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Staphylococcus aureus (S. aureus) is an asymptomatic colonizer of 30% of all human beings. While gener-

ally benign, antibiotic resistance contributes to the success of S. aureus as a human pathogen. Resistance

is rapidly evolved through a wide portfolio of mechanisms including horizontal gene transfer and chromo-

somal mutation. In addition to traditional resistance mechanisms, a special feature of S. aureus pathogene-

sis is its ability to survive on both biotic and abiotic surfaces in the biofilm state. Due to this characteristic,

S. aureus is a leading cause of human infection. Methicillin-resistant S. aureus (MRSA) in particular has

emerged as a widespread cause of both community- and hospital-acquired infections. Currently, MRSA is

responsible for 10-fold more infections than all multi-drug resistant (MDR) Gram-negative pathogens com-

bined. Recently, MRSA was classified by the World Health Organization (WHO) as one of twelve priority

pathogens that threaten human health. In this targeted mini-review, we discuss MRSA biofilm production,

the relationship of biofilm production to antibiotic resistance, and front-line techniques to defeat the

biofilm-resistance system.

I. Introduction

Nosocomial infections are a major global health concern.1–7

While significant progress has been made preventing trans-
mission, on any given day, approximately 5% of patients in
developed countries and 10% of patients in developing coun-
tries will acquire a hospital-associated infection (HAI).8–11

Higher rates of HAI are seen in developing countries due to
limited resources.12,13 Furthermore, HAI rates can rise to
around 50% for patients in intensive care units (ICUs).14

Staphylococcus aureus (S. aureus) is a common cause of
nosocomial infection.15–17 S. aureus is a Gram-positive com-
mensal that persistently colonizes the skin and mucosae of
approximately 30% of the human population.18 Another 60%
of people are transiently colonized.19 While the nose is the
most frequent carriage site, the skin, axillae, perineum, and
pharynx are also common sites of colonization.20

While S. aureus appears as an innocuous commensal, it is
responsible for a major infectious disease burden.18 As an
adaptable pathogen, S. aureus can cause a wide range of ill-
nesses after an open wound or “entry point” is inoculated.21

For example, the most common type of staph infection in
adults is the boil, a pocket of pus that develops in a hair folli-
cle or an oil gland. In children, the most common infection

is impetigo, a highly contagious skin infection that appears
as red sores on the face near the mouth and nose. Other clin-
ical manifestations of staph infection include endocarditis,
osteoarticular infection, pneumonia, toxic shock syndrome,
and prosthetic device and catheter infections.22

Staphylococcal infections occur when host defense mecha-
nisms are low as a result of debilitating illness, open wounds,
or treatment with steroids or other drugs that compromise
immunity (Fig. 1). Indeed, S. aureus infection rates in ICUs
are of particular concern, and the risk of infection increases
with the duration of a patient's stay in these units.14,23,24 This
characteristic of Staphylococcal infections is largely attribut-
able to the fact that S. aureus is an opportunistic pathogen
that possesses an extensive arsenal of virulence factors that
enable the organism to take advantage of a compromised
host.25,26 Moreover, a number of strains possess a battery of
resistance mechanisms against conventional antibiotics.27 To
compound the problem, S. aureus can live in the biofilm
state. Biofilms are organized populations of bacteria encapsu-
lated in a self-produced extracellular polymeric matrix that
adheres to biotic and abiotic surfaces.28,29 Importantly, bio-
films provide protection from antibiotics and the host im-
mune system. Additionally, bacteria in the biofilm state dis-
play increased resistance to stress compared to those in the
planktonic state. Given the ability of biofilms to shield bacte-
ria from harsh host environments, biofilm adds an addi-
tional level of complexity to the problem of antimicrobial
resistance.
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II. Methicillin-resistant S. aureus
(MRSA)

S. aureus is an adaptable organism with the ability to evolve
resistance to an array of antibiotics. Resistance development
and subsequent dissemination are consequences of horizon-
tal gene transfer (HGT), i.e. the lateral movement of genetic
information between organisms. Notably, HGT enables new,
antibiotic-resistant variants to arise without the need for ge-
netic mutation.30–32 This mode of action is often encountered
in hospitals where selective pressure for resistance is en-
hanced. Inevitably, hospital-associated resistant strains enter
and spread throughout the community.

