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Abstract: The aim of this in vitro pilot study was to analyse the adhesion behaviour of human
osteoblasts and fibroblasts on polyether ether ketone (PEEK) when compared with titanium surfaces
in an inflammatory environment under lipopolysaccharide (LPS) incubation. Scanning electron
microscopy (SEM) images of primary human osteoblasts/fibroblasts on titanium/PEEK samples were
created. The gene expression of the LPS-binding protein (LBP) and the LPS receptor (toll-like receptor 4;
TLR4) was measured by real-time polymerase chain reaction (PCR). Immunocytochemistry was used to
obtain evidence for the distribution of LBP/TLR4 at the protein level of the extra-cellular-matrix-binding
protein vinculin and the actin cytoskeleton. SEM images revealed that the osteoblasts and fibroblasts
on the PEEK surfaces had adhesion characteristics comparable to those of titanium. The osteoblasts
contracted under LPS incubation and a significantly increased LBP gene expression were detected.
This was discernible at the protein level on all the materials. Whereas no increase of TLR4 was
detected with regard to mRNA concentrations, a considerable increase in the antibody reaction was
detected on all the materials. As is the case with titanium, the colonisation of human osteoblasts and
fibroblasts on PEEK samples is possible under pro-inflammatory environmental conditions and the
cellular inflammation behaviour towards PEEK is lower than that of titanium.
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1. Introduction

Three different material classes are available for implant systems: metallic materials (primarily
titanium), ceramics, and polymers (plastics) such as polyether ether ketone (PEEK). With a share of
70%–80%, titanium and its alloys are the materials that are primarily used for implants [1]. The reasons
for this are their excellent corrosion resistance and their high degree of mechanical stiffness and
biocompatibility [2]. Titanium is, therefore, universally used, for example, in orthopaedic surgery and
is routinely employed when teeth are replaced with dental implants [3,4]. Case reports of the positive
function of oral implants extend back over 50 years, with the controlled reporting of clinical function
dating back to around 25 years [5].

However, the use of titanium might have its limitations. Some studies have reported local
inflammatory restrictions or even a loss of the implant after metal ions have been released [6,7]. Recent
in vitro studies show the cytotoxic effect of titanium debris on human cells [8]. Moreover, titanium has
an elasticity value (110 GPa), which is 5–10 times higher than that of human bones (approximately
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10–20 GPa) [9]. The compression and tensile forces involved are transferred directly to the surrounding
bones by the implant and result in von Mises comparative stress being applied to the bone–implant
transition [10].

Recently published work showed an increased adhesion, viability, and proliferation of osteoblasts
and gingival fibroblasts on PEEK and zirconia surfaces compared with titanium and supports the
clinical relevance in this field [11].

Ceramic zirconium is an alternative to a purely metallic implant. Zirconium has a good biocompatibility,
a low bacterial surface colonization, and suitable mechanical properties, but no long-term data of more
than 10 years currently exist with regard to its clinical use [12].

Polyether ether ketone (PEEK) is a synthetically manufactured plastic that has a high degree of
chemical resistance towards a wide range of organic and inorganic chemicals, acids, and biological
fluids [13,14]. PEEK has an elasticity module of 3–4 gigapascal (GPa), which, although not identical
with that of human cortical bones (10–20 GPa), is similar enough when compared to that of titanium
implants [9,15]. The similar elasticity values of bone and PEEK result in any physiological burdens
being distributed between the PEEK implant and the surrounding bones [16]. However, the reduced
stiffness may also lead to higher stress peaks for this material. It has previously been successfully used
in the field of prosthetic implants as a disk replacement material in orthopaedic surgery and for calvarial
reconstructions because of its satisfactory chemical, thermal, and mechanical properties [17–19], as well
as its biocompatibility [20].

Lipopolysaccharide (LPS) is the primary pathogenic factor of all Gram-negative bacteria and has
been reported to trigger a strong inflammatory reaction [21]. The bacterial toxin LPS has a high binding
affinity to biomaterials [22]. LPS exists as a polymeric aggregate when put in a watery environment [23].
Various lipids and serum proteins may connect with LPS [24]. The lipopolysaccharide binding protein
(LBP) plays a key role among these proteins [25]. LBP is a 50 kilo Dalton (kDa) polypeptide. Before being
released into the blood system as 58 to 60 kDa glycoprotein, it is primarily synthesized in the liver [26].
In addition to LPS, other lipopeptides can also be bound by the LBP protein [25]. Thus, LBP seems
to recognize a multitude of microorganisms and plays a key role in the innate immune response to
Gram-negative bacteria [27].

The binding of LBP to LPS causes the splitting of the LPS aggregate [28]. After binding to LBP,
LPS seems to trigger a stronger inflammatory reaction in comparison with the dissolved form [29].

Osteoblasts are known to be able to detect the existence of bacteria by means of toll-like receptors
(TLRs) [30]. The cellular expression and localisation of lipopolysaccharide (LPS)-binding protein (LBP)
in human osteoblasts have not been described in the past.

For studying inflammatory responses, it is common to stimulate monocytes with lipopolysaccharide
(LPS), a cell membrane component of Gram-negative bacteria [31]. Human monocytes have expressed
significant levels of both TLR4 and TLR2 [32,33]. At constitutive concentrations, LBP is crucial for
the host to sense bacteria. It also stimulates cells such as monocytes and macrophages to initiate
an appropriate inflammatory response [34]. TLR4 activation in adventitial fibroblasts likely attracts
monocytes through the production of inflammatory cytokines, which promotes fibroblast migration
and proliferation [35].

