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Abstract
LC3 is a protein that can associate with autophagosomes, autolysosomes, and phagosomes. Here, we show that LC3 can also
redistribute toward the damaged Golgi apparatus where it clusters with SQSTM1/p62 and lysosomes. This organelle-specific
relocation, which did not involve the generation of double-membraned autophagosomes, could be observed after Golgi
damage was induced by various strategies, namely (i) laser-induced localized cellular damage, (ii) local expression of
peroxidase and exposure to peroxide and diaminobenzidine, (iii) treatment with the Golgi-tropic photosensitizer redaporfin
and light, (iv) or exposure to the Golgi-tropic anticancer peptidomimetic LTX-401. Mechanistic exploration led to the
conclusion that both reactive oxygen species-dependent and -independent Golgi damage induces a similar phenotype that
depended on ATG5 yet did not depend on phosphatidylinositol-3-kinase catalytic subunit type 3 and Beclin-1. Interestingly,
knockout of ATG5 sensitized cells to Golgi damage-induced cell death, suggesting that the pathway culminating in the
relocation of LC3 to the damaged Golgi may have a cytoprotective function.

Introduction

The subcellular redistribution and lipidation of microtubule-
associated proteins 1A/1B light chain 3B (MAP1LC3B,

best known as LC3) is generally monitored in the context of
autophagy research as an early marker of autophagy
induction [1]. Indeed, LC3 is a member of the phylogen-
etically conserved ATG8 protein family that all redistribute
from a usually diffuse cytoplasmic pattern toward so-called
autophagic puncta [2] when they associate with the mem-
branes of autophagosomes (which by definition are double-
membraned) and autolysosomes (which result from the
fusion of autophagosomes and lysosomes, causing the
digestion of the inner membrane of the autophagosomes,
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hence yielding single-membraned vesicles) [3]. The C ter-
minus of newly synthesized LC3 is hydrolyzed by a
cysteine protease called ATG4B-exposing Gly120, termed
LC3-I. Through a series of ubiquitin-like reactions invol-
ving the enzymes ATG7, ATG3 and ATG12-ATG5-
ATG16, LC3-I is conjugated to the head group of the lipid
phosphatidylethanolamine [4, 5]. This lipidation step, which
yields LC3-II, favors the insertion of the C terminus of the
protein into membranes. LC3 possesses a domain in its N
terminus that interacts with proteins containing a LIR (LC3-
interacting region). Hence, LC3 acts as an adaptor that
facilitates the recruitment of specific cargo proteins with
LIR motifs toward autophagosomes for their selective
degradation [6]. One such cargo protein is sequestosome-1
(SQSTM1, generally known as p62) [7].

Autophagy assays often rely on the detection of this
lipidation step which increases the electrophoretic mobility
of LC3 (meaning that LC3-II migrates more quickly than
LC3-I, yielding a band with an apparently lower molecular
weight) [1]. Moreover, it is a common strategy to fuse the N
terminus of LC3 with green fluorescent protein (GFP) to
generate a chimeric protein, GFP-LC3, that can be stably
transfected into cells [2, 8]. As the native LC3 protein, GFP-
LC3 is mostly contained in the cytoplasm of cells, in a
diffuse pattern, and relocates to GFP-LC3-positive puncta
when autophagy is induced and/or when the final step of
autophagy is blocked [2]. Similarly, autophagic flux can be
monitored by assessing the abundance of intracellular LIR
motif-containing proteins such as p62 (ref. [9]).

Although GFP-LC3 relocation to puncta is generally
monitored in the context of autophagy, there are examples
in which GFP-LC3 does not incorporate into double-
membraned autophagosomes but into single-membraned
structures. This has been documented for the so-called LC3-
associated phagocytosis (LAP) in which LC3 incorporates
into phagosome membranes [10]. Moreover, this occurs in
the context of entosis, the engulfment of cells by others, in
which LC3 derived from the cannibal cell associates with
the membrane that contains the engulfed cell [11].

Here, we describe yet another case in which GFP-LC3 is
recruited to single-membraned vesicles that are associated
with, or derived from, the Golgi apparatus. This redis-
tribution of GFP-LC3 occurs in response to a range of
different stimuli that damage the Golgi apparatus.

Results and discussion

Direct Golgi damage induces local recruitment of
LC3

As a first approximation to the question whether local Golgi
damage might result into local enrichment of LC3, we took

advantage of cervical carcinoma HeLa cells stably trans-
duced with GFP-LC3-expressing lentivirus and transfected
with ManII−mCherry [12] to mark the Golgi apparatus.
The Golgi complex in these cells was locally damaged by
means of a short laser pulse using two-photon laser exci-
tation. Local recruitment of GFP-LC3 to the damaged area
of the cell was then observed as early as 6 min post damage.
GFP-LC3 recruitment increased over time and, whereas it
was only localized on the irradiated area soon after damage,
it was later recruited to other areas of the Golgi, as indicated
by colocalization of the green (GFP-dependent) and red
(mCherry-dependent) fluorescence (Fig. 1a). Next, we
damaged the Golgi complex using an independent system.
GFP-LC3 was transduced into a cell line expressing the
horseradish peroxidase (HRP) in the lumen of the Golgi
apparatus through its fusion with ManII (ManII-HRP) [12].
When these ManII-HRP-expressing cells were transiently
exposed to low amounts of hydrogen peroxide (H2O2) in the
presence of diaminobenzidine (DAB), they locally pro-
duced polybenzimidazole in the Golgi, damaging the
organelle [13]. Again, we observed that GFP-LC3 translo-
cated to the damaged Golgi, as detected by immuno-
fluorescence staining using an anti-giantin antibody to label
the Golgi complex (Fig. 1b). LC3 recruitment was induced
by membrane damage and not by perturbation of Golgi
activity because if endosomes were crosslinked using a
similar approach (endocytosis of HRP followed by DAB-
dependent cross-link), damaged endosomes, but not Golgi
membranes, were labeled by LC3 (Fig. S1). Recruitment of
LC3 to damaged Golgi was accompanied by lipidation of
endogenous LC3 protein (as indicated by an increase in the
electrophoretic mobility of LC3, leading to the detection of
LC3-II) (Fig. 1c). Accordingly, introduction of a mutation
into GFP-LC3 (GFP-LC3 G120A) that precludes its lipi-
dation [2] abolished its translocation to the Golgi (Fig. 2d).
Moreover, knockout of the essential autophagy genes Atg5
or Atg7, which are known to contribute to LC3 lipidation
[14], precluded the recruitment of LC3 to damaged Golgi
complex (Fig. 1e). Although LC3 lipidation and its asso-
ciation with specific cellular membranes is typically
observed in autophagy [15], transmission electron micro-
scopy coupled to immunogold detection of GFP-LC3 failed
to detect double-membraned autophagosomes. Rather, this
ultrastructural analysis confirmed the translocation of GFP-
LC3 on single membranes that were associated to DAB-
positive as well as to electron-lucent large vesicles.
(Fig. 1f).