Antibiotic resistance in S. aureus was first observed in the
1940s when infections caused by penicillin-resistant S. aureus
(PRSA) emerged in hospitals.33,34 These strains produce a
plasmid-encoded lactamase (penicillinase) capable of hydro-
lyzing the β-lactam ring of penicillin (1). As this ring is the
antimicrobial warhead of penicillin, its hydrolysis renders
the drug inactive (2) (Fig. 2A). Within a few years after its ap-
pearance in hospitals, PRSA had spread to the community.
By the 1950s and 1960s, penicillin-resistant strains in the
community had reached pandemic levels.33 Today, more than
90% of Staphylococcal isolates produce penicillinase and are
consequently resistant to penicillin.35

In an attempt to combat penicillin resistance, methicillin
(3) was introduced in 1959.33,34 Methicillin features a larger
aryl moiety near the β-lactam ring which reduces its affinity
for Staphylococcal β-lactamases.36 Unfortunately, the first re-
ports of methicillin resistance were observed in 1961, just 2
years after methicillin's introduction. Contrary to penicillin
resistance, methicillin resistance is not a result of drug inacti-
vation, i.e. hydrolysis of the β-lactam ring, but rather a result
of drug target modification (Fig. 2B). Methicillin-resistant S.
aureus (MRSA) strains express an additional penicillin-
binding protein (PBP), known as PBP2a, which has been hy-
pothesized to have originated from Staphylococcus sciuri.36

PBPs are membrane-bound enzymes that catalyze the
cross-linking or transpeptidation reactions that link peptido-
glycan chains in the bacterial cell wall.35 In the absence of re-
sistance mechanisms, β-lactams inhibit the transpeptidase
domain of PBPs. This results in inhibition of the cross-
linking reactions which are integral to formation of a stable
peptidoglycan layer. Without a structurally sound peptidogly-
can layer, bacterial cell walls become weak and lack the abil-
ity to contain the cytoplasmic contents of the cell.36 While
PBP2a shares the structural features associated with penicil-
lin binding that are common to other PBPs, PBP2a has a low
affinity for all β-lactams. Indeed, the PBP2a active site is able
to block the binding of β-lactams while simultaneously
allowing cross-linking to proceed.35 Importantly, while
β-lactamase-mediated resistance is a narrow-spectrum mech-
anism, i.e. only penicillin is inactivated by the enzyme, meth-
icillin resistance due to PBP2a expression is a broad-
spectrum resistance mechanism. All β-lactams, including
penicillins, cephalosporins, and carbapenems, are inactive
against bacterial strains expressing PBP2a.

The inability of β-lactams to combat staph infections has
led to an increased use of vancomycin (4) and the inevitable
evolution of vancomycin-resistant S. aureus (VRSA) strains.37

Similar to methicillin resistance, vancomycin resistant S.

Fig. 2 Mechanisms of Staphylococcus aureus resistance to penicillin
(1), methicillin (3), and vancomycin (4). (A) Penicillin is inactivated by
bacterial β-lactamases that hydrolyze the β-lactam ring, which forms
an inactive penicilloic acid. (B) Resistance to methicillin, a modified-
penicillin scaffold featuring a larger aryl side chain that is resistant to
β-lactamase action, is driven by the expression of the alternative trans-
peptidase, PBP2a, which has a lower affinity for methicillin. Resistance
to vancomycin results from modification of the terminal dipeptide of
cell wall peptidoglycan chains, which reduces the affinity of the dipep-
tide for vancomycin.