The chronic inflammatory and foreign body response to orthopaedic implant byproducts has
been well characterized [36]. Foreign materials and microorganisms are normally phagocytosed
and degraded by neutrophils. As the size of implanted biomaterials usually is much larger than
the leukocytes themselves, the standard degradation process is replaced by frustrated phagocytosis.
Instead, leukocyte products like oxygen free radicals and lysosomal proteases are released to degrade
the foreign body [37]. Within a day or two, the neutrophils are replaced by monocytes, lymphocytes,
and macrophages, and the proliferation of connective tissue and blood vessels is initiated in the implant
site [37]. Macrophages are also very important for the process of wound healing and the regeneration
of the tissue [38].
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As activated monocytes/macrophages induct the healing response at the implant site, fibroblasts
and endothelial cells migrate into the granulation tissue [38]. Macrophages induced through the
production of cytokines and growth factors the proliferation and migration of fibroblasts. Vice versa,
fibroblasts can activate monocytes, suggesting synergistic interactions during matrix re-modeling [38].
Monocytes also play an important role in the development of new blood vessels during wound repair
by differentiating into specific cell types as required by the injured tissue [39]. The growing of new
blood vessels accelerates the migration of new cells. While activated monocytes and macrophages
initiate the healing process, endothelial cells and fibroblasts start with the production of the first
physiological tissue in form of collagen fibers around the implant [38].

After the implant has been inserted into the host tissue, its surface is first coated with plasma
proteins from the blood and connective tissue. These first plasma proteins adhere minutes to hours
after implantation and form a temporary extracellular matrix (ECM). It is commonly assumed that
host cells interact with surface-adsorbed proteins rather than with the biomaterial surface itself [37].
The initial binding process of cells on bone implants may be mediated by the proteins adsorbed onto
the biomaterial surface [37].

Some surfaces favour the adsorption of proteins such as albumin. Albumin has a “passivating”
effect because albumin-coated material attracts macrophages less than uncoated material [37]. Other
proteins can bind important anchor molecules for cellular contact, for example, fibronectin or vitronectin,
and are thus conducive to colonisation by cells [40]. The extracellular matrix of cells consists of a complex
mixture of matrix proteins. Some of these are glycoproteins such as fibronectin [41]. Fibronectin is a
glycoprotein consisting of dimers with a molecular weight of about 250,000 Dalton (Da). Different
kinds of fibronectin are synthesized by alternative splicing. An isoform of fibronectin, which circulates
in soluble form within the blood serum, is produced in the liver [42]. Serum-contained fibronectin
may apparently be bound to the surface of polymers and in turn be able to stimulate adhesion and
adherence by activating receptors at the cell surface. Analysis of cell growth has shown that mitosis
may strongly be increased by coating with fibronectin. Attachment molecules, such as laminin and
fibronectin, attract cells to find first contact sites with an adhesion substrate’s surface and develop the
adhesion of cells to ECM [42].

The titaniumoxid layer on the titanium surface supports the binding of proteins of the blood or
cell culture medium. Among them is fibronectin, which supports the adhesion and osseo-integration of
osteoblasts [43]. After cell adhesion and spreading, osteoblasts start producing bone-specific proteins
like fibronectin [44].

Apart from the involvement in infectious diseases, TLR has been proposed to play a role in the
development of autoimmune diseases, as some TLRs were shown to also recognize host-derived
elements (e.g., TLR4 recognizes fibronectin and HSP60) [45].

Fibroblasts initially synthesize proteoglycans and fibronectin to create the matrix [46].
When blood gets in contact with an implanted material, a layer of host proteins adsorbs to

the material surface right away; this includes blood proteins such as fibrinogen (Fg), fibronectin,
and vitronectin [37]. It has also been described that fibronectin and vitronectin (both adhesion protheins
of the ECM) attach to biomaterial surfaces [38]. Both are reported to be critical in regulating the
inflammatory response compared with fibrinogen and complement. However, they also support the
adhesion and spreading of osteoblasts to foreign materials, which plays the most important part in
osseointegration of dental implants and points out the high effector capacity of the adsorbed protein
layer [38].

Furthermore, gingival cells show reduced adhesion and spreading on collagen and fibronectin as
compared with skin cells, suggesting that the repertoire and function of ECM receptors in gingival
cells are distinct [47].

A pronounced denaturation of the proteins can be regarded as unfavourable for further interaction
with the body, as denatured proteins are foreign to the body and may initiate inflammatory reactions.



Materials 2019, 12, 2739 4 of 20

Recent studies have shown good results for both zirconium and PEEK regarding early adhesion,
proliferation, and the viability of osteoblasts and fibroblasts compared with titanium [11].

Pathological inflammatory processes that affect dental implants are defined as peri-implant
disease. This may result in the loss of soft and hard tissue surrounding an osseointegrated implant [48].
To obtain a deeper understanding of the cellular reactions, the objective of this in vitro pilot study,
the morphology and adhesion behaviour of human osteoblasts and fibroblasts on PEEK were analysed
in comparison with titanium surfaces. Both cell types were also studied under LPS incubation, which
simulated a bacterial infection that can occur in vivo, for example, after the insertion of a bone implant.

