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Abstract

Numerous nascent proteins undergo folding and maturation within the luminal and membrane 

compartments of the endoplasmic reticulum (ER). Despite the presence of various factors in the 

ER that promote protein folding, many proteins fail to properly fold and assemble and are 

subsequently degraded. Regulatory proteins in the ER also undergo degradation in a way that is 

responsive to stimuli or the changing needs of the cell. As in most cellular compartments, the 

ubiquitin-proteasome system (UPS) is responsible for the majority of the degradation at the ER—

in a process termed ER-associated degradation (ERAD). Autophagic processes utilizing ubiquitin-

like protein-conjugating systems also play roles in protein degradation at the ER. The ER is 

continuous with the nuclear envelope (NE), which consists of the outer nuclear membrane (ONM) 

and inner nuclear membrane (INM). While ERAD is known also to occur at the NE, only some of 

the ERAD ubiquitin-ligation pathways function at the INM. Protein degradation machineries in 

the ER/NE target a wide variety of substrates in multiple cellular compartments, including the 

cytoplasm, nucleoplasm, ER lumen, ER membrane, and the NE. Here, we review the protein 

degradation machineries of the ER and NE and the underlying mechanisms dictating recognition 

and processing of substrates by these machineries.
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1. Introduction

The endoplasmic reticulum (ER) is a massive intracellular organelle composed of a 

continuous membrane system that includes the peripheral ER and nuclear membranes. The 

nuclear envelope (NE) is a double lipid bilayer consisting of an outer nuclear membrane 

(ONM) and inner nuclear membrane (INM) that encapsulates the nucleus. While the ONM 

is generally viewed as an extension of the peripheral ER, the INM contains distinct physical 
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characteristics along with a specific subset of membrane-residing proteins, albeit with some 

overlap [1]. The ER has many functions in cellular regulation [2]; perhaps the most 

prominent and conserved role of the ER is as the major site for protein synthesis and 

subsequent maturation of membrane and secreted proteins. Numerous factors present at the 

ER guide the proper folding and modification of nascent proteins [3]; nevertheless, many 

proteins fail to mature properly and need to be extracted from the ER and degraded. 

Additionally, protein levels must be carefully coordinated in response to environmental cues, 

such as nutrient availability and proteotoxic stress. Protein modification by covalent 

ubiquitin addition and subsequent degradation by the proteasome, as well as autophagic 

processes that utilize ubiquitin-like protein (Ubl)-conjugating systems are key to controlling 

protein levels both in the ER and elsewhere in the cell [4].

2. The Ubiquitin-Proteasome System

Protein degradation is a closely regulated process that serves to eliminate short-lived 

regulatory proteins as well as misfolded proteins [5]. Failure to discard misfolded proteins 

often leads to their accumulation as protein aggregates, a common theme in the development 

of many degenerative diseases [6]. The ubiquitin-proteasome system (UPS) is responsible 

for most selective protein degradation in eukaryotes. In this system, proteins are marked for 

proteasomal degradation by the covalent attachment of ubiquitin to a protein, a process 

termed ubiquitylation [7, 8]. Ubiquitylation begins with an ATP-dependent reaction that is 

catalyzed by an E1 ubiquitin-activating enzyme, leading to a high-energy thioester linkage 

between the ubiquitin C-terminus (Gly76) and an active-site cysteine residue of the E1. 

Ubiquitin is then transferred from the E1 to an active-site cysteine of a ubiquitin-conjugating 

(E2) enzyme. Finally, in the most common mechanism, an E3 ubiquitin ligase mediates the 

interaction between the E2~ubiquitin and target protein, stimulating ubiquitin transfer to the 

target protein, usually to a lysine side chain(s) [9]. The E3s are the largest class of enzymes 

in the ubiquitylation cascade, consisting of approximately 100 E3s in budding yeast and at 

least 600 in humans [10, 11]. Consistent with their vast number, the E3s are the primary 

UPS components responsible for substrate recognition and the remarkable specificity 

exhibited by the UPS.