Fig. 1 Scanning electron microscope (SEM) image of Staphylococcus
aureus-infected bone (image courtesy of Dr. Jennifer Gaddy at
Vanderbilt University).
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aureus strains derive their resistance from structural modifi-
cation of the target. Modification of the terminal dipeptide of
cell wall peptidoglycan chains from D-alanyl-D-alanine (D-Ala-D-
Ala) to D-alanyl-D-lactate (D-Ala-D-Lac) reduces the affinity of
the dipeptide for vancomycin, thus preventing disruption of
peptidoglycan cross-linking (Fig. 2B).38

Today, MRSA is pandemic. The rise to pandemic status
started with hospital-acquired MRSA clones in the 1960s.
This then fostered community-acquired MRSA clones in the
1990s and finally livestock-associated MRSA clones in the
2000s. The evolution of MRSA from initial reports to wide-
spread dissemination parallels the trajectory of PRSA in the
1940s. Unsurprisingly, MRSA is highly prevalent in hospitals
(Fig. 3). The highest rates of MRSA (>50%) are reported in
North and South America, Asia, and Malta. Intermediate
rates (25–50%) are reported in China, Australia, Africa, and
several European countries [e.g. Portugal (49%), Greece
(40%), Italy (37%) and Romania (34%)]. Most European coun-
tries have low prevalence rates (e.g. Netherlands and
Scandinavia).39–41

III. The biofilm state

Implantable medical devices have revolutionized modern
healthcare. Unfortunately, attachment to indwelling devices
by surface-adhering bacteria increases patient morbidity and
mortality. Biofilms formed by Staphylococci are the most
common cause of biofilm-associated infections with S. aureus
being among the most common cause of device related infec-
tions (DRI).42–44 All implanted medical devices are suscepti-
ble to colonization by Staphylococci. As a result, biofilm-
associated infections have been associated with devices such
as implanted catheters, prosthetic heart valves, cardiac pace-
makers, contact lenses, cerebrospinal fluid shunts, joint re-
placements, and intravascular lines. To exacerbate the prob-
lem, infections associated with biofilms are particularly
difficult to treat as bacteria within the matrix are more resis-
tant to antimicrobial agents and the host immune response
than planktonic bacteria. This increased resistance is attrib-
utable both to the protection afforded by the biofilm matrix
as well as the unique phenotypic characteristics of bacteria
within the matrix.

The first stage of biofilm formation is the attachment of a
bacterial cell to a living (biotic) or non-living (abiotic) surface
(Fig. 4).45 Following attachment, bacteria in the biofilm state
progress through a growth and maturation phase.46 At the
molecular level, the biofilm matrix is composed of an extra-
cellular polymeric substance (EPS) composed primarily of oli-
gosaccharides, DNA, and proteins.47 The primary oligosac-
charide in S. aureus biofilm matrices is a polymer of N-acetyl-
β-(1-6)-glucosamine (polysaccharide intercellular adhesin or
PIA), while the accumulation-associated protein (Aap) is a
common biofilm-associated protein. Teichoic acids are also
common biofilm components. At the end of the biofilm cycle,
cell clusters detach from the larger biofilm structure. Detach-
ment is facilitated by expression of surfactant-like peptides,
which are also critical to biofilm integrity and three-
dimensional structure. Once detached, cell clusters can start
new biofilm colonies on other surfaces.

S. aureus pathogenesis and biofilm development is con-
trolled by cell-to-cell communication using a ubiquitous regu-
latory system called quorum sensing.48–52 During its growth
and maturation phase, S. aureus produces an autoinducing
peptide (AIP) that accumulates in the extracellular environ-
ment. Once AIP levels reach a specific concentration, the sig-
nal binds to a bacterial surface receptor and activates a regu-
latory cascade. The outcome is an increased expression of
invasive factors such as toxins, hemolysins, proteases, and
other tissue-degrading enzymes. Interestingly, these factors
alter the metabolic status of the bacteria which subsequently
changes their biofilm-forming capacity. Unfortunately, the re-
lationship between environmental stress and pathogenesis
remains poorly understood.