The working hypotheses were as follows:

• When using PEEK, cell adhesion takes a place that is similar to that of titanium.
• The cellular inflammation behaviour towards PEEK is lower than that with titanium under

LPS incubation.

2. Materials and Methods

2.1. Cell Seeding

Primary human osteoblasts (NHOst, Lot Number: 0000288136; LONZA, Basel, Switzerland)
and fibroblasts (NHDF, Lot Number: 0061502; PromoCell, Heidelberg, Germany) were cultivated
on titanium and PEEK samples (both: diameter: 12 mm, density: 2.5 mm; MEDICON, Tuttlingen,
Germany). After shipping, the material probes were cleaned in 70% ethanol overnight to remove
residue of the production by the companies PromoCell/LONZA. The next day, the samples were
dried under a laminar floor and autoclaved (121 ◦C, 1 bar, 20 min.). The probes were stored at room
temperature and, before use in the cell culture, all materials were sterilized by UV light for 15 min.

The cells were cultured following slight modifications of the protocols provided by the companies
PromoCell and LONZA, respectively. The seeding density of the fibroblasts NHDF were 5000 cells/cm2

and for the NHOst, 11,000 osteoblasts/cm2. Instead of trypsin, Accutase was used for detaching the
cells from the culture flasks. For the 24 h LPS incubation, LPS from the bacterium Escherichia coli
(Sigma-Aldrich, Taufkirchen, Germany) was used at a concentration of 10 µg/mL, as provided by
Tilakaratne et al. [49]. E. coli is able to bind to TLR4 and to trigger an inflammatory response.
The handling of all human samples strictly adhered to the “Declaration of Helsinki”.

2.2. Scanning Electron Microscopy (SEM)

SEM images were created in order to analyse the morphology of the two cell types on the titanium
and PEEK probes. Coverslips (Hecht Assistent, Sondheim, Germany) coated with poly-l-lysine protein
(Sigma-Aldrich, Taufkirchen, Germany) were employed as the reference material. After the fixation of
the cell samples, contrasting was carried out with 0.2% osmium tetroxide (Science Service, Düsseldorf,
Germany). Subsequent treatment with hexamethyldisilazane (HMDS; Carl Roth, Karlsruhe, Germany)
avoided the necessity of carrying out critical point drying. In order to improve the evaluation of the
cell morphology, individual cells in the obtained images were manually coloured (Adobe Photoshop
CS5; Adobe Systems, Munich, Germany).

2.3. Real-Time Polymerase Chain Reaction (PCR)

Real-time PCR was used to analyse the gene expression of the LPS-binding protein (LBP) and the
LPS receptor (toll-like receptor 4; TLR4). The osteoblasts and fibroblasts were seeded on coverslips
(coated with poly-l-lysine). The primers were obtained from Qiagen (Hilden, Germany). CyC1
(Cytochrome C) was the selected reference gene for the osteoblasts and Eif4A2 (eukaryotic initialisation
factor 4A2) was selected for the fibroblasts, with both genes having been tested in preliminary
studies. A kit from Qiagen (QuantiTect® Reverse Transcription Kit; Hilden, Germany) was used for
cDNA synthesis.



Materials 2019, 12, 2739 5 of 20

2.4. Immunocytochemical Marking

Evidence of the existence of LBP/TLR4 at the protein level and, additionally, of phalloidin (evidence
of actin) and vinculin (extracellular matrix binding protein) was provided by immunocytochemical
marking. The osteoblasts and fibroblasts were seeded in a density of 11,000 and 5000 cells/cm2 (24-well
plate) on the materials coverslip, PEEK, and titanium (n = 8 probs per material) and cultivated for
four days. After a further 24 h incubation with LPS (10 µg/mL) or only growth medium (each n = 4),
the cover glasses and material samples were washed twice with PBS, followed by fixation of the cells
with 4% paraformaldehyde solution (4% PFA in PBS). The next step was the blocking of endogenous
peroxidases by 10% goat serum (normal goat serum, NGS; Life Technologies, Darmstadt, Germany)
in PBS + 0.3% Triton X100 (Sigma-Aldrich, Taufkirchen, Germany) for 30 min at room temperature.
The blocking solution also contained the first antibodies at a concentration of 1:75—rabbit anti-human
LBP (PA5-21642, Thermo Scientific; Watham, MA, USA) and mouse anti-human TLR4 (76B357.1,
(ab22048); Abcam, Cambridge, UK). The cover glasses and material samples were incubated overnight
at 8 ◦C in the first antibody solution in a humid chamber.

The next day, a triple wash step with PBS + 1% albumin from calf serum (bovine serum albumin,
BSA; PAA laboratories, Cölbe, Germany) was performed. This was followed by 2 h incubation with
the fluorescent second antibodies (in PBS + 1% BSA): Alexa 488 FluorTM goat anti rabbit (1:1000;
absorption: 488 nm; emission: 519 nm; Invitrogen, Karlsruhe, Germany) for LBP; Alexa FluorTM 568
goat anti mouse (1:1000; absorption: 478 nm; emission: 603 nm; Invitrogen) for TLR4. After washing
twice with PBS and additionally once with Aqua bidest., the cover glasses or material samples were
fixed on glass slides with the embedding medium ProLongGold (Invitrogen).