Proteins marked for proteasome-mediated degradation typically contain at least one poly-

ubiquitin chain or multiple mono-ubiquitin additions [12]. Poly-ubiquitin chains are formed 

when the C-terminus of a donor ubiquitin is attached to one of the seven lysine residues (K6, 

K11, K27, K29, K33, K48, and K63) or the alpha-amino group of the first methionine (M1) 

of an acceptor ubiquitin. Ubiquitin modifications are dynamic and can be removed through 

the action of deubiquitylating enzymes (DUBs) [13]. Proteins tagged with ubiquitin, most 

commonly in K48-linked ubiquitin chains, are recognized by the 26S proteasome and 

degraded in an ATP-dependent manner into peptides [14].

3. Protein Degradation at the ER

Due to the massive biosynthetic influx of proteins at the ER, an array of factors at the ER 

promote the proper folding of nascent proteins [3, 15]. Proteins that fail to fold properly or 

to be correctly modified are degraded through a branch of the UPS termed ER-Associated 
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Degradation (ERAD), the process by which proteins are ubiquitylated at the ER membrane 

and subsequently degraded. ERAD has an essential role in eliminating proteins that could 

otherwise prove toxic. These protein quality control substrates include aberrantly folded 

proteins as well as protein complex subunits present in excess of their proper stoichiometry. 

Furthermore, ERAD regulates protein levels in response to cellular demands [16].

In the budding yeast Saccharomyces cerevisiae, there are three ER/NE membrane-resident 

E3 ligases responsible for the majority of the protein degradation initiated at these 

membranes. These include the two canonical ERAD ligase complexes centered on the 

Doa10 and Hrd1 E3s as well as the more recently characterized Asi complex. While Doa10 

and Hrd1 have clear homologs in humans, no human orthologs for any Asi subunits have 

been defined [17, 18]. In addition to the mammalian Doa10 ortholog TEB4 (MARCH6) and 

the mammalian Hrd1 orthologs HRD1 and gp78, E3 ligases involved in mammalian ERAD 

include TRC8, TMEM129, Rfp2, RNF5/RMA1, RNF145, RNF170, and RNF185 [19–25]. 

There are likely additional ER-resident E3 ligases involved in mammalian ERAD that 

remain to be characterized [26]. The ERAD machinery is capable of degrading a diverse 

subset of proteins including those located within the ER lumen, ER membrane, NE, 

cytoplasm, and nucleoplasm. The present review will focus on studies that have illuminated 

our understanding of ERAD in yeast and mammals.

3.1. ERAD-L and the Hrd1 ubiquitin ligase complex

ERAD substrates with degradation signals (degrons) located within the ER lumen are termed 

ERAD-L substrates (Fig. 1). The degradation of these substrates depends on the UPS 

machinery, which resides primarily within the cytoplasm and nucleoplasm. All the major 

ERAD E3 ligases expose their catalytic RING domains on the cytoplasmic or nucleoplasmic 

side of the ER membrane. Therefore, ERAD-L substrates must be recognized within the ER 

lumen and transported across the membrane to undergo ubiquitylation at the ER surface. 

These substrates must then be extracted into the cytosol for proteasome-mediated 

degradation. Collectively, protein transport across the ER membrane and subsequent 

membrane extraction is termed retrotranslocation and will be discussed in Section 6.

In budding yeast, the Hrd1 E3 ligase complex appears to be the only E3 responsible for 

targeting ERAD-L substrates (Fig. 2A). The central component of the Hrd1 complex is 

Hrd1, a protein with eight transmembrane helices (TMs) [27] and a catalytic RING domain 

[28]. The RING interacts with the E2 enzyme Ubc7 to promote substrate ubiquitylation. A 

transmembrane protein, Cue1, helps to tether Ubc7 to the ER membrane and is a Ubc7 

activator [29]. In addition, the Hrd1 complex includes the membrane proteins Der1, Hrd3, 

and Usa1, all of which are involved in the degradation of ERAD-L substrates [30]. Hrd3 

(SEL1L in mammals) is particularly important for the structural integrity of the Hrd1 

complex and when absent, Hrd1 undergoes auto-ubiquitylation and rapid degradation [31]. 