To further study LC3 recruitment on damaged Golgi
membranes, we decided to use an alternative strategy for
Golgi damage that acts at the population level and that can
be fine-tuned using photodynamic therapy combining
Golgi-targeted photosensitizers and appropriate light
sources.
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Photodynamic therapy with redaporfin or hypericin
induces GFP-LC3 translocation to the Golgi

GFP-LC3-expressing U2OS osteosarcoma cells were
exposed to various doses of the photosensitizer redaporfin,
which accumulates in the Golgi apparatus and in the
endoplasmic reticulum [16], and either left untreated or
exposed to infrared light (at 750 nm). The localization of
GFP-LC3 was then analyzed in fixed cells counterstained to
visualize the Golgi apparatus (Fig. 2a, b), the endoplasmic
reticulum (Fig. 2c, d) or mitochondria (Fig. 2e, f). Again, a
preferential relocation of GFP-LC3 toward the Golgi was
observed (Fig. 2a–f). GFP-LC3 puncta induced by photo-
dynamic therapy (PDT) with redaporfin were not only
observed in U2OS cells but also in HeLa cervix carcinoma
and H4 neuroblastoma cells (Fig. S2). Induction of general
autophagy by the mTORC1 inhibitors rapamycin or torin

failed to cause the recruitment of GFP-LC3 to Golgi
membranes positive for GALT1 (Fig. S3). The formation of
GFP-LC3 puncta induced by PDT required ATG5 and was
suppressed by the lipophilic antioxidant tocopherol (Fig. 2g,
h). Immunoblot analyses confirmed the lipidation of LC3
induced by PDT and the requirement of Atg5/7 for this
lipidation (Fig. 2i). The activating phosphorylation of
AMP-dependent kinase (AMPK) was also detected as well
as the inhibition of the kinase activity of mechanistic target
of rapamycin (MTOR), as suggested by the depho-
sphorylation of its substrates p70S6K and EBP1 (Fig. 2j, k).
As above, immunogold staining of EM preparations con-
firmed GFP-LC3 localization on single-membrane orga-
nelles, without the formation of double-membraned
autophagosomes (Fig. 2l). Of note, PDT with hypericin
(which also targets the endoplasmic reticulum and Golgi)
[17], but not PDT with F2BOH (which targets lysosomes,
not the Golgi) [16], also stimulated the relocation of GFP-
LC3 to the Golgi (Fig. 2m–o). PDT induced the relocation
of endogenous LC3A, LC3B and GABARAP-L1 (but not
LC3C and GABARAP) to the Golgi, as determined by
immunofluorescence staining (Fig. S4), meaning that sev-
eral proteins of the ATG8 (LC3/GABARAP) family can
translocate to damaged Golgi membranes. The accumula-
tion of GFP-LC3 toward discrete areas of the cells was not
inhibited by cycloheximide (although it did reduce the
overall abundance of GFP-LC3) (Fig. S5), indicating that
pre-existing LC3 can move to the Golgi.

In conclusion, several distinct protocols designed to
inflict physical or oxidative damage to the Golgi compart-
ment uniformly induced the recruitment of GFP-LC3 to the
GA and activated biochemical changes usually linked to
autophagy induction (LC3 lipidation, AMPK activation,
MTOR inhibition), yet failed to induce bona fide signs of
autophagy, including the formation of double-membraned
autophagosomes detectable by transmission electron
microscopy.

Golgi recruitment of core components of the
autophagic machinery

Dispersion of the Golgi apparatus by treatment with bre-
feldin A (which prevents the association of the COP-I coat
to the Golgi membrane) [18] or golgicide A (which inhibits
the Golgi brefeldin A resistant guanine nucleotide exchange
factor 1, GBF1) [19] largely inhibited the redaporfin-PDT
induced accumulation of GFP-LC3 in cytoplasmic puncta,
supporting the idea that the Golgi is indeed the source of the
primary target for GFP-LC3 relocation upon PDT
(Fig. 3a–d). Although GFP-LC3 relocation to puncta was
strongly inhibited, the lipidation of endogenous LC3 was
only partially inhibited, meaning that the ratio between
LC3-II (lipidated) and LC3-I (unlipidated) increased in

Fig. 1 LC3 recruitment to wounded or intoxicated Golgi apparatus
(GA). a Human cervix carcinoma HeLa cells stably transduced with
GFP-LC3 (LC3) were transfected with pManII-mCherry (ManII).
Photodamage was applied on a confocal microscope equipped with a
2-Photon Laser. Pictures show cells 10 seconds before photodamage
A, after photodamage with the rectangle indicating the photodamaged
zone B and representative images of cells at several time points after
photodamage C–F. White arrows follow the photodamaged zone
showing early LC3 recruitment. Empty arrows indicate appearance of
late LC3 recruitment elsewhere in the GA. B HeLa cells stably co-
expressing ManII-HRP and GFP-LC3 were fixed directly A or were
treated with DAB-H2O2 mix for 30 min at 4 °C then either fixed B or
incubated in fresh complete medium for 1 or 2 h before fixation C, D.
Cells were subsequently immunostained with anti-Giantin antibodies
(Giantin). White arrowheads indicated recruitment of LC3 to the
damaged GA. Empty arrowheads indicate absence of LC3 in the Golgi
apparatus surroundings. Transmitted light (TL) images were taken to
detect the DAB precipitates. Scale bars equal 10 μm. c HeLa ManII-
HRP cells without prior treatment or upon treatment with DAB-H2O2

mix for 30 min at 4 °C then were either lysed directly or incubated in
fresh complete medium for different time points prior to lysis. Lysates
were separated by SDS-PAGE, and then electrotransferred onto a
nitrocellulose membrane for immunodetection with anti-LC3 and anti-
tubulin antibodies. d HeLa cells expressing ManII-HRP were tran-
siently transfected with GFP-LC3 wt a or GFP-LC3 G120A mutant
plasmids b. Cells were treated with DAB-H2O2, fixed 2 h after wash-
out, and immunostained with anti-Giantin antibodies. e Wildtype,
ATG5−/− or ATG7−/− mouse embryonic fibroblasts (MEFs) were co-
transfected with pManII-HRP and pEGFP-LC3 wt plasmids 24 h
before the experiment. Cells were treated with DAB-H2O2, fixed 2 h
after wash-out and stained with anti-Giantin antibodies. White arrows
indicate colocalization of LC3 with Giantin and DAB precipitate.
Empty arrows indicate absence of LC3 at the GA surrounding.
Transmitted light (TL) images were taken to detect the DAB pre-
cipitates. Scale bars equal 10 μm. f HeLa ManII-HRP GFP-LC3 were
treated with DAB-H2O2 for 30 min at 4 °C then incubated in fresh
complete medium for 0, 2, or 4 h before processing for immuno-EM.
GFP-LC3 was detected using antibodies against the GFP tag and
secondary antibodies labeled with 10 nm gold particles. Representative
images are depicted for 0 a, 2 b–d, and 4 h after DAB-H2O2 treatment
e–h. LPV= LC3-positive vacuoles; G=Golgi; N= nucleus; M=
mitochondria. Scale bars equal 300 nm
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response to photodynamic treatment with redaporfin even in
the presence of brefeldin A and golgicide A (Fig. 3e, f). Of
note, two distinct highly potent and specific cell-permeable