The antibodies that were used for this purpose can be found in Table 1.

Table 1. Antibodies used for immunocytochemistry. LBP, lipopolysaccharide (LPS)-binding protein;
TLR4, toll-like receptor 4.

Name Company Dilution Ratio

Alexa goat 488 anti-mouse Invitrogen (Karlsruhe, Germany) 1/1000
Alexa goat 488 anti-rabbit Invitrogen (Karlsruhe, Germany) 1/1000
Alexa goat 568 anti-mouse Invitrogen (Karlsruhe, Germany) 1/1000

rabbit-anti-human LBP (PA5-21642) Thermo Scientific (Watham, MA, USA) 1/75
Phalloidin Atto-488 Sigma-Aldrich (Taufkirchen, Germany) 1/1000

Maus-anti-human TLR4 (76B357.1, (ab22048)) Abcam (Cambridge, UK) 1/75
Monoclonal Anti-Vinculin (clone hVIN-1) Sigma-Aldrich (Taufkirchen, Germany) 1/500

The mRNA of the cell probes was extracted by chloroform (VWR, Langenfeld, Germany). After one
centrifugation step, the upper phase, which contained the mRNA, was transferred to an RNAse-free
tube with isopropanol (VWR). Followed by two centrifugation steps, the pellet was dissolved in 15 µL
of RNAse-free water (Life Technologies, Darmstadt, Germany).

The primers for the RT-PCR analysis were all from Qiagen (Hilden, Germany) (see Table 2).
The fixation method was as follows:

• SEM analysis: 2.5% glutaraldehyde (Carl Roth, Karlsruhe, Germany; in PBS) for 30 min;
• RT-PCR: no fixation; lysis of the cells by trizol (QIAzol, Qiagen, Hilden, Germany);
• Immunocytochemical marking:

# for LBP/TLR4 = 4% Paraformaldehyd solution (4% PFA in PBS) for 30 min;
# for phalloidin/vinculin = 3.7% PFA (+10% Methanol; Merk Millipore, Schwalbach,

Germany) + 0.2% Triton X100-solution for 30 min.

In order to analyse the significance of the results, an initial verification was carried out to determine
whether the measured values could be allocated to a normal distribution (D’Agostino-Pearson omnibus
normality test, Shapiro–Wilk normality test, Kolmogorov–Smirnov test with a Dallal–Wilkinson–Liliefor
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p-value; GraphPad Prism 6, GraphPad Software, La Jolla, San Diego, CA, USA). If a normal distribution
was not present, the Kruskal–Wallis test (non-parametric test) or a t-test (Mann–Whitney Test) was used
for more than two groups. The non-parametric t-test was used in cases in which a normal distribution
of the data was present. It was assumed that the data in each group were distributed independently
from each other. With the PCR tests, a pairwise fixed reallocation randomisation test was carried out
using the REST program (Bloomingdale, IL, USA).

Table 2. The primer used for LBP, TLR4, and the normalisation genes.

Primer Function Gen
(Length)

Primer
Length [bp] Catalogue-No.

Hs_LBP_1_SG lipopolysaccharide-binding protein NM_004139
(1894 bp) 79 QT00027293

Hs_TLR4_1_SG Toll-like receptor 4 NM_003266
(5781 bp) 102 QT00035238

Hs_ACTB_1_SG β-Actin NM_001101
(1852 bp) 146 QT00095431

Hs_CYC1_1_SG Cytochrome C1 NM_001916
(1251 bp) 123 QT00209454

Hs_EIF4A2_1_SG Eukaryotic initiation faktor 4A2 NM_001967
(1905 bp) 87 QT00079226

Hs_GAPDH_2_SG Glycerinaldehyd-3-phosphat-dehydrogenase NM_002046
(1421 bp) 119 QT01192646

Hs_HMBS_1_SG Hydroxymethylbilane Synthase NM_000190
(1526 bp) 107 QT00014462

Hs_RRN18s_1_SG Ribosomal 18s RNA X03205
(1869 bp) 149 QT00199367

3. Results

3.1. Scanning Electron Microscope Images

The analysis of the untreated PEEK samples revealed that the surfaces had a characteristic grinding
pattern (Figure 1A). Even after culture in NHDF and NHOst media, the indentations were still clearly
visible (Figure 1B,C).
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Figure 1. Material probes without cells. The scale unit in each picture is the same. (A) PEEK Native;
(B) PEEK NHDF-Med.; (C) PEEK NHOst-Med.; (D) Titanium Native; (E) Titanium NHDF-Med.;
(F) Titanium NHOst-Med.
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The titanium samples had a much rougher surface (Figure 1D). The structured surface relief was
not changed by incubation in the two-growth media (Figure 1E,F).

In the control cultures, the osteoblasts on the coverslips (reference material) and the titanium
samples presented a widely spread cytosoma (Figure 2A,C). In comparison, the osteoblasts (NHOst)
on the PEEK surfaces had a more elongated orientation (red- and green-stained cells in Figure 2B).
The orientation of the osteoblasts is probably attributable to the grinding pattern.

Materials 2019, 12, x FOR PEER REVIEW 7 of 22 

 

In the control cultures, the osteoblasts on the coverslips (reference material) and the titanium 
samples presented a widely spread cytosoma (Figure 2A,C). In comparison, the osteoblasts (NHOst) 
on the PEEK surfaces had a more elongated orientation (red- and green-stained cells in Figure 2B). 
The orientation of the osteoblasts is probably attributable to the grinding pattern. 