Additionally, Hrd3 directly interacts with the luminal protein Yos9 (OS9 and XTP3-B in 

mammals). Yos9 is a lectin that recognizes misfolded glycosylated proteins in the ER lumen 

and delivers them to the Hrd1 complex through its interactions with Hrd3 [30, 32]. 

Misfolded luminal proteins can also be distinguished independently of N-glycan signals and 
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recruited to the Hrd1 complex by the luminal Hsp70 chaperone Kar2 (BiP or Grp78 in 

mammals) [32].

Usa1 (Herp in mammals) promotes the oligomerization of the Hrd1 complex and mediates 

interactions between Der1 and Hrd1 [32, 33]. Der1 is required specifically for the 

degradation of ERAD-L substrates, yet its exact role remains unclear [32]; it may be 

involved in substrate recognition or the retrotranslocation of ERAD-L substrates (or both) 

[32, 34]. Der1 is the founding member of a group of proteins called Derlins, which are 

catalytically inactive members of the rhomboid protease family [35]. A Der1 paralog, Dfm1, 

is also present in yeast. While Dfm1 probably shares a similar topology with Der1 [36, 37], 

the two yeast Derlins have distinct roles in ERAD. In contrast to Der1, Dfm1 is specifically 

required for the degradation of Hrd1 membrane substrates and probably those of Doa10 as 

well (see Section 3.2) [38]. Both Derlins have been implicated in the retrotranslocation 

process, but for different classes of substrates. The mammalian orthologs of Der1, Derlin-1, 

−2, and −3, have also been implicated in the retrotranslocation of ERAD substrates 

(discussed in Section 6) [35, 39, 40]. In addition to their role in retrotranslocation, the 

Derlins are components of a complex, which includes Sec61α and HRD1, involved in 

degrading specific ER proteins under ER stress conditions in mammalian cells [41, 42]. In a 

pathway termed ER stress-induced pre-emptive quality control (ERpQC), Derlin-1 facilitates 

the re-routing of ER-targeted proteins from the translocation pathway to the cytosol for 

HRD1-mediated degradation, thereby reducing the protein folding load at the ER [41, 42].

The number of mammalian ERAD E3 ligases has expanded significantly relative to yeast. 

The involvement of the various mammalian E3 ligases in the degradation of luminal proteins 

is less defined; however, the major components of the ERAD-L machinery in S. cerevisiae 
are found in mammals and ERAD-L substrates are likely recognized and processed in a 

similar manner in yeast and mammals.

3.2. The ERAD-M and ERAD-C pathways

Other than those that are ERAD-L substrates, integral membrane proteins targeted by ERAD 

are typically categorized into two other subclasses based on the location of their misfolded 

domains or degrons. Membrane proteins containing a degron within their membrane-

spanning region are termed ERAD-M substrates while those containing a degron in the 

cytoplasm or nucleoplasm are termed ERAD-C substrates (Fig. 1). Following their 

ubiquitylation, membrane substrates are retrotranslocated into the cytoplasm or nucleoplasm 

and degraded by the proteasome. The ERAD-C pathway also targets soluble cytoplasmic or 

nuclear proteins; however, soluble ERAD-C substrates do not require retrotranslocation for 

proteasome-mediated degradation.

The yeast Hrd1 complex is also involved in degrading ERAD-M substrates. The components 

of the Hrd1 complex involved in degrading ERAD-M substrates have some distinctions from 

those involved in ERAD-L (Fig. 2A). The core components of the Hrd1 complex – Hrd1, 

Hrd3 and Usa1 – are involved in both ERAD-M and ERAD-L pathways [30, 33]. By 

contrast, recent data suggest Dfm1 is a component of the ERAD-M pathway and not ERAD-

L, which instead requires the Der1 paralog [38]. Yos9, Kar2, and Der1, which have central 
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roles in ERAD-L, are dispensable for ERAD-M, suggesting Hrd1 detects ERAD-M 

substrates by a distinct mechanism.

Yeast Doa10 (degradation of alpha2) was originally identified in a screen for mutants with 

defects in the degradation of a soluble nuclear substrate bearing the Deg1 degron; Deg1 is a 

degron from the transcription factor MATalpha2 [43]. While the first Doa10 substrate 

identified was a soluble substrate, numerous membrane substrates were identified 

subsequently [44–46]. Membrane proteins containing a cytoplasmic degron (ERAD-C) are 

primarily targeted for degradation by the Doa10 complex in S. cerevisiae (Fig. 2B). The 

main component of the Doa10 complex is Doa10, a large E3 ubiquitin ligase with 14 TMs 

and an N-terminal RING domain [43]. Doa10 is conserved throughout eukaryotes and the 

human Doa10 ortholog TEB4/MARCH6 appears to contain a similar membrane topology 

and localization [47, 48].

As noted above, Doa10 functions with two E2s, Ubc6 and Ubc7 [49]; both have mammalian 

orthologs. The Ubc7 ortholog, Ube2g2, associates with TEB4 to promote K48 chain 

formation in vitro [50]. Ubc6 is a tail-anchored membrane protein that contains two 

mammalian orthologs, Ube2j1 and Ube2j2, which were originally thought not to function 

with TEB4 [51]; however, a recent study determined that Ube2j2 works with TEB4 to 

degrade substrates containing the cytosolic CL1 degron, a Doa10-dependent degron in yeast 

[52, 53]. Moreover, depletion of Ube2j2 increases protein levels of another TEB4 substrate, 

squalene monooxygenase (SM), as occurs following proteasomal inhibition or TEB4 

depletion, suggesting Ube2j2 also functions with TEB4 to degrade SM. While depletion of 

the E2 enzyme Ube2D3 was required for complete stabilization of mCherry-CL1 through 

the TEB4 pathway, Ube2D3 depletion did not significantly affect SM protein levels [52]. 

More work is needed to fully understand which E2s operate with TEB4 and how these may 

differ depending on the substrate.

Until recently, Doa10 and Hrd1 were thought to be the only ER-resident E3 ligases 

participating in ERAD in budding yeast; however, recent studies have identified the 

transmembrane Asi complex as part of a previously uncharacterized ERAD pathway 

operating exclusively at the inner membrane of the NE (Fig. 2C) [17, 18]. Because of this 

spatial restriction, it might be useful to call it NE-associated degradation (NEAD). The 

components of the Asi complex were originally identified as amino acid sensor-independent 

(ASI) genes that negatively regulate an amino acid-sensing pathway by degrading the 

transcription factors Stp1 and Stp2 [54, 55]. The Asi complex comprises Asi1, Asi2, and 

Asi3, all integral membrane proteins that localize to the INM [56, 57]. Asi2 has two 

transmembrane segments, while the paralogous Asi1 and Asi3 each have five apparent TMs 

and a C-terminal RING domain [54, 57]. The RING domains interact with the E2s Ubc7, 

Ubc6, and, to a lesser extent, Ubc4 [18]. Notably, deletion of UBC7 only partially blocks the 

degradation of the Asi substrate Erg11, suggesting the Asi complex works with multiple E2 

enzymes [17]. Although Asi2 is required for Erg11 degradation, Asi2 is dispensable for 

other substrates, implying a regulatory or structural role specific to certain substrates [17, 

18]. The Asi complex has no clear mammalian orthologs [17, 18]; however, E3 ligases 

dedicated to maintaining protein quality control at the INM are likely also present in 

mammals.
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3.3. Other ERAD pathways

In addition to the canonical ERAD-L, -C, and -M pathways, recent studies have provided 

insight into more specialized ERAD pathways mediating protein quality control at the ER. 

One of these newly characterized pathways involves the degradation of ribosome-associated 

polypeptide chains at the ER membrane, which has been termed ERAD of ribosome-

associated proteins (ERAD-RA)[58]. ER-targeted polypeptides within stalled ribosome 

complexes are marked for proteasomal degradation by the E3 ligase Ltn1/Rkr1 in budding 

yeast [58]. Ltn1 interacts with ribosomes and has a general role in mediating ribosome-

associated protein quality control [59, 60]. The ERAD-RA pathway is likely conserved 

throughout eukaryotes as the Ltn1 mammalian ortholog Listerin also appears to mediate 

ERAD-RA [61].

ERAD-T (translocon-associated) is another ERAD pathway that mediates the degradation of 

proteins associated with the translocon, which may arise from aberrant interactions as well 

as abnormalities in the translocation process. The Hrd1 complex is capable of targeting 

ERAD-T substrates and likely has a general role in clearing proteins aberrantly associated 

with the translocon [62]. The intramembrane protease Ste24 is also involved in clearing 

proteins that aberrantly interact with and obstruct the translocon due to defects in signal 

recognition particle (SRP)-independent translocation [63]. Ste24 interacts with obstructed 

translocons and cleaves “clogging” substrates, generating fragments that are ultimately 

degraded by the proteasome [63]. Hrd1 and Ste24 might work in separate pathways to 

eliminate translocon-associated substrates with distinct characteristics. Many of the 

molecular mechanisms governing the recognition and processing of ERAD-T substrates 

remain to be determined.

4. Substrate Recognition

A fundamental task of the ERAD machinery is to distinguish its substrates from other 

proteins it will encounter in the cell. Substrates include misfolded proteins as well as 

regulatory proteins whose levels must be tightly controlled. Sequences sufficient to induce 

degradation when appended to normally stable proteins are called degradation signals or 

degrons [14]. Here we discuss general properties of characterized degrons from the different 

ERAD pathways and how they are thought to be recognized.

4.1. Targeting of ERAD-L Substrates

ERAD-L substrates are targeted for degradation through recognition mechanisms that rely 

on protein folding or glycosylation status. N-linked glycosylation is mediated by the 

multimeric oligosaccharyltransferase complex (OST), which attaches a branched glycan 

moiety (Gly3Man9GlcNAc2) onto nascent polypeptides bearing a N-linked glycosylation site 

(N-X-S/T) [64]. N-linked glycans are trimmed by a series of ER-resident glycosidases to 

generate glycan moieties that either promote protein folding or entry into ERAD [65]. Early-

acting glycosidases generate N-linked glycans that promote protein folding through the 

action of lectin chaperones [65]. Conversely, glycoproteins retained in the ER lumen are 

processed by late-acting glycosidases to generate a glycan degradation signal 

(Man7GlcNAc2) [66, 67]. A complex consisting of the mannosidase Htm1 and the protein 
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disulfide isomerase Pdi1 (Htm1-Pdi1) preferentially recognizes misfolded glycoproteins 

containing Man8GlcNAc2 and processes them into Man7GlcNAc2; the latter is recognized 

by the Hrd1 complex through the lectin Yos9 (OS9 and XTP3-B in mammals) [68–70]. 

Binding of Htm1 to Pdi1 is required for Htm1 mannosidase activity, and disruptions of this 

interaction impair ERAD of glycosylated substrates [69, 70]. The mammalian counterpart of 

Htm1, EDEM1, forms a complex with the disulfide reductase ERdj5, and EDEM1–3 

mannosidase activity mediates ERAD of misfolded glycoproteins [71–73]. Most N-linked 

glycan structures found in yeast are also present in mammals [65], suggesting similar 

substrate recognition mechanisms for detecting misfolded glycoproteins.

An early example of an ERAD-L substrate influenced by N-linked glycosylation was a 

mutant form of the vacuolar protease carboxypeptidase Y (CPY*), which fails to fold 

properly in the ER lumen and is subsequently degraded by the Hrd1 pathway [74–76]. CPY* 

contains four N-glycosylation sites, and their glycosylation enhances CPY* degradation 

rates [77]. Like other ERAD-L substrates, CPY* can be degraded independently of N-

glycosylation, albeit more slowly [77]. Yos9 and Hrd3 can both detect CPY* independently 

of N-linked glycosylation [32]. Additionally, the Hsp70 chaperone Kar2 (BiP or Grp78 in 

mammals) also detects misfolded proteins independently of N-linked glycans and is required 

for the degradation of ERAD-L substrates [32, 78, 79]. Kar2 interacts with Yos9/Hrd3 and 

may act to recruit terminally misfolded proteins to the Hrd1 complex for ubiquitylation [32]. 

Genetic analyses had suggested Kar2 works in conjunction with the Hsp40 co-chaperones 

Scj1 and Jem1 [78, 80], but a more recent study determined that Scj1, but not Jem1, is 

required for the degradation of ERAD-L substrates such as CPY* [81]. Interestingly, Scj1 

binds Hrd3; in its absence, CPY* degradation is blocked and the interaction between CPY* 

and Hrd3 is stabilized. Scj1 is not required for substrate recognition and instead could 

mediate substrate release from Hrd3/Kar2 [81]. Der1 is situated near Hrd3 and might 

facilitate substrate delivery and/or Hrd1-mediated retrotranslocation following substrate 

release by Scj1 [82].

O-mannosylation is another post-translational modification that influences protein folding 

and substrate recognition by the ERAD machinery. This type of glycosylation is catalyzed 

by protein O-mannosyltransferases (PMTs), which attach a short oligomannose chain to the 

hydroxyl group of serine or threonine residues [83]. It has been suggested that O-

mannosylation terminates repeated cycles of chaperone-assisted folding, thereby directing 

misfolded proteins to ERAD [84]. O-mannosylation contributes to the degradation of several 

luminal proteins [85–87]; however, it remains unclear how ERAD substrates are targeted for 

O-mannosylation and how the ERAD machinery recognizes these modified substrates. The 

Pmt1-Pmt2 complex interacts with the Hrd1 complex; potentially, O-mannosylation of 

misfolded substrates bound to Hrd3/Kar2 commits them to ERAD instead of refolding [85]. 

A full understanding of the role of O-mannosylation in ER homeostasis and substrate 

recognition by the ERAD machinery will require further investigation.

In summary, ERAD-L substrates are recognized based on the presence of misfolded luminal 

domains and specific glycan signals that are also conserved in mammals [65, 83]. While 

these central recognition features are likely conserved throughout eukaryotes, previous 

studies have suggested additional mechanisms underlying the detection of ERAD-L 
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substrates in mammalian cells [88, 89]. The recognition of misfolded luminal proteins in 

yeast is mediated by components of the Hrd1 complex, including Hrd3, Yos9, Kar2, and 

possibly Der1. Following substrate recognition, ERAD-L substrates must be transported 

from the ER lumen to the cytosolic face of the ER for ubiquitylation. These processes will 

be discussed in Sections 5 (Substrate Ubiquitylation) and 6 (Retrotranslocation).

4.2. ERAD-M Substrates

ERAD-M substrates are targeted for degradation based on the presence of intramembrane 

lesions. ERAD-M degrons appear to be characterized by hydrophilic residues within 

intramembrane regions, whereas degrons immersed in aqueous compartments often contain 

exposed hydrophobic regions as key elements. An early example of an ERAD-M substrate 

was yeast HMG-CoA reductase 2 (Hmg2), a sterol biosynthetic enzyme whose degradation 

is mediated by the Hrd1 pathway in a sterol-dependent manner [90]. The membrane 

accumulation of downstream products of the mevalonate pathway leads to structural changes 

in Hmg2 that promote its recognition by the Hrd1 pathway [91].

Degradation of mammalian Hmg2 (HMGR) is similarly regulated in a sterol-dependent 

manner and apparently by multiple ERAD pathways, including the gp78, TRC8, and TEB4 

pathways [92–94]. Sterol-stimulated degradation of HMGR requires Insig-1 and its paralog 

Insig-2 [95]. Insig1/2 associates with gp78 as well as TRC8 and mediates HMGR 

recruitment through interactions with the sterol-sensing domain of HMGR in the presence of 

sterols [92, 93]. RNF145 is a more recently characterized membrane-residing E3 that is 

involved in sterol-stimulated HMGR degradation and was also found to interact with 

Insig-1/2 [24, 96]. The involvement of additional E3 pathways in HMGR turnover, like 

RNF145, could explain previous results from a study in gp78 (−/−) mouse embryonic 

fibroblasts that argued against gp78 and TRC8 involvement in sterol-stimulated HMGR 

degradation [97]. The yeast ortholog of Insig-1, Nsg1, also binds Hmg2 in a sterol-

dependent manner; however, these interactions block Hmg2 degradation instead of 

enhancing it [98].

Recent evidence suggests ERAD-M substrates can be generated by ER-localized 

intramembrane proteases. Signal peptide peptidase (SPP) is an intramembrane protease 

primarily known for its role in cleaving signal peptides of secreted proteins; however, SPP 

has been implicated in a variety of other processes, including ERAD [99]. SPP interacts with 

Derlin-1 and the E3 TRC8 to form a complex capable of targeting membrane proteins for 

degradation [100, 101]. In the case of the tail-anchored membrane protein heme 

oxygenase-1 (HO-1), SPP cleavage generates HO-1 fragments that are recognized for 

degradation by the TRC8 and TEB4 pathways [52, 101].

The involvement of intramembrane proteases in ERAD is likely conserved throughout 

eukaryotes. For instance, in yeast the intramembrane protease Ypf1 and the Doa10 complex 

mediate the degradation of the zinc transporter Zrt1 [102]. Notably, Dfm1 is required for 

maximal degradation of Zrt1, and human Derlin-1 has been implicated in SPP-mediated 

ERAD [100, 102]. The role of Dfm1 and Derlin-1 in these cases is unclear. The Derlins 

might be required for the retrotranslocation of substrate fragments following intramembrane 

cleavage and ubiquitylation. Alternatively, the Derlins could be required prior to SPP 
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substrate cleavage, as has been suggested for a transmembrane form of XBP1u, a regulator 

of the ER unfolded protein response (UPR) [100]. Overall, these studies suggest 

intramembrane proteases can generate ERAD substrates by disrupting the membrane 

structure or topology of membrane proteins. The mechanisms governing substrate 

recognition by intramembrane proteases as well as the prevalence of intramembrane 

proteases in ERAD are active areas of investigation.

How are intramembrane lesions detected by membrane-resident E3 ligases? Unlike the Hrd1 

ERAD-L pathway, the recognition of ERAD-M substrates does not require the presence of 

the luminal factors Kar2 and Yos9 [32]. Instead, the recognition of ERAD-M substrates is 

likely mediated through the transmembrane domain of Hrd1. Hrd1 contains numerous 

conserved hydrophilic residues within its TMs, and alterations of these residues lead to 

substrate-specific degradation defects in the ERAD-M pathway. This suggests the 

transmembrane segments of Hrd1 itself, rather than an adaptor, may directly bind to ERAD-

M substrates [103].

The Hrd1 complex was thought to be responsible for the ubiquitylation of all ERAD-M 

substrates in yeast. Recent studies, however, suggest both the Doa10 and Asi complexes 

contribute to the degradation of certain ERAD-M substrates [17, 104]. A mutant subunit of 

the translocon, Sec61–2, is an ERAD-M substrate whose degradation is primarily mediated 

by the Hrd1 pathway; however, appending a nuclear localization signal to Sec61–2 results in 

degradation by both the Asi and Hrd1 pathways, suggesting the Asi complex is capable of 

detecting ERAD-M degrons in the INM [17]. The mutant Sec61–2 protein contains a single 

point mutation (G213D) affecting a cytosolic residue near a TM, and it has been suggested 

this point mutation disrupts the TMs within Sec61 to generate an ERAD-M substrate [45, 

78]. It is possible that the Asi and Hrd1 complexes recognize distinct features within Sec61–

2. Another Asi substrate is the transcription factor Stp1, which contains an N-terminal 

degron termed RI that is predicted to form an amphipathic helix [55]. Amphipathic helices 

are a common feature of ERAD-C degrons (see Section 4.3), suggesting the Asi complex 

might also recognize ERAD-C substrates. A more detailed analysis of additional Asi 

degrons is required for understanding the exact degron features recognized by this E3.

4.3. ERAD-C Substrates

Yeast ERAD-C substrates contain degrons exposed to the cytoplasm or nucleoplasm and are 

primarily degraded through the Doa10 pathway. Doa10 localizes throughout the ER 

membrane, including the INM, and the ability of Doa10 to localize to the INM is required 

for efficient degradation of nuclear substrates [105]. The best-studied Doa10-dependent 

degron is Deg1, from the short-lived transcription factor MATalpha2 [43, 106]. Deg1 
includes a predicted amphipathic helix, and mutations on the hydrophobic face of this helix 

strongly impair Doa10-dependent degradation [107, 108]. N-terminal acetylation of Deg1 
was also proposed to be a central feature of its recognition by Doa10 [109], but this result 

could not be reproduced [37].

Additional Doa10-dependent degrons have been identified that share similar characteristics 

to Deg1. The Doa10-dependent CL1 degron is a cytosolic degron also predicted to form an 

amphipathic helix at the C-terminus of proteins bearing this sequence [45, 110]. Similar to 

Mehrtash and Hochstrasser Page 9

Semin Cell Dev Biol. Author manuscript; available in PMC 2019 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Deg1, mutagenesis of CL1 hydrophobic residues impairs proteasomal degradation in yeast 

as well as mammalian cells [52, 111]. Another Doa10-dependent degron is DegAB, which is 

derived from the yeast kinetochore protein Ndc10. DegAB is a nuclear degron consisting of 

two elements, DegA and DegB, both of which are necessary for Doa10-dependent 

degradation [112]. The Doa10 complex most likely recognizes DegA, an element composed 

of two amphipathic helices, while DegB is required at a post-ubiquitylation step, possibly 

the initiation of proteasomal degradation [113].

Characterization of these degrons has revealed common properties of many Doa10-

dependent degrons. In particular, they all contain predicted amphipathic helices, and 

disruptions of the hydrophobic surfaces of these helices impair Doa10-dependent 

degradation. This suggests that exposed hydrophobicity in helical elements is a major 

determinant for Doa10 substrate recognition. The importance of hydrophobicity for substrate 

recognition by the Doa10 pathway was recently validated in an elegant high-throughput 

analysis of unstable reporters [114].

While Doa10 primarily targets ERAD substrates with degrons exposed to the cytoplasm or 

nucleoplasm, Doa10 can also recognize specific ERAD-M substrates [104, 115]. The first 

evidence suggesting Doa10 could target intramembrane degrons came from studies showing 

that the Doa10 cofactor Ubc6 is a short-lived protein and that its C-terminal membrane 

anchor is likely to be part of the relevant degron [46, 116]. Ubc6 is an unusual substrate in 

that it also functions as an E2 enzyme within the Doa10 complex, so it was unclear if Doa10 

could recognize additional ERAD-M degrons. Notably, a recently identified Doa10 

substrate, the tail-anchored membrane protein Sbh2, which is a subunit of the Ssh1 

alternative translocon, was demonstrated to contain an intramembrane degron [104]. Doa10 

also mediates the degradation of several lipid droplet proteins, including Pcg1, through 

recognition of a C-terminal hydrophobic hairpin that mediates association with the 

membrane [115].

The identification of Doa10 substrates containing ERAD-M degrons suggests Doa10 can 

recognize a broader spectrum of substrates than previously thought. While cytosolic and 

membrane degrons are placed into separate categories, it is possible these degrons share 

certain features. It had previously been noted that a Doa10 degron containing an 

amphipathic helix could associate tightly with membranes [117]; it therefore might engage 

Doa10 in a manner similar to the aforementioned ERAD-M substrates. Similarly, the 

amphipathic CL1 degron associates with membranes in mammalian cells and mutations in 

hydrophobic residues that disrupt membrane association also impair degradation [52].

Although several shared characteristics of Doa10-dependent degrons have been defined, it 

remains unclear if Doa10 directly interacts with substrates. Doa10 is a large protein that 

contains 14 TMs, and this membrane topology is highly conserved. It is possible that Doa10 

interacts with substrates through its transmembrane segments, possibly forming an internal