 890 0 0 0.30 0.33 0 1850 42 10.2
0.36 173 480 0 0 0 405 890 0 0 0.29 0.33 0 1840 44 11.7
0.36 173 480 0 0 0 421 890 0 0 0.29 0.33 0 1860 43 13.0
0.36 173 480 0 0 0 436 890 0 0 0.29 0.33 0 1910 41 15.0

Alengaram et al.,
2011. [27]

0.30 179 515 27 54 0 542 436 0 0 0.43 0.16 0 1677 30 7.1
0.32 187 510 25 50 0 535 430 0 0 0.42 0.16 0 1743 27 6.5
0.35 201 501 24 48 0 525 422 0 0 0.41 0.16 0 1643 26 5.5
0.35 189 465 25 50 0 392 784 0 0 0.31 0.29 0 1869 38 10.9
0.35 205 504 27 54 0 424 637 0 0 0.33 0.24 0 1810 35 10.0
0.35 216 532 28 56 0 448 560 0 0 0.35 0.21 0 1787 33 8.6
0.35 229 564 30 60 0 475 475 0 0 0.37 0.18 0 1759 30 7.9
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Table A1. Cont.

Literatures
Mix Proportion [kg/m3] Volume Fraction Density

[kg/m3]
σ28

[MPa]
E28

[GPa]w/b W C FA SF CNWA CLWA FNWA FLWA CNWA CLWA FNWA FLWA

Wee et al., 1996. [28]

0.40 170 425 0 0 1083 0 722 0 0.42 0 0.28 0 2400 63 41.8
0.40 170 383 0 43 1083 0 722 0 0.42 0 0.28 0 2401 70 43.0
0.40 170 298 128 0 1083 0 722 0 0.42 0 0.28 0 2401 65 41.5
0.35 170 437 0 43 1046 0 698 0 0.40 0 0.27 0 2394 86 45.0
0.35 170 389 0 96 1046 0 698 0 0.40 0 0.27 0 2399 90 44.4
0.30 165 550 0 0 1045 0 640 0 0.40 0 0.25 0 2400 78 44.3
0.30 165 495 0 55 1046 0 640 0 0.40 0 0.25 0 2401 86 44.3
0.30 165 385 165 0 1045 0 640 0 0.40 0 0.25 0 2400 81 43.9
0.25 160 640 0 0 1043 0 587 0 0.40 0 0.23 0 2430 86 45.6
0.25 160 608 0 32 1043 0 587 0 0.40 0 0.23 0 2430 96 46.6
0.25 160 576 0 64 1043 0 587 0 0.40 0 0.23 0 2430 103 46.7
0.25 160 544 0 96 1043 0 587 0 0.40 0 0.23 0 2430 104 46.3
0.25 160 448 192 0 1043 0 587 0 0.40 0 0.23 0 2430 93 45.8
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21. Kalman Šipoš, T.; Miličević, I.; Siddique, R. Model for mix design of brick aggregate concrete based on neural
network modelling. Constr. Build. Mater. 2017, 148, 757–769. [CrossRef]

22. Demir, F. Prediction of elastic modulus of normal and high strength concrete by artificial neural networks.
Constr. Build. Mater. 2008, 22, 1428–1435. [CrossRef]

23. Atici, U. Prediction of the strength of mineral admixture concrete using multivariable regression analysis
and an artificial neural network. Expert Syst. Appl. 2011, 38, 9609–9618. [CrossRef]

http://dx.doi.org/10.1016/j.cemconres.2010.07.001
http://dx.doi.org/10.1016/S0958-9465(01)00046-4
http://dx.doi.org/10.1016/j.cemconres.2004.07.011
http://dx.doi.org/10.1016/j.conbuildmat.2013.11.019
http://dx.doi.org/10.1007/s10163-019-00841-5
http://dx.doi.org/10.1016/j.conbuildmat.2009.08.004
http://dx.doi.org/10.1016/j.conbuildmat.2012.04.111
http://dx.doi.org/10.1016/j.matdes.2010.12.053
http://dx.doi.org/10.1016/j.matdes.2013.10.086
http://dx.doi.org/10.1016/j.conbuildmat.2018.01.161
http://dx.doi.org/10.1109/MASSP.1987.1165576
http://dx.doi.org/10.1016/S0008-8846(00)00345-8
http://dx.doi.org/10.1007/s00521-016-2368-7
http://dx.doi.org/10.1016/j.conbuildmat.2005.01.054
http://dx.doi.org/10.1016/j.conbuildmat.2008.12.003
http://dx.doi.org/10.12989/cac.2013.12.2.151
http://dx.doi.org/10.12693/APhysPolA.128.B-184
http://dx.doi.org/10.1016/j.conbuildmat.2018.09.096
http://dx.doi.org/10.1016/j.conbuildmat.2017.05.111
http://dx.doi.org/10.1016/j.conbuildmat.2007.04.004
http://dx.doi.org/10.1016/j.eswa.2011.01.156


Materials 2019, 12, 2678 20 of 21

24. Bal, L.; Buyle-Bodin, F. Artificial neural network for predicting drying shrinkage of concrete. Constr. Build.
Mater. 2013, 38, 248–254. [CrossRef]

25. Hossain, K.M.A.; Anwar, M.S.; Samani, S.G. Regression and artificial neural network models for strength
properties of engineered cementitious composites. Neural Comput. Appl. 2018, 29, 631–645. [CrossRef]

26. Khademi, F.; Jamal, S.M.; Deshpande, N.; Londhe, S. Predicting strength of recycled aggregate concrete using
Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression. Int. J.
Sustain. Built Environ. 2016, 5, 355–369. [CrossRef]

27. Alengaram, U.J.; Mahmud, H.; Jumaat, M.Z. Enhancement and prediction of modulus of elasticity of palm
kernel shell concrete. Mater. Des. 2011, 32, 2143–2148. [CrossRef]

28. Wee, T.H.; Chin, M.S.; Mansur, M.A. Stress-Strain Relationship of High-Strength Concrete in Compression.
J. Mater. Civ. Eng. 1996, 8, 70–76. [CrossRef]

29. Guneyisi, E.; Gesoglu, M.; Booya, E. Fresh properties of self-compacting cold bonded fly ash lightweight
aggregate concrete with different mineral admixtures. Mater. Struct. 2012, 45, 1849–1859. [CrossRef]

30. Bogas, J.A.; Gomes, A. A simple mix design method for structural lightweight aggregate concrete. Mater.
Struct. 2013, 46, 1919–1932. [CrossRef]

31. Bogas, J.A.; de Brito, J.; Figueiredo, J.M. Mechanical characterization of concrete produced with recycled
lightweight expanded clay aggregate concrete. J. Clean. Prod. 2015, 89, 187–195. [CrossRef]

32. Chi, J.M.; Huang, R.; Yang, C.C.; Chang, J.J. Effect of aggregate properties on the strength and stiffness of
lightweight concrete. Cem. Concr. Compos. 2003, 25, 197–205. [CrossRef]

33. Choi, Y.W.; Kim, Y.J.; Shin, H.C.; Moon, H.Y. An experimental research on the fluidity and mechanical properties
of high-strength lightweight self-compacting concrete. Cem. Concr. Res. 2006, 36, 1595–1602. [CrossRef]

34. Yang, C.C.; Huang, R. Approximate Strength of Lightweight Aggregate Using Micromechanics Method.
Adv. Cem. Based Mater. 1998, 7, 133–138. [CrossRef]

35. Kayali, O. Fly ash lightweight aggregates in high performance concrete. Constr. Build. Mater. 2008, 22,
2393–2399. [CrossRef]
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