Under the influence of LPS, the NHOst formed numerous fine thin cytodendrites on the 
coverslips (Figure 2D). The osteoblasts also contracted on the PEEK and titanium samples to a 
greater extent than those grown on coverslips (Figure 2E,F). 

 
Figure 2. Scanning electron microscopy (SEM) images of osteoblasts on coverslips on polyether ether 
ketone (PEEK) and on titanium samples in the proliferation medium and after lipopolysaccharide 
(LPS) incubation. (A) Control Coverslip; (B) Control PEEK; (C) Control Titanium; (D) LPS Titanium; 
(E) LPS PEEk; (F) LPS Titanium. 

A large number of fibroblasts (NHDF) grew and adhered to the surfaces of the coverslips and of 
the titanium samples. The cytosoma of the NHDF were mostly elongated (Figure 3A,C). The 
fibroblasts grew predominantly along the grinding profile on the PEEK surface (cells stained green 
and blue in Figure 3B). 

LPS stimulation led to the fibroblasts having a more elongated orientation on the surface of the 
coverslips and PEEK samples (Figure 3D; red marked cells, Figure 3E). A large number of fibroblasts 
were spread extensively over the surface of the titanium (blue/yellow cells in Figure 3F). 

Figure 2. Scanning electron microscopy (SEM) images of osteoblasts on coverslips on polyether ether
ketone (PEEK) and on titanium samples in the proliferation medium and after lipopolysaccharide (LPS)
incubation. (A) Control Coverslip; (B) Control PEEK; (C) Control Titanium; (D) LPS Titanium; (E) LPS
PEEk; (F) LPS Titanium.

Under the influence of LPS, the NHOst formed numerous fine thin cytodendrites on the coverslips
(Figure 2D). The osteoblasts also contracted on the PEEK and titanium samples to a greater extent than
those grown on coverslips (Figure 2E,F).

A large number of fibroblasts (NHDF) grew and adhered to the surfaces of the coverslips and of
the titanium samples. The cytosoma of the NHDF were mostly elongated (Figure 3A,C). The fibroblasts
grew predominantly along the grinding profile on the PEEK surface (cells stained green and blue
in Figure 3B).

LPS stimulation led to the fibroblasts having a more elongated orientation on the surface of the
coverslips and PEEK samples (Figure 3D; red marked cells, Figure 3E). A large number of fibroblasts
were spread extensively over the surface of the titanium (blue/yellow cells in Figure 3F).
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3.2. Real-Time PCR Testing for Expression of LBP and TLR4

LPS incubation resulted in a strong increase of LBP expression (Factor 4.080 ± 0.44) in relation
to that of the controls (mean CT value of the controls: 25.37 ± 0.28; LPS: 23.44 ± 0.31; n = 8 samples;
p = 0.001; Figure 4). A slight, but insignificant decrease (Factor 0.958 ± 0.067) of the TLR4 expression
values was discernible between the control cultures and the LPS cultures (mean CT value of the controls:
29.42 ± 0.18; LPS: 29.53 ± 0.10; p = 0.769; n = 8 samples; Figure 3).

Materials 2019, 12, x FOR PEER REVIEW 8 of 22 

 

 
Figure 3. SEM images of fibroblasts on coverslips on PEEK and on titanium samples under control 
conditions and after LPS incubation. (A) Control Coverslip; (B) Control PEEK; (C) Control Titanium; 
(D) LPS Coverslip; (E) LPS PEEK; (F) LPS Titanium. 

3.2. Real-Time PCR Testing for Expression of LBP and TLR4 

LPS incubation resulted in a strong increase of LBP expression (Factor 4.080 ± 0.44) in relation to 
that of the controls (mean CT value of the controls: 25.37 ± 0.28; LPS: 23.44 ± 0.31; n = 8 samples; p = 
0.001; Figure 4). A slight, but insignificant decrease (Factor 0.958 ± 0.067) of the TLR4 expression 
values was discernible between the control cultures and the LPS cultures (mean CT value of the 
controls: 29.42 ± 0.18; LPS: 29.53 ± 0.10; p = 0.769; n = 8 samples; Figure 3). 

 
Figure 4. Expression of LPS-binding protein (LBP) and of toll-like receptor 4 (TLR4) in osteoblasts 
under control and LPS culture conditions (10 µg/mL, 24 h). 

Figure 4. Expression of LPS-binding protein (LBP) and of toll-like receptor 4 (TLR4) in osteoblasts
under control and LPS culture conditions (10 µg/mL, 24 h).



Materials 2019, 12, 2739 9 of 20

A slight reduction of LBP expression (Factor 0.836 ± 0.09) was measured in the LPS-stimulated
fibroblast cultures when compared with that of the controls (mean CT value of the controls: 27.84 ± 0.23;
LPS: 28.14 ± 0.16; p-value: 0.335; Figure 5). A slightly reduced amplification was also determined
for TLR4 (Factor 0.788 ± 0.13) as a consequence of LPS incubation (mean CT value of the controls:
30.99 ± 0.61; LPS: 31.41 ± 0.12; p = 0.785; Figure 4). There was a slight, but insignificant decrease in
these values.
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3.3. Evidence of Protein Expression of LBP and TLR4

A homogeneous distribution of LBP immunostaining was detected within the entire cytoplasm
of the osteoblasts on all three tested materials (Figure 6A,D,G). With regard to TLR4, a similar
intracellular distribution pattern was seen, although the perinuclear region fluoresced most intensively
(Figure 6B,E,H; white arrow). A strong colocalisation of the LBP and TLR4 immune reactions was
discernible on all materials (Figure 6C,H,I).