IV. Biofilm-mediated antimicrobial
resistance

It has long been recognized that biofilms increase resistance
to antimicrobial action from both external agents, such as
antibiotics, and internal agents of the innate immune sys-
tem, such as antimicrobial peptides (AMPs).53 Broadly speak-
ing, two mechanisms are responsible for biofilm-mediated re-
sistance. The first is prevention of chemotherapeutics from
reaching their target due to limited diffusion or repulsion
caused by the biofilm matrix itself.28,54 The second mecha-
nism involves alteration of the physiology of biofilm-dwelling
bacteria compared to planktonic bacteria.

Fig. 3 Global prevalence of hospital-acquired MRSA. Fig. 4 The biofilm life cycle.
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Cells within the biofilm, particularly those deep within the
matrix, are generally thought to exist in a slow-growing state;
these slow-growing cells are referred to as dormant or per-
sister cells. Persister cells are a small fraction of exponen-
tially growing cells, but are ca. 1% of bacteria in both the sta-
tionary phase and in biofilms. The decreased growth rate of
persister cells can limit the efficacy of antibiotics, especially
those that target active cell processes, without the need for
genetic alteration.55–57 For example, this type of cell would be
immune to β-lactams that target cell wall formation in ac-
tively dividing cells.28,29,54 The ability of dormant cells to sur-
vive numerous rounds of antibiotic treatment also makes
them key contributors to the restoration of biofilm
communities.54

V. Strategies to combat MRSA
biofilms

The development of strategies to prevent, remove, or disperse
biofilms are as critical to treating staph infections as the devel-
opment of new antibiotics.58–63 A frontier approach in the bat-
tle against S. aureus is to develop anti-biofilm strategies that
can be combined with conventional antibiotics as a means to
restore antibiotic efficacy to levels observed when treating
planktonic bacteria. In this section, we will discuss several ap-
proaches used to eradicate MRSA biofilms. These strategies
can be broken down broadly into two categories: prevention of
biofilm formation (antibiotic chemotherapy, anti-adhesive
coatings/surfaces) and elimination of established S. aureus
biofilms.

A. Antibiotic therapy

The best method for treating a biofilm-related infection is by
preventing initial infection altogether. Unfortunately, the fac-
ile evolution of antibiotic resistance by S. aureus poses a sig-
nificant challenge to this approach. Biofilms compound this
issue by significantly increasing antibiotic minimum inhibi-
tory concentrations (MICs) compared to cells in the plank-
tonic state.64 For example, the MIC for vancomycin, the most
commonly administered drug for S. aureus biofilm-associated
infections, is 10-times higher for biofilm-bound cells than for
planktonic, free-floating cells (planktonic cell MIC = ca. 2 μg
ml−1, biofilm bound cell MIC = ca. 20 μg ml−1).65

Despite growing resistance levels, there do exist antibi-
otics, such as daptomycin (5) that are effective at treating
even VRSA biofilm-related infections (Fig. 5). Daptomycin, a
cyclic lipopeptide molecule, is a novel antibiotic that disrupts
the cytoplasmic membrane via rapid depolarization and
interruption of DNA, RNA, and protein synthesis. Impor-
tantly, daptomycin is one of the most effective antibiotics at
clearing S. aureus from an existing biofilm.66 Moreover, be-
cause the mode of action for daptomycin does not require
cells to be in a metabolically active state, it is a particularly
useful agent in the fight against persister cells embedded
deep within the biofilm matrix.