inhibitors of lysosomal V-ATPases, concanamycin A, and
bafilomycin A1, both caused dispersion of the Golgi and
also prevented the punctuate redistribution of GFP-LC3 in

Recruitment of LC3 to damaged Golgi apparatus 1471



response to phototoxic damage inflicted by the combination
of redaporfin and light (Fig. S6). In agreement with our
previous data, brefeldin A prevented LC3 aggregation after
PDT of cells treated with hypericin but not with F2BOH
(Fig. 3g–j).

In response to redaporfin-PDT, a Golgi-centric redis-
tribution was also noted for the autophagic adaptor protein
sequestosome-1 (SQTM1, best known as p62), which
colocalized with both LC3 (Fig. 4a–c) and the Golgi marker
GALT1 (Fig. 4d–f). Lysosomes detectable by LAMP1
immunostaining also aggregated close to LC3-positive
puncta (Fig. 4g–i) and GALT1 (Fig. 4j–l) after PDT.
Expectedly, mTOR was also found on the LC3/GALT1/
LAMP1-positive cluster (Fig. S7). Very similar recruitment
of p62 to the damaged Golgi was observed in cells
expressing Golgi-located peroxidase treated with H2O2 and

DAB (Fig. 4m) or in response to localized laser damage
(Fig. 4n). The clustering of GFP-LC3, p62 and LAMP1 in
the same area of the cytoplasm was prevented by inhibiting
microtubule polymerization using nocodazole, which
caused dispersion of the Golgi complex and reduced the
generation of GFP-LC3 puncta (Fig. 5a–f) Similarly, the
relocation of LC3 to sites of the redaporfin-PDT damaged
Golgi depends on cytosolic calcium as it was reduced in the
presence of the intracellular calcium chelator BAPTA-AM
(Fig. 5g, h)

Altogether, these data suggest that several different
components of the autophagolysosomal system are recruited
to the damaged Golgi apparatus.

Non-oxidative Golgi damage can cause LC3
recruitment

All the methods that were used above to damage Golgi
membranes rely on light or peroxidase and may thus gen-
erate free radicals. To test whether production of free
radicals and/or oxidation was essential to induce the
recruitment of the autophagic machinery to damaged Golgi
membranes, we explored an independent method to damage
the Golgi complex. LTX-401 is an amphipathic peptide
derivative that selectively targets the Golgi, disrupting its
integrity, thereby triggering a lethal pathway that culminates
in caspase-independent cell death [20]. We observed that
Golgi damage using LTX-401 led to GFP-LC3 recruitment
to this organelle (Fig. 6a). Electron microscopic analysis
confirmed the recruitment of GFP-LC3 on Golgi damaged
by LTX-401 but, again, no double membrane was detected
(Fig. S8). As above, GFP-LC3 recruitment was ATG5-
dependent (Fig. 6a–c), GFP-LC3 puncta formation was
repressed in the presence of brefeldin A, golgicide A
(Fig. 6d–f), concanamycin A or bafilomycin A1 (Fig. S8)
and p62 and lysosomes were recruited toward GFP-LC3/
GALT1-positive structures (Fig. 6g–l). As observed above,
cycloheximide did not prevent recruitment of LC3 on
damaged Golgi (Fig. S5). Interestingly, antioxidants such as
N-acetylcysteine, reduced glutathione and tocopherol were
unable to prevent GFP-LC3 puncta formation in response to
LTX-401 (Fig. 6m, n), supporting the notion that this
compound mediates direct membrane damage without oxi-
dative stress and that oxidative stress is not necessary to
promote LC3 recruitment to damaged Golgi complex.

LC3 recruitment to the Golgi does not involve the
canonical autophagic pathway yet might be
cytoprotective

Canonical autophagy relies on the generation of
phosphatidylinositol-3-phosphate by phosphatidylinositol-
3-kinase catalytic subunit type 3 (PIK3C3, commonly

Fig. 2 Redaporfin-PDT (redp*) induces LC3 aggregation at the Golgi
apparatus (GA) and the mTOR-dependent autophagic pathway. a–f
Representative images of LC3 aggregation (GFP-LC3+) and its colo-
calization with GA; ER; or mitochondria are shown in a, b; c, d; and e,
f, respectively. Human osteosarcoma U2OS cells stably expressing
GFP-LC3 were incubated with redaporfin (redp), at the indicated
concentrations, for 20 h followed by irradiation (*) at 750 nm. Six
hours later, immunostaining was performed for the GA marker
GALT1 a, the ER marker calreticulin c, CALR, and the mitochondrial
marker Tomm20 e. Data are presented as means ± SD of triplicates of
one representative experiment out of two repeats. (One-way ANOVA,
***p < 0.001 versus untreated cells). Size bar equals 10 µm. g, h
Representative images of LC3 aggregation in the presence of the
antioxidant tocopherol (Toc) or in ATG5 KO cells. Quantitative ana-
lysis represents the average area of GFP-LC3 puncta/cell (µm2). U2OS
WT and ATG5−/− cells stably expressing GFP-LC3 were incubated
with redp as mentioned above. Toc (500 µM) was added to U2OS cells
stably expressing GFP-LC3 4 h before irradiation and cells were fixed
6 h post irradiation. Data are presented as means ± SD of triplicates of
one representative experiment out of 2–4 repeats. (Two-way ANOVA,
***p < 0.001 versus untreated cells; ##p < 0.01, ###p < 0.001 versus the
presence of Toc or absence of ATG5). Size bar equals 10 µm. i–k
Activation of the mTOR signaling pathway and involvement of ATG5/
7 proteins in the LC3 lipidation induced by redaporfin-photodynamic
therapy (PDT). Mouse embryonic fibroblasts (MEFs) WT or ATG5−/−