After LPS incubation, the greatest intensity of the antibody fluorescence against LBP and TLR4
was discernible in the perinuclear region of the cells grown on coverslips and the PEEK samples
(Figure 7A,B,D,E; arrow). The elongated cytodendrites were also clearly immunostained on titanium
(Figure 7H, arrowhead). The fluorescence intensity on all three of the materials was stronger than that
under the corresponding control conditions.

In the fibroblasts, the distribution of LBP and TLR4 immunostaining in the cytoplasm was
homogeneous (Figure 8A,B,D,E,G,H). The greatest intensity in all of the cultures was to be found in
the perinuclear region (Figure 8A,B,D,E, arrows). A considerable colocalisation of LBP and TLR is
discernible in the overlays of the images (Figure 8C,F,I).

LPS incubation triggered an increased LBP antibody reaction in the perinuclear region of the NHDF
on all material samples (Figure 9A,D,G). When compared with the results under control conditions,
the intensity of the TLR4 immune reaction was considerably reduced under LPS stimulation, with the
only exception being in the cells grown on coverslips (Figure 9B,E,H).
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Figure 7. Antibody reaction for LBP and TRL4 in human osteoblasts under LPS stimulation (10 µg/mL,
24 h). (A) Coverslip LBP; (B) Coverslip TLR4; (C) Coverslip Merge; (D) PEEK LBP; (E) PEEK TLR4;
(F) PEEK Merge; (G) Titanium LBP; (H) Titanium TLR4; (I) Titanium Merge.
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Figure 9. Antibody reaction to LBP and TRL4 in human fibroblasts under LPS stimulation (10 µg/mL,
24 h). (A) Coverslip LBP; (B) Coverslip TLR4; (C) Coverslip Merge; (D) PEEK LPB; (E) PEEK TLR4;
(F) PEEK Merge; (G) Titanium LBP; (H) Titanium TLR4; (I) Titanium Merge.
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3.4. Analysis of Actin Cytoskeleton and Cell Adhesion Contacts (Vinculin) in Osteoblasts and Fibroblasts

The fibrous bundles of the NHOst actin occurred in parallel lines or in diagonal directions in
all the samples (Figure 10A,D,G). The cell boundaries and the perinuclear region displayed a strong
anti-vinculin immune reaction on the surfaces of the coverslips and the titanium samples (Figure 10B,H).
Detection of specific vinculin signals was unfortunately prevented by the strong autoflourescence of
PEEK (Figure 10E). Considerable colocalisation was discernible between the actin cytoskeleton and the
vinculin reaction (Figure 10C,I).Materials 2019, 12, x FOR PEER REVIEW 13 of 22 
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Figure 10. Staining of actin cytoskeleton and cell adhesion contacts in osteoblasts under control
culture conditions. (A) Coverslip Phalloidin; (B) Coverslip Vinculin; (C) Coverslip Merge; (D) PEEK
Phalloidin; (E) PEEK Vinculin; (F) PEEK Merge; (G) Titanium Phalloidin; (H) Titanium Vinculin;
(I) Titanium Merge.

As in the control cultures, a parallel to diagonally oriented actin cytoskeleton was detected on
all three of the used materials after LPS incubation (Figure 11A,D,G). A stronger punctate vinculin
immunostaining was observed in the perinuclear region and in the cell extensions on the coverslips
and titanium surfaces (Figure 11B,H; arrows). The PEEK samples again showed the great disadvantage
of its strong autofluorescence (Figure 11E,F). Images of the cells grown on coverslips and titanium
surfaces were superimposed and revealed vinculin signals in the area of actin-stained structures
(Figure 11C,I).

The actin cytoskeleton of the fibroblasts was arranged in parallel lines (Figure 12A,D,G).
The strongest intensity of the anti-vinculin reaction on the surfaces of the coverslips and titanium
samples was found in the perinuclear region (Figure 12B,H; arrows). In this context, the location of the
actin fibre bundles correlated with the homogeneous cytoplasmic vinculin distribution (Figure 12C,F,I).
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Figure 11. Staining of actin cytoskeleton and cell-material contacts in osteoblasts under induced
inflammatory conditions. (A) Coverslip Phalloidin; (B) Coverslip Vinculin; (C) Coverslip Merge;
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Vinculin; (I) Titanium Merge.Materials 2019, 12, x FOR PEER REVIEW 15 of 22 

 

 
Figure 12. Staining of actin cytoskeleton and cell adhesion contacts in human fibroblasts under 
control culture conditions. (A) Coverslip Phalloidin; (B) Coverslip Vinculin; (C) Coverslip Merge; (D) 
PEEK Phalloidin; (E) PEEK Vinculin; (F) PEEK Merge; (G) Titanium Merge; (H) Titanium Vinculin; 
(I) Titanium Merge. 