B. Physical methods for biofilm removal

Second to preventing initial infection and, by extension, ini-
tial formation of a biofilm matrix, the next simplest method
to treat an S. aureus biofilm-mediated infection is through
surgical removal of the biofilm abcess.67 Removal can occur
through debridement of wounds or surgical implants. Irriga-
tion and pulsed lavage are also strategies that are commonly
employed. Unfortunately, techniques that apply purely physi-
cal tools have limited success. For example, pulse lavage irri-
gation is ineffective at eliminating S. aureus biofilms present
on indwelling devices.68

C. Attachment prevention

Attachment of bacteria to abiotic surfaces is mediated by a
number of factors such as adhesion surface proteins, fim-
briae or pili, and exopolysaccharides.69,70 Adhesion occurs
most readily on surfaces that are coarse or hydrophobic. As
hospitals are rich with these types of surfaces, hospitals are a
major source of device-associated infections. In a similar
vein, indwelling medical devices often feature coarse or hy-
drophobic surfaces and thus present another potential colo-
nization surface. Due to the prevalence of device-related in-
fections, there has been increased interest in developing anti-
infective strategies to prevent colonization.71–74

While adhesion to abiotic surfaces, such as metal and plas-
tics, proceeds through nonspecific mechanisms, adherence to

Fig. 5 Select antibiofilm small molecules.
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biotic surfaces is dependent on surface proteins that are an-
chored to the cell wall peptidoglycan.75,76 Indeed, cell surface
proteins, which are designed to recognize host surfaces, are
critical for S. aureus adherence to host tissues as well as sub-
sequent tissue colonization and ultimately the survival of
MRSA infections. Surface proteins known to play important
roles in biofilm formation include Bap, clumping factors
(ClfB), FnBPs, SasC, SasG, and protein A. ClfB, FnBPs and pro-
tein A are widely distributed.77–81 To target these proteins,
and thus disrupt attachment, the Clubb group used an array
of small molecules to inhibit MRSA transpeptidase sortase A;
MRSA transpeptidase sortase A is a protein that anchors sur-
face proteins to the cell wall.82,83 In theory, cell surface pro-
teins are a novel therapeutic target to disrupt adhesion or ad-
herence and mitigate biofilm formation.

Whether dealing with biotic or abiotic surfaces, the fron-
tier challenge in attachment prevention methods remains un-
derstanding how bacteria coordinate the expression of differ-
ent effectors and how various surfaces, particularly cellular
surfaces, react to these effectors. If this communication sys-
tem can be deciphered, one can develop strategies to eradi-
cate biofilms by blocking initial adherence of the microbe. In
the proceeding sections, several coatings that prevent bacte-
rial attachment to and growth on surfaces are described.

C1. Small molecules. Aryl rhodanines (6) are 5-membered
ring heterocycles that are known to inhibit biofilm formation
in several Gram-positive models, including Staphylococcal
and Enterococcal species (Fig. 5).84 Aryl rhodanines function
by inhibiting attachment of bacterial cells through a mecha-
nism that likely involves complexation of the rhodanines to
one or more adhesins located on the microbial cell surface.
Interestingly, aryl rhodanines are inactive against Gram-
negative microbes. Importantly, while rhodanines possess
anti-biofilm activity, they do not possess antimicrobial activ-
ity and are not cytotoxic against human cells. From a thera-
peutic perspective, rhodanines have the potential to be im-
portant tools in the battle against MRSA as their lack of
antimicrobial activity reduces selective pressure. In other
words, this class of small molecule is less likely to produce
resistant strains or to induce high levels of biofilm produc-
tion as a means to protect against a strong antimicrobial
substance.

C2. Abiotic surface coating. Catheters coated with tetracy-
clines and ansamycins, both of which are bacteriostatic as
opposed to bactericidal antibiotics, have been shown to de-
crease the frequency of MRSA central line-associated blood-
stream infection (CLABSI) in ICUs.85,86 This result suggests
that alteration of the surface properties of an indwelling de-
vice by coating the surface with bacteriostatic agents can pre-
vent biofilm-associated infections.

A number of metals have also been used to coat abiotic sur-
faces, such as catheters, in an effort to prevent biofilm forma-
tion.87 The most well-known example is silver in the form of el-
emental silver, silver ions, and/or silver nanoparticles.88–90

Silver is effective at preventing biofilm formation against both
Gram-positive and Gram-negative microbes, including MRSA.