i, and human osteosarcoma U2OS WT cells (j, k) cells were treated
with redp*. Six hours post irradiation, proteins were collected and
analyzed by immunoblotting for LC3 lipidation, p62 degradation,
AMPK, p70, and EBP1 phosphorylation. Representative immunoblots
are depicted. l Representative images of transmission electron micro-
scopy showing vacuolization and LC3 accumulation at the GA upon
redp*. Six hours after photoactivation of redp (2.5 µM) in U2OS cells
expressing GFP-LC3, GFP-LC3 was detected by immunogold and
analyzed by transmission electron microcopy. m–o Hypericin-PDT
induces LC3 recruitment into the GA in contrast to F2BOH-mediated
PDT. U2OS cells stably expressing GFP-LC3 were incubated with
hypericin or F2BOH, at the indicated concentrations, for 20 h, followed
by irradiation (*) and immunostaining for GALT1 at 6 h post irra-
diation. Representative images are shown in m, the average area of
GFP-LC3+ dots per cell and the colocalization between GFP-LC3+

dots and GALT1+ structures are shown in n, o. Data indicate means ±
SD of triplicates of one representative experiment out of 2–4 repeats.
(one-way ANOVA, *p < 0.05, ***p < 0.001 versus untreated cells).
Size bar equals 10 µm

1472 L. C. Gomes-da-Silva et al.



known as VPS34) and the PIK3C3-activatory complex
organized around Beclin-1 (BECN1) [21]. Recently, we
demonstrated that the redistribution of LC3 to the Golgi
complex induced by unsaturated fatty acids (such as oleate)
depends on ATG5, yet occurs without, and independently
of, PIK3C3 and BECN1 [22]. Driven by these considera-
tions, we determined whether inhibition of PIK3C3 by

wortmannin would abolish the translocation of LC3 to the
Golgi complex. Wortmannin failed to prevent the Golgi
enrichment of GFP-LC3 induced by PDT with redaporfin
(Fig. 7a–c) or by treatment with LTX-401 (Fig. 7i, j, m). As
a control, we confirmed that Wortmannin used in the same
conditions prevented torin-induced GFP-LC3 puncta for-
mation (Fig. 7k, l). Similarly, knockdown of either PIK3C3
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or BECN1 failed to inhibit the lipidation of LC3 induced by
redaporfin-based PDT (Fig. 7d–e) or LTX-401 (Fig. 7n).
Moreover, knockdown of the negative mTORC1 regulators
TSC1 or TSC2, as well as the knockout of TSC2, failed to
interfere with PDT-induced LC3 lipidation or relocation
(Fig. 7f–h). We found that knockdown of ATG3, 5 and 12
could inhibit the redaporfin-induced LC3 relocation
(Fig. 7g, h) process, and the knockdown of ATG5 and 12
inhibited the LTX-401-induced LC3 relocation (Fig. 7o, p).
In contrast, genes/proteins involved in the ULK1 complex
(ULK1, RBCC1, ATG14), in Beclin-1 complexes (BCN1,
UVRAG, RUBCN, PIK3C), the ATG9 pathway (ATG9A,
AtG9B) and the lysosomal-autophagosome fusion process
(STX17, SNAP29, VAMP8) are not involved in this pro-
cess. Moreover, knockdown of negative regulators of the
mTORC1 complex (TSC1, TSC2) is unable to interfere
with the relocation of LC3 to the damaged Golgi (Fig. 7g, h,
o, p). Altogether, these results support the notion that the
Golgi-specific redistribution of LC3 coupled to its lipidation
occurs in an ATG5/12-dependent fashion, yet does not
require other major autophagy-related protein complexes.

Autophagy is mostly considered as a cytoprotective
process that reduces the propensity of cell to succumb to
stress [23]. Although Golgi recruitment of LC3 cannot be
considered as a canonical autophagy-like event (because it
fails to yield double-membraned vesicles and because it
does not rely on PIK3C3 and BECN1, see above), we asked
whether the pathway involved in the recruitment of LC3 to
the Golgi would be cytoprotective. For this, we took

advantage of MEF cells lacking Atg5/7 that do not allow the
translocation of LC3 to the Golgi (see above). As compared
with WT cells, the knockout of Atg5/7 sensitized the cells
to PDT- and LTX-401-induced cell death (measured by
assessment of Hoechst 33342-detectable pyknosis, propi-
dium iodide-detectable plasma membrane permeabilization)
and caspase-3 activation (measured by immunoblot)
(Fig. 8a–e). Similarly, GFP-LC3-expressing U2OS cells
carrying a knockout of ATG5 (which then fail to recruit
GFP-LC3 to the Golgi, see above Fig. 6a–c) became more
sensitive to PDT-induced loss of clonogenicity and clea-
vage of poly-(adenosyl ribose) polymerase-1 (Fig. S9A–C),
as well as to LTX-401-mediated killing (Fig. S9D, E).
These results suggest that the non-canonical pathway
leading to the redistribution of LC3 to the Golgi compart-
ment might have a cytoprotective function.

Concluding remarks

In this work, we present evidence that damage of the Golgi
complex using various independent approaches lead to the
translocation of LC3 to the organelle. This was observed
upon physical damage induced by localized laser irradiation
(in the absence of sensitizing chemical agents), by local
luminal precipitation of DAB driven by a Golgi-localized
peroxidase or by photodynamic therapy with redaporfin or
hypericin. Although these damaging strategies may all be
related to local oxidation, non-oxidative damage by another
Golgi-targeted agent, LTX-401 [20], as well as unsaturated
cis-fatty acids [22], also stimulated the redistribution of LC3
to this organelle together with the LC3 interactor p62. This
phenomenon was accompanied by the local accumulation of
lysosomes at or close to Golgi markers.

Importantly, Golgi-directed relocation of LC3 occurred
in the absence of bona fide signs of autophagy and in par-
ticular the absence of double-membraned autophagosomes
and a lack of implication of the PIK3C3/BECN1 complex.
Similar observations were made before for oleate-induced
LC3 translocation to the Golgi [22] and are here confirmed
for mechanical, oxidative or LTX-401-mediated Golgi
damage. The relocation of LC3 to single-membraned
organelles of the endolysosomal system, has been descri-
bed before, following a range of macroendocytic engulf-
ment events such as entosis (live-cell cannibalism) [11] and
LAP, during which lipidated LC3 is recruited to phago-
somes housing microbial pathogens or dead cells, respec-
tively [10]. However, to the best of our knowledge, the
autophagy-independent recruitment of LC3 to a specific
intracellular organelle in response to different damages has
not been reported before. There is an ample literature
showing that mitochondrial damage leading to the per-
meabilization of the inner membrane (with consequent