The 24 h LPS incubation resulted in isolated gaps in the cellular syncytium of the fibroblasts 
(arrows in Figure 13A,D,G). The diagonal arrangement of the actin fibres was retained, as was the 
case in the control cultures. 

A redistribution of the vinculin-immunostained adhesion contacts occurred from the 
perinuclear region to the periphery of the cytodendrites in cells grown on coverslips and titanium 
surfaces (Figure 13B,H). The vinculin immunostaining in cells grown on the PEEK surface showed a 
peripheral cytoplasmic distribution (Figure 13E). Notably, the vinculin immunostaining in the cells 
on the titanium samples was strongest when compared with that of the other materials (Figure 13H). 
The signals for the widely spread actin fibre bundles overlapped with the homogeneous vinculin 
distribution (Figure 13C,F,I). 

Figure 12. Staining of actin cytoskeleton and cell adhesion contacts in human fibroblasts under
control culture conditions. (A) Coverslip Phalloidin; (B) Coverslip Vinculin; (C) Coverslip Merge;
(D) PEEK Phalloidin; (E) PEEK Vinculin; (F) PEEK Merge; (G) Titanium Merge; (H) Titanium Vinculin;
(I) Titanium Merge.
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The 24 h LPS incubation resulted in isolated gaps in the cellular syncytium of the fibroblasts
(arrows in Figure 13A,D,G). The diagonal arrangement of the actin fibres was retained, as was the case
in the control cultures.Materials 2019, 12, x FOR PEER REVIEW 16 of 22 
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Figure 13. Staining of actin cytoskeleton and cell adhesion contacts in human fibroblasts after LPS
incubation. (A) Coverslip Phalloidin; (B) Coverslip Vinculin; (C) Coverslip Merge; (D) PEEK Phalloidin;
(E) PEEK Vinculin; (F) PEEK Merge; (G) Titanium Phalloidin; (H) Titanium Vinculin; (I) Titanium Merge.

A redistribution of the vinculin-immunostained adhesion contacts occurred from the perinuclear
region to the periphery of the cytodendrites in cells grown on coverslips and titanium surfaces
(Figure 13B,H). The vinculin immunostaining in cells grown on the PEEK surface showed a peripheral
cytoplasmic distribution (Figure 13E). Notably, the vinculin immunostaining in the cells on the titanium
samples was strongest when compared with that of the other materials (Figure 13H). The signals
for the widely spread actin fibre bundles overlapped with the homogeneous vinculin distribution
(Figure 13C,F,I).

4. Discussion

The scanning electron microscopy analyses revealed that the osteoblasts on the coverslips and
titanium surfaces tended to be widely spread. Contrary to this, the NHOst on the PEEK samples had
an elongated cell morphology.

One explanation for this result is that the relatively irregular surface of the coverslips, attributable
to the PLL coating, encourages cell adhesion. The PEEK, on the other hand, has an extremely smooth
surface, apart from the grinding pattern, making the adhesion of cells more difficult. Other authors
have described poor cell growth on the surface of PEEK because of its inert chemical structure and
hydrophobic surface [50,51]. Very smooth or very rough surfaces do not appear to benefit the growth
of osteoblasts [52]. Though the roughness of the cover slips was not quantified, it was confirmed that
the actin cytoskeleton of fibroblasts spread between fibrinogen spots on the glass surface [53].

All the material samples were sterilised using UV light before they were used. The irradiation
(250–400 nm) results in the photocatalytic degeneration of the PEEK as a result of chain breakages,



Materials 2019, 12, 2739 15 of 20

crossed reconnections, and the formation of carbonyl and hydroxyl groups. The formation of these
functional groups may be the reason for the growth of the osteoblasts and fibroblasts on the PEEK.

One reason for the good adhesion of both cell types on titanium is that hydroxyl groups (–OH−)
are formed on titanium dioxide surfaces in an aqueous environment. An apatite structure is formed in
connection with free calcium ions (Ca2+) and phosphate groups (PO4

3−) from the culture medium and
activates the adhesion and growth of osteoblasts [54].

The fibroblasts on the coverslip surfaces and the PEEK surfaces were widely spread, whereas
the NHDF on the titanium had an elongated morphology. In vitro studies have shown that PEEK
supports the accumulation and proliferation of fibroblasts without having a negative effect on their cell
growth [55,56]. Some authors have observed a high proliferation rate for epithelial cells and fibroblasts
on smooth surfaces [57]. The accumulation of human epithelial cells and fibroblasts in the oral mucosa
is promoted by a nano-rough surface [58]. Thus, osteoblasts prefer a rough surface, whereas fibroblasts
grow better on smooth structures [59].

In this study, the material PEEK was shown to facilitate an osseointegration comparable to that of
titanium. However, the SEM analysis confirms the working hypothesis that the inflammation reaction
of the osteoblasts/fibroblast towards PEEK in the presence of LPS was weaker in comparison with
that towards titanium under LPS incubation. This study did not allow an analysis of whether the
surface structures of the materials and the LPS incubation had a later influence on the migration of the
two cell types.

LPS has long been known to interact with the TLR4 receptor via the bond with LBP. Studies have
detected the TLR4 receptor in the cell membrane of osteoblasts [60]. LBP is used as a biomarker for
the diagnosis of local bacterial infections, as it is the primary inflammation marker for LPS in the
serum [61].