Interestingly, although silver coatings are frequently used, the
mechanism of action behind silver-mediated biofilm produc-
tion prevention remains unknown. However, changes to bacte-
rial cell morphology have hinted at several mechanisms. For
example, silver nanoparticles have been shown to attach to the
bacterial membrane and penetrate the cell. After gaining en-
trance, the nanoparticles engage sulfide-containing proteins
and DNA. This resultantly inhibits DNA replication and tran-
scription. Thus, it is thought that silver prevents biofilm pro-
duction by serving as an antimicrobial agent.

While silver-coating is common, there are cytotoxicity con-
cerns with this method. Silver accelerates thrombin forma-
tion and platelet activation which subsequently places pa-
tients at higher risk for thrombosis. To avoid this issue,
stainless steel and titanium have also been used to coat im-
plant materials.91–93 Interestingly, a number of medical de-
vices have also been coated with vancomycin to prevent
MRSA adherence.

D. Treatment or dispersal of established biofilms

D1. Small molecules. Cis-2-Decenoic acid (C2DA, 7) is a
medium-chain fatty acid produced by Pseudomonas aeruginosa
that has been shown not only to possess the ability to disperse
established MRSA biofilms but also to completely inhibit
MRSA biofilm formation (Fig. 5).94,95 In addition to this lipid,
it has been shown that D-amino acids disperse established
biofilms in S. aureus. Incorporation of D-amino acids into the
peptidoglycan layer results in the release of amyloid fibers, a
component of the extracellular matrix that connects cells in
the biofilm matrix.96–99 Kolodkin-Gal demonstrated that
D-amino acids disperse Bacillus subtilis biofilms by affecting
the function of these amyloid fibers.100 Mechanistically, when
noncanonical amino acids are incorporated into the peptido-
glycan layer, they interfere with the normal anchoring that
helps maintain biofilm architecture integrity. Moreover,
D-amino acids compete with canonical amino acids for posi-
tions in the peptidoglycan layer which interferes with trans-
peptidation and transglycosylation. Importantly, this disrup-
tion of bacterial cell wall composition caused by D-amino acid
incorporation interferes with biofilm formation (Fig. 6).

D2. Matrix degrading enzymes. Disruption of biofilm ma-
trix structural integrity is an attractive approach to limit the
protective effects the matrix affords cells enclosed within it.
This method is the reason for the addition of exogenous

Fig. 6 General methods for biofilm dispersal.
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enzymes, such as dispersion B or DNAase, to S. aureus
biofilms.101–104 DNAase works by degrading the extracellular
DNA in the biofilm matrix EPS, while dispersin B targets the
polysaccharide EPS component. As biofilm matrices consist
largely of extracellular DNA and polysaccharides, the actions
of dispersin B and DNase serve to destabilize the matrix. It is
important to note, however, that the use of exogenous en-
zymes like as dispersin B and DNase to disrupt S. aureus bio-
film formation does have its shortcomings. For example, the
susceptibility of S. aureus to dispersin B differs significantly
among strains. Moreover, a number of clinically relevant
MRSA strains produce biofilms that contain little polysaccha-
ride which serves to limit the influence of dispersin B treat-
ment on biofilm production.

D3. Plant-derived natural compounds. Natural products
are critical to the discovery and development of new anti-
infective agents against MRSA.59–62 For example, extracts
from the broths of Krameria, Aesculus hippocastanum, and
Conopodium majus each contains four compounds that have
all been shown to inhibit S. aureus biofilm formation:
chelerythrine (8), dihydroxybenzofuran (9), sanguinarine (10),
and proanthocyanidin (11) (Fig. 5).105 American cranberry ex-
tracts, which contain proanthocyanidins (PAC), have also
been shown to inhibit S. aureus biofilm formation as well as
S. aureus growth.106,107 Moreover, polyphenolic compounds
found in plant tissues, such as tannic acid (12), are known to
inhibit S. aureus biofilm formation (Fig. 5).108,109

Tea-tree oil, an essential oil extracted from the leaves of
Melaleuca alternifolia, eradicates biofilm production by S. au-
reus, including MRSA, by damaging the extracellular ma-
trix.110,111 This damage initiates subsequent removal of the
biofilm from biotic surfaces. Ellagic acid (13) derivatives from
Rubus ulmifolius limit S. aureus biofilm production and also
enhance the susceptibility of S. aureus to the antibiotics
daptomycin, clindamycin, and oxacillin without contaminant
cytotoxicity to mammalian cells (Fig. 5).112,113

Although the agents discussed in the section are effective
at combatting biofilms, their modes of action remain unclear.

Conclusion and future outlook

Rising MRSA infection rates pose a significant threat to hu-
man health. While increasing antibiotic resistance is a well-
appreciated contributing factor, a lesser appreciated but
equally important factor is the ability of S. aureus to form
biofilms. Biofilms serve to protect S. aureus from host de-
fenses and antibiotics alike and are consequently integral to
S. aureus pathogenesis. Indeed, biofilm-dwelling bacteria are
generally able to tolerate much higher antibiotic concentra-
tions than their planktonic counterparts. The increased resis-
tance of biofilm-associated bacteria against antimicrobial ac-
tion is attributable to the physical barrier between bacteria
and antimicrobial afforded by the biofilm matrix as well as
the phenotypic shift bacteria embedded in the matrix un-
dergo. As a result, biofilm-associated infections are notori-
ously difficult to eradicate.

Indicative of the benefit of biofilm production for S. au-
reus survival, most chronic MRSA infections leverage the bio-
film state in their pathogenesis. This is especially true for
those associated with indwelling medical devices. As most
therapeutic strategies are only effective at treating planktonic
cells or acute infections, there is an urgent need to develop
new therapeutic strategies capable of targeting S. aureus in
the biofilm state. Unfortunately, despite much effort, the de-
velopment of useful biofilm inhibitors and/or dispersal
agents for Staphylococcal biofilms is in its infancy. While
many innovative approaches to eradicate S. aureus biofilms
have been achieved over the past two decades such as small
molecules that prevent biofilm formation, enzymes that
weaken biofilm matrix structural integrity, and antibodies
and vaccines that target specific biofilm life cycle stages,
these approaches lack clinical validation.

One potential future source of antibiofilm compounds are
cationic small molecules. Indeed, several recent studies have
showcased the ability of positively-charged molecules to dis-
rupt biofilm matrices and inhibit biofilm formation by a
number of pathogens.114–119 However, the antibiofilm activity
of this class of molecule is generally accompanied by antimi-
crobial activity. Although this may seem beneficial, the anti-
microbial activity is likely to induce selective pressure and
promote the evolution of resistant bacteria. Additionally, care
must be taken with cationic molecules to limit cytotoxicity to
mammalian cells. Given these concerns, identifying cationic
small molecules with exclusive antibiofilm activity represents
an exciting research avenue.

Another approach, one which our lab has begun to investi-
gate, is to use host defense mechanisms as a source of molec-
ular inspiration. We recently demonstrated that human milk
oligosaccharides (HMOs), non-conjugated oligosaccharides
abundant in human milk, modulate growth and biofilm pro-
duction for several bacterial pathogens, including MRSA.120

However, we have yet to identify the mechanism of action be-
hind the antibiofilm activity observed. In a parallel study, we
discovered that conversion of the ubiquitous HMO 2′-
fucosyllactose (2′-FL) to an anomeric, amino-variant gave a
compound with impressive antibiofilm activity against Group
B Streptococcus.121 Once again, the mechanism behind this
antibiofilm activity remains unknown. Thus, future studies
are directed at elucidating a mechanism of action as well as
investigating if this result translates to an S. aureus model.

In addition to these approaches, as previously mentioned,
further elucidation of how bacteria coordinate the expression
of various effectors and how surfaces react with these effec-
tors will be paramount to the development of antibiofilm
compounds. Indeed, a greater understanding of this commu-
nication system has the potential to identify unique bacterial
targets that can be engaged to target biofilm production se-
lectively without accompanying antimicrobial activity.
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