Fig. 3 Requirement of the Golgi apparatus (GA) structure for the
aggregation of LC3 in response to Redaporfin-PDT (redp*). a–d
Impact of Brefeldin A (BFA) and golgicide (GCA) on the LC3
aggregation and its colocalization with the GA marker, GALT1.
Human osteosarcoma U2OS cells expressing GFP-LC3 were incu-
bated with Redp, at the indicated concentrations, for 20 h followed by
addition of BFA (5 µg/mL) or GCA (5 µM). Four hours later, cells
were irradiated (*) and immunostaining was performed 6 h post irra-
diation for the GA marker, GALT1. Representative images are shown
in a and the quantitative analysis that reflects the average area of GFP-
LC3+ dots and GALT1+ Golgi structures per cell are shown in b and
c. The level of colocalization (co-ocurrence) between GFP-LC3 dots
and GALT1+ structures is depicted in d. (Two-way ANOVA, ***p <
0.001 versus untreated cells; ###p < 0.001 versus the presence of BFA
or GCA). Size bar equals 10 µm. e, f Representative immunoblot and
densitometry (means ± SEM of three independent experiments) for
LC3 lipidation in U2OS cells submitted to redp* in the presence of
BFA or GCA. g–j Impact of BFA on the LC3 aggregation triggered by
hypericin or F2BOH-mediated PDT. U2OS cells stably expressing
GFP-LC3 were incubated with hypericin or F2BOH, at the indicated
concentrations for 20 h followed by addition of BFA (5 µg/mL). Four
hours later, cells were irradiated and at 6 h post irradiation, cells were
fixed with PFA and the nuclei were counterstained with Hoechst
33342. Representative images and the quantitative analysis that
reflects the average area of GFP-LC3+ dots are shown for hypericin in
g, h and for F2BOH in i, j. (Two-way ANOVA, **p < 0.01, ***p <
0.001 versus untreated cells; ##p < 0.01, ###p < 0.001 versus the pre-
sence of BFA or GCA). Size bar equals 10 µm
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dissipation of the mitochondrial transmembrane potential)
or permeabilization of the outer membrane (with exposure
of proteins such as prohibitin-2) leads to the recruitment of

LC3 and mitophagy, i.e., the selective removal of damaged
mitochondria by autophagy [24, 25]. Similarly, it has been
reported that oxidative damage of the endoplasmic
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reticulum leads to the recruitment of LC3 and ER-specific
autophagy, reticulophagy [26]. However, these instance of
damage-induced organelle-specific autophagy involve the
formation of double-membraned autophagosomes, con-
trasting with the single-membrane association of LC3
observed after Golgi damage.

An intriguing observation about the LC3 translocation to
damaged Golgi complex is its independence from PIK3C3/
BECN1. On the one hand, the phenomenon of organelle-
specific LC3 recruitment strongly correlates with LC3
lipidation (and is suppressed when LC3 cannot be lipidated
due the G120A mutation) and actually depends on ATG5,
an enzyme that are involved in an ubiquitinylation-like
conjugation system required for LC3 lipidation [4]. On the
other hand, knockdown of PIK3C3 or BECN1, as well as
enzymatic inhibition PIK3C3 fails to interfere with the
Golgi damage induced local LC3 recruitment. Similarly,
knockout of proteins involved in the ULK1 complex failed
to interfere with the Golgi recruitment of LC3. This applies
to all the Golgi-damaging agents characterized in this
respect including reactive oxygen species (ROS)-dependent
damage by PDT and ROS-independent stimuli such as
LTX-401. We previously reported that the Golgi recruit-
ment of LC3 following exposure to cis-unsaturated fatty

acids occurred in an ATG5/7-dependent but PIK3C3/
BECN1 and ULK1 independent fashion [22]. Thus, trans-
location of LC3 to the Golgi appears to be generally inde-
pendent of PIK3C3/BECN1 and ULK1.

Even though Golgi recruitment of LC3 appears to occur
without the formation of autophagosomes and without the
involvement of PIK3C3/BECN1 and ULK1, this pathway is
potentially cytoprotective. Indeed, knockout of ATG5
(alone or together with ATG7), that prevented LC3
recruitment, sensitized mouse or human cells to killing by
redaporfin-mediated PDT or LTX-401. At this point, it is
unclear through which precise mechanism, ATG5 and LC3
may contribute to cytoprotection. Prior work suggested that
lysosomes contribute to the repair of plasma membranes
[27]. It is tempting to speculate, yet remains to be investi-
gated in further detail that the recruitment of molecules
from the autophagolysosomal system to the damaged Golgi
may help avoiding cell death as well.

Material and methods

Cell culture and reagents

Human osteosarcoma U2OS wildtype, or expressing
GALT1-GFP, GFP-LC3 or knockout (KO) for ATG5,
human cervix carcinoma HeLa cells expressing GFP-LC3
or HRP-ManII, human neuroglioma H4 cells expressing
GFP-LC3, MEFs wildtype or double KO for ATG5 and 7
cells were cultured in Dulbecco’s modified Eagle’s medium
(Thermo Fisher Scientific, Carlsbad, CA, USA) supple-
mented with 10% fetal bovine serum (Gibco® Thermo
Fisher Scientific), 1% nonessential amino acids (Thermo
Fisher Scientific) and 1% penicillin/streptomycin (Thermo
Fisher Scientific) in a humidified incubator with 5% CO2 at
37 °C. The medium for HeLa ManII-HRP and HeLa GFP-
LC3 cells was further supplemented with 0.2 mg/ml
geneticin (Thermo Fisher Scientific). DAB-H2O2-based
organelle cross-linking was performed as described pre-
viously (Brachet et al., 1999; Muller et al., 1983; Jollivet
et al., 2007). Redaporfin (LUZ11) and F2BOH (LUZ10)
were provided by Luzitin SA (Coimbra, Portugal) and LTX-
401 was from Lytix Biopharma (Tromsø, Norway). Bre-
feldin A (B6542), Nocodazole (SML1665), Wortmannin
(W3144), DAB (D5905), H2O2 (H1009), Tocopherol
(T3251), n-acetyl-cysteine (NAC; A9165), glutathion
(GSH; G6013), and ATG5 (A2859) and ATG7 (A2856)
antibodies were purchased from Sigma-Aldrich (St Louis,
MO, USA). Golgicide A (3584), bafilomycin A1 (1334),
and concanamycin A (2656/10U) were from Tocris
Bioscience (Bristol, UK). Primary antibodies against CALR
(ab ab2907), TOMM20 (ab78547), GBF1 (ab 86071), actin-
HRP (ab 49900), LAMP1 (ab25630), LC3A (ab62720) and