With regard to cDNA expression of LBP, a considerably greater increase was measured in the
NHOst cultures that had been stimulated with LPS when compared with the corresponding controls.
However, the TLR4 expression in the osteoblasts was not altered under treatment with LPS.

Considerable immunostaining for both LBP and TLR4 was also detected on all tested material
surfaces within the entire cytoplasm of the osteoblasts under control conditions. LPS stimulation
spurred an intensification of the immune reaction to the LBP and TLR4 proteins. The more intense
immunostaining in the perinuclear region is an indication of increased protein expression.

The LPS incubation of fibroblasts resulted in slight reductions in their LBP and TLR4 cDNA
concentrations, although these reductions were not significant. A study conducted on the human
gingiva revealed that a 10 µg/mL LPS incubation led to the largest increase in the mRNA concentrations
for LBP and TLR4 [62].

With regard to fibroblasts under control conditions, the considerable focal density of the LBP and
TLR4 signals in the perinuclear regions was conspicuous, indicating the existence of strong protein
synthesis in this area. The TLR4 receptor participates in the proliferation of skin fibroblasts [63].
The fibroblasts appeared to react less sensitively to the LPS incubation, presumably reflecting their task
as connective tissue cells.

Vinculin is a focal adhesion protein. Increased vinculin expression is connected to increased
adhesion strength [64]. This is of relevance for the formation of cell–cell contacts and the transference
of mechanical loads to the cell membrane. It could be expected that only the vinculin antibody marks
the focal adhesion points where the extracellular matrix is connected with the intracellular actin
cytoskeleton, as shown in Figure 11 (showing osteoblasts on the coverslips after LPS incubation).
In the other figures and on the other materials, the perinuclear region shows the highest intensity of
fluorescence for the osteoblasts and fibroblasts. One explanation for this phenomenon could be that
both cell types first build up some stabile contacts with the material surface in the region of the cell
soma. The materials “coverslip” and “PEEK” have a relatively smooth surface. Both cell types must
spread out to get in contact with the material to provide a higher vinculin protein expression. This may
be the reason for the high fluorescence intensity in the perinuclear region. Additionally, filopodia
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move around to build up new adhesion contact points with the materials’ surfaces. Actin fibers in the
filopodia support this by analyzing the surrounding surface [65]. Especially in strong migration cells
like fibroblasts, long cell extensions can be found [66].

After the LPS incubation, isolated gaps in the cellular syncytium of the fibroblasts could be found
on all materials. A possible explanation could be that the fibroblasts built up less adhesion contacts
with the materials and were detached by the phalloidin and vinculin immune reaction. One hint
for this was the parallel orientation of the actin fibers as they were in the control culture. Thus,
a reorganisation of the actin cytoskeleton was not possible. It is possible that the LPS incubation led to
a higher detachment of the cell extensions and the cells had contact almost exlusively with the material
surface in the perinuclear region. This is why only this part shows a strong vinculin immune reaction.

By changing the shape of their actin filaments, osteoblasts were able to adapt their cytoskeleton
to the geometry of the surface of the substrate [67]. The actin fibres of MG-63 osteosarcoma cells on
titanium samples are arranged in long and organised stress fibres that extend throughout the cytosoma
and terminate at the surface structures [68]. Under LPS stimulation, the osteoblasts contracted in an
elongated manner on all the used materials.

The fibroblasts, in particular, had a parallel, slightly crossing actin fibre system discernible in
cells grown on the smooth surfaces of the coverslips and the PEEK samples. The extensive diagonal
course of the actin bundles on the titanium samples indicates that the cells attempted to come into
close contact with the rough surface.

LPS stimulation caused isolated gaps to occur in the cell layers of the fibroblast cultures. However,
the parallel arrangement of the actin fibres persisted, as in the control cultures. Contrary to this, as far
as human fibroblasts of the gingiva are concerned, a reorganisation of the actin filaments was observed
when the cells were subjected to LPS and LBP treatment (100 ng/mL) for 24 h [69]. The strongest signals
for the ECM protein vinculin were observed in the cytosoma after LPS treatment. This is an additional
indication that LPS is responsible for an increased detachment of the cytodendrites.

To the best of our knowledge, the present study provides evidence that PEEK represents an
alternative to titanium as an implant material, as in the case of zirconium. The reasons are the comparable
cellular adhesion of the osteoblasts on PEEK, as on titanium, and the diminished inflammation reaction
of the osteoblasts and fibroblasts. To provoke osseointegration, cellular adhesion is indispensable.
The aim of this study was not to denigrate titanium, but rather to indicate that PEEK may serve as
a future alternative material to titanium. Clinical studies are necessary to verify this conclusion, as
there are only in vitro results to be discussed at the moment. No scientific data currently exist with
regard to the intraossary clinical use of PEEK, despite the fact that the benefits (colour, e-module,
hypo-allergenicity) when compared with titanium have previously been favourably discussed [70,71].

Authors should discuss these results and how they can be interpreted from the perspective of
previous studies and of working hypotheses. The findings and their implications should be discussed
in the broadest possible context. Future research directions may also be highlighted.

5. Conclusions

• PEEK enables the adhesion of human osteoblasts and fibroblasts under inflammatory environmental
conditions that are similar to those of titanium.

• PEEK supports inflammatory processes to a lesser extent when compared with titanium.
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