Fig. 4 Clustering of LC3, Golgi apparatus (GA), lysosomes and p62
after Redaporfin-PDT (redp*) and DAB-H2O2 treatments. a–f
Recruitment of p62 at the GA after redp*. Human osteosarcoma U2OS
cells expressing GFP-LC3 or the GA marker GALT1-GFP were
submitted to Redp-PDT. Six hours later, cells were immunostained for
p62. Representative images of p62 aggregation at sites of LC3
aggregation and at GA structures are shown in a and d, respectively,
alongside with the level of colocalization in b and e. The average
number and area of p62+ structures (normalized to untreated controls)
are depicted in c and f. Bars indicate means ± SD of triplicates of one
representative experiment out of two repeats. (One-way ANOVA,
***p < 0.001 versus untreated cells). Size bar equals 10 µm. g–l
Recruitment of lysosomes at GA after redp*. U2OS cell expressing
GFP-LC3 or the GA marker GALT1-GFP were submitted to
redaporfin-PDT. Six hours later, cells were immunostained for
LAMP1. Representative images of LAMP1 aggregation at sites of LC3
aggregation and at GA structures are shown in g and j alongside with
the level of colocalization in h and k. The average number and area of
LAMP1+ structures (normalized to untreated controls) are depicted in i
and l. Data indicate means ± SD of triplicates of one representative
experiment out of two repeats. (One-way ANOVA, **p < 0.1, ***p <
0.001 versus untreated cells). Size bar equals 10 µm. m, n Human
cervix carcinoma HeLa cells co-expressing the Golgi-targeted perox-
idase ManII-HRP and GFP-LC3 cells were treated with DAB-H2O2

then either fixed or incubated in fresh complete medium for 2 h before
fixation. Cells were then immunostained with anti-p62 antibody and
analyzed by fluorescence microscopy m. HeLa cells expressing both
GFP-Giantin and mCherry-p62 were subjected to Golgi-targeted
photodamage performed by 10 seconds of irradiation with a confocal
microscope equipped with a 2-photon laser. Representative images are
depicted for 10 sec before photodamage A, 10 sec, B 30 sec, C 31 min
D, and 86 min E after photodamage. White box indicates the photo-
damaged zone. White arrows show p62 recruitment to the photo-
damaged Golgi apparatus. Scale bar equals 10 µm
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GABARAP-L1 (ab86497) came from Abcam (Cambridge,
UK). Antibodies for LC3 (2775), P-AMPK (2535), AMPK
(2603), P-p70 (9205), p70(2708), P-4EBP1 (sc18091),

4EBP1 (sc9577), mTOR (2983), cleaved caspase-3 (9661),
and GABARAP (9137330) were purchased from Cell Sig-
naling Technology (Danvers, MA, USA), the antibody
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against p62 (H00008878-M01) and B4GALT1
(PAB20512) were from Abnova (Taipei, Taiwan) and the
antibody for LC3C was purchased from Thermo Fisher
Scientific, Carlsbad, CA, USA). The recombinant anti-
bodies anti-Giantin (TA10) and anti-alpha tubulin (F2C)
were previously described (Nizak et al., 2003; Moutel et al.,
2009). We used here the hFc forms of these antibodies.
Anti-GM130 antibody was received from Transduction
Laboratories (Becton Dickinson, Francklin Lakes, NJ,
USA). Mouse anti-GFP antibody was purchased from
Roche Diagnostics (Roche Diagnostics, Risch-Rotkreuz,
Switzerland). Secondary AlexaFluor®488 or 647-labeled
antibodies and Hoechst 33342 were from Thermo Fisher
Scientific. Lipofectamine 2000 reagent (Thermo Fisher
Scientific) was used to transiently transfect HeLa cells.
Lipofectamine LTX and Plus Reagent (Thermo Fisher
Scientific) were used to transfect MEFs. Lipofectamine
RNAiMAX reagent (Thermo Fisher Scientific) was used to
transfect cells with siRNA.

Cross-linking reaction

Organelle cross-linking was performed as previously
described [13]. Cells expressing HRP in Golgi cisternae, or
pulsed with soluble-HRP to target endosomes, were washed
in phosphate-buffered saline (PBS) and incubated with
DAB (Sigma-Aldrich) in the presence of 0.003% H2O2

(Sigma-Aldrich) for 30 min at 0 °C. Cells were then washed
and fixed or further incubated in normal medium for ima-
ging, fixation or lysis.

Plasmids and lentiviruses

The pManII-HRP plasmid was previously described [13].
pEGFP-Giantin was constructed by introducing the Giantin

coding sequence amplified by PCR into a pEGFP vector
(TaKaRa Bio, Mountain view, CA, USA).

Retroviral infections and generation of stable cell
lines

HeLa ManII-HRP cells were generated as described pre-
viously [13]. GFP-LC3 expressing cell lines were generated
using a lentiviral expression system. pExp-Dh1-GFP-LC3-
Ef1-Puro, psPAX2, and pVSV-G vectors were used to
transfect HEK 293 T cells to generate recombinant lenti-
viruses. HeLa cells were infected with recombinant lenti-
viruses and selected by FACS for medium expression
levels. All infections were performed in a security level 3
facility.

Photodamage and time-lapse imaging

Cells were plated in a glass-bottom dish and maintained
under standard culture conditions followed by photodamage
and associated time-lapse acquisitions performed with a
Zeiss LSM 710 NLO (Jena, Germany) equipped with a
Mai-Tai HP two-photon laser (Spectra Physics, Santa Clara,
CA, USA) for microablation. The acquisition was per-
formed with a 63 ×/1.4 NA objective. This microscope was
steered with ZEN (Zeiss) and resulting images were pro-
cessed with ZEN, Metamorph (Molecular Devices, Sunny-
vale, CA, USA), Image J (freely available at https://imagej.
nih.gov/ij) and Adobe Photoshop (Adobe, San Jose, CA,
USA). Spinning-disc confocal microscopy was carried out
with a Yokogawa CSU-22 spinning-disc head (Tokyo,
Japan) on a Nikon TE-2000U microscope (Tokyo, Japan)
equipped with a Coolsnap HQ2 camera, a NanoScanZ piezo
focusing stage (Prior Scientific, Cambridge, UK) a motor-
ized scanning stage (Märzhäuser, Wetzlar, Germany) and a
× 63/1.4 NA objective, operated with Metamorph. Images
were processed with Metamorph.

Treatment with photodynamic therapy

Cells were seeded in black 96-well plates (Greiner Bio-One,
Kremsmünster, Austria). After 24 h, photosensitizers
(redaporfin, F2BOH or hypericin) were added to cells and
incubated for 20 h. After washing cells to remove non-
internalized photozensitizer, photoactivation of redaporfin,
and F2BOH was carried out at 750 nm with a light-emitting
diode (LED) from Marubeni (model L740-66-60-550,
Tokyo, Japan). A light dose (LD) of 0.075 J/cm2 or 0.6 J/
cm2 was delivered respectively to redaporfin and F2BOH,
with the exception of viability studies in which a LD of 0.2
J/cm2 was applied. Hypericin photoactivation was carried
out with a GU10 LED, 1.5W 220–240 V, covered with a
filter that results in a peak at 583 nm. A LD of 0.3 J/cm2 was

Fig. 5 The clustering of LC3, Golgi apparatus (GA), lysosomes, and
p62 is dependent on microtubule dynamics. a–f Impact of nocodazole
(Noc) on the formation of the LC3, p62, and lysosome clustering after
redaporfin-PDT. Human osteosarcoma U2OS cells expressing GFP-
LC3 were incubated with redaporfin (Redp), at the indicated con-
centrations, for 20 h, followed by addition of Noc (2.5 µM). Two hours
later, cells were irradiated (*) and immunostaining was performed, 6 h
post irradiation, for p62 a or LAMP1 proteins d. Representative
images are shown in a for p62 and in d for LAMP1. The quantitative
analysis that reflects the number and average area of GFP-LC3+ dots is
shown in b, e and the colocalization between GFP-LC3+ puncta and
p62+ or LAMP1+ structures is shown in c, f. U2OS cell expressing
GFP-LC3 were submitted to redaporfin-PDT in the presence or the
absence of the intracellular calcium chelator BAPTA-AM. Following
cells were immunostained for GALT1. Representative images of LC3
aggregation at sites of GALT1 stained GA structures are shown in g
and quantitively assessed in h. Data are presented as means ± SD of
triplicates of one representative experiment out of 2–4 repeats.
(Two-way ANOVA, ***p < 0.001 versus untreated cells; #p < 0.05,
###p < 0.001 versus the presence of Noc). Size bar equals 10 µm
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delivered. Untreated cells, cells incubated with the photo-
sensitizer (at the highest tested concentration) without

photoactivation and cells submitted to light (in the absence
of the photosensitizer) were included in all experiments as
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negative controls. All inhibitors such as tocopherol (Toc,
500 µM), brefeldin A (BFA, 5 µg/mL), golgicide A (GCA,
5 µM), were added to the cells 4 h before irradiation and
then let present until the end of the assay.

Immunofluorescence staining

Six hours after PDT treatment, cells were fixed in paraf-
ormaldehyde 4 % (w/v) in PBS containing 2 µM Hoechst
33342, for 45 min at room temperature (RT). Cells were
then permeabilized using 0.1% Triton X-100 (Sigma-
Aldrich) in PBS for 5 min at RT. For LC3B and GABARAP
staining, cells were fixed by means of ice-cold 100%

methanol for 15 min at − 20 °C followed by three washing
steps with PBS and permeabilization with 0.3% Triton X-
100. Unspecific binding was reduced by incubating cells
with 2.5% bovine serum albumin (BSA) in PBS for 30 min
at RT followed by incubation with the primary antibody,
overnight at 4 °C. Afterwards, cells were washed thrice with
PBS and further incubated with AlexaFluor®-coupled sec-
ondary antibody (AF488 or AF647) for 1.5 h at RT. After
washing three times with PBS, images were acquired using
an ImageXpress micro XL automated bioimager (Molecular
Devices) equipped with a PlanApo 20X/0.75 NA objective
(Nikon). A minimum of four images was taken per well.
Alternatively, cells were grown on coverslips, fixed, and
stained as described above. Coverslips were mounted in
Mowiol (Merck Millipore, Darmstadt, Germany) supple-
mented with 4′,6-diamidino-2-phenylindole to stain DNA
and then imaged using a Leica DMRA (Leica, Wetzlar,
Germany) equipped with a CoolSnap HQ camera (Photo-
metrics) and equipped with 40 ×/1.25 NA, 63 ×/1.4 NA and
100 ×/1.4 NA objectives, a Leica DM6000 B equipped with
a CoolSnap HQ2 camera and equipped with 40 ×/1.25 NA,
63 ×/1.4 NA and 100 ×/1.4 NA objectives, or a Nikon
Eclipse 90i equipped with a CoolSnap HQ2 camera and a
100 ×/1.4 NA objective. All microscopes were operated
with Metamorph and images were processed with Meta-
morph and Adobe Photoshop 2.0.0.975.

Western blot analysis

Cells were harvested and the obtained pellet was resus-
pended in radioimmunoprecipitation buffer (89900,
Thermo Fisher Scientific) supplemented with phosphatase
and protease inhibitors (88669, Thermo Fisher Scientific).
Protein concentration was measured by DCTM Protein
Assay kit (5000112, BioRad, Hercules, CA, USA) and 20
µg of protein was mixed with Nupage®LDS sample buffer
4 × and Nupage® sample reducing agent 10 × (NP0008
and NP 0009, Life Technologies) followed by denatura-
tion at 100 °C for 10 min. Proteins were then separated by
polyacrylamide gel electrophoresis using 4–12% Bis-Tris
pre-casted gels (Life Technologies) in MES running
buffer (Life Technologies) and then transferred to poly-
vinylidene difluoride membrane (Merck Millipore,
Darmstadt, Germany) using a Tris-glycine buffer (Life
Technologies) with 20% of ethanol. In order to reduce
unspecific binding, membranes were incubated for 1 h
with a mixture of Tris-buffered saline (Life Technologies)
and Tween 20 (0.1%) (Sigma-Aldrich) supplemented with
5% of BSA (Euromedex, Souffelweyersheim, France).
Following membranes were incubated with the primary
antibody overnight at 4 °C followed and with the appro-
priate secondary antibody conjugated to horseradish per-
oxidase (Southern Biotech, Birmingham, AL, USA) for 1

Fig. 6 LTX-401, a Golgi apparatus (GA)-targeting oncolytic agent,
induces the recruitment of the autophagic machinery to the GA. a–c
Treatment with the oncolytic compound, LTX-401 induces LC3
aggregation (GFP-LC3+) at the site of the GA that requires ATG5. WT
and ATG5−/− human osteosarcoma U2OS cells expressing GFP-LC3
cells were treated with LTX-401 at different concentrations, for 6 h, in
complete medium. The presence of serum partially decreased the
cytotoxicity of LTX-401, allowing the study of its effects at the cel-
lular level. Representative images of GALT1 immunostaining are
shown in a, whereas the average area of GFP-LC3+ puncta and the
level of colocalization between GFP-LC3+ and GALT1+ structures are
depicted in b, c. Data indicate means ± SD of triplicates of one
representative experiment out of 2–4 repeats. (Two-way ANOVA, *p
< 0.5, ***p < 0.001 versus untreated cells; #p < 0.05,###p < 0.001 ver-
sus ATG5 knockout). Size bar equals 10 µm. d–f The GA-disrupting
agents golgicide A (GCA) and brefeldin A (BFA) inhibited the
aggregation of LC3 induced by LTX-401. U2OS cells expressing
GFP-LC3 were treated with LTX-401 in the presence of BFA (5 µg/
mL) or in the presence of GCA (5 µM) for 6 h followed by GALT1
immunostaining. Representative images are depicted in d and quan-
titative analysis showing average area of GFP-LC3+ puncta or GALT1
+ structures, as well as the level of colocalization between GFP-LC3+

and GALT1+ structures, are presented in e, f. Data are presented as
means ± SD of triplicates of one representative experiment out of 2–4
repeats. (Two-way ANOVA, ***p < 0.001 versus untreated cells; ###p
< 0.001 versus the presence of BFA or GCA). Size bar equals 10 µm.
g–l LTX-401 induces GFP-LC3+ puncta, Golgi apparatus, p62, and
lysosomes clustering. U2OS-GFP-LC3 cells were treated with LTX-
401 for 6 h followed by immunostaining for p62 g or LAMP1 j pro-
teins. Representative images are shown in g for p62 and in j for
LAMP1. The quantitative analysis that reflects the colocalization of
GFP-LC3+ puncta with p62+ or LAMP1+ structures are shown in h, k
and the changes in the average area of p62+ or LAMP1+ structures
after LTX-401 treatment are shown in i, l. Data are represented as
means ± SD of triplicates of one representative experiment out of 2–4
repeats. (One-way ANOVA, *p < 0.5, **p < 0.01, ***p < 0.001 versus
untreated cells). Size bar equals 10 µm. m, n Impact of different
antioxidants on the LC3 aggregation mediated by LTX-401. U2OS
cells expressing GFP-LC3 were incubated with the antioxidants n-
acetyl-cysteine (NAC, 10 mM), glutathione (GSH, 5 mM), or toco-
pherol (TOC, 500 µM) for 3 h, followed by co-incubation with LTX-
401 in the presence of the same antioxidants. Representative images
are shown in m and the quantitative analysis that reflects the average
area of GFP-LC3+ dots per cell are shown in n. Data are represented as
means ± SD of triplicates of one representative experiment out of 2–4
repeats. (Two-way ANOVA, **p < 0.01, ***p < 0.001 versus ctr
cells; ns versus the presence of antioxidants). Size bar equals 10 µm
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h at room temperature. After washing, proteins were
revealed with ECL (GE Healthcare Life Sciences, Little
Chalfont, UK). Chemiluminescence images were acquired

with an ImageQuant LAS 4000 imaging system (GE
Healthcare Life Science). Beta-actin was used for loading
control.
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Immunogold labeling and transmission electron
microscopy

Cells were seeded in petri dishes (Greiner Bio-One) and let
to adapt for 24 h. Following the cells were treated with
redaporfin (2.5 µM) plus photoactivation or LTX-401 (5 µg/
ml). Six hours later, cells were fixed in 4% formaldehyde at
4 °C for 1 h. Cell pellets were then dehydrated in methanol
and embedded in lowicryl K4M at − 20 °C in an AFS2
Freeze Substitution Processor apparatus (Leica Micro-
systems). Polymerization under UV light was carried out for
2 days at − 20 °C, followed by 2 days at 20 °C. Ultrathin
sections were blocked and incubated with primary antibody
for GFP (Santa Cruz, sc-9996 or Abcam, ab290), for 1 h at
room temperature, and then with secondary antibodies
conjugated to 10- or 15-nm gold particles (BBI Interna-
tional, Cardiff, UK). Images were acquired with a Tecnai 12
electron microscope (FEI, Eindhoven, the Netherlands).
Alternatively, cells were fixed with 2% paraformaldehyde
and 0.2% glutaraldehyde in 0.1 M sodium phosphate buffer,
pH 7.4. After washing in PBS/Glycin 0.02M, cells were
pelleted by centrifugation, embedded in 12% gelatin, cooled
in ice and cut into 5 mm3 blocks. The blocks were infused
overnight with 2.3 M sucrose at 4 °C, frozen in liquid
nitrogen and stored until cryo-ultramicrotomy. Sections of
70 nm were cut with a diamond knife (Diatome) at − 112 °
C using a Leica EM-UC7. Ultrathin sections were picked up
in a mix of 1.8% methyl cellulose and 2.3 M sucrose (1:1)
according to Liou et al. [28], and transferred to formvar
carbon-coated copper grids. Double immunolabeling was
performed using optimal combination of gold particle sizes

and sequence of antibodies. Cryosections were incubated
with rabbit polyclonal antibodies (anti-GFP antibody,
Thermo Fisher Scientific) followed by protein A gold. A
rabbit anti–mouse immunoglobulin antibody was used as a
bridging antibody when monoclonal antibodies were used
(anti-GM130 antibody, Becton dickinson). After labeling,
the sections were treated with 1% glutaraldehyde, counter-
stained with uranylacetate, and embedded in methyl cellu-
lose uranylacetate [29]. Grids were observed on a Tecnai
G2 spirit (FEI) equipped with a 4-k Quemesa CCD camera
(Olympus, Tokyo, Japan).

RNA interference

SMARTpool siGENOME siRNAs for different autophagy-
related genes were obtained from GE Dharmacon (Chicago,
IL, USA). Transfection was conducted in 96-well plates
using the DharmaFECTTM transfection reagent and a final
siRNA concentration of 25 nM following the manufacture’s
protocol. Then cells were subjected to the standard protocol
of redaporfin-PDT or treatment with LTX-401. Six hours
after irradiation or incubation with LTX-401, cells were
fixed and images were acquired as previously described.

Clonogenic assay

U2OS wildtype (WT) and U2OS ATG5−/− stably expres-
sing GFP-LC3 cells were submitted to redaporfin-PDT or
LTX-401 treatment in 96-well plates as previously descri-
bed. Then, cells were detached using 100 µl of trypsin and
5 µl (~ 1000 cells) of each condition were transferred to six-
well plates. Colonies growing from dilutions of cells were
fixed after 7 days in normal culture conditions, by means of
crystal violet staining solution according to standard pro-
cedures before enumeration of colonies using the freely
available software Image J (https://imagej.nih.gov/ij/).

Image and statistical analyses

Image segmentation and analysis were performed with the
MetaXpress® software (Molecular Devices). Co-occurrence
analysis was determined by comparing the common area
between the two target fluorophores with the area likely to
be occupied by both fluorophores. Dead cells and debris
were excluded from the analysis by using R software.
Graphs were built with GraphPad Prism and data are pre-
sented as mean ± SD. Statistical analyses were performed
using one- or two-way ANOVA with GraphPad Prism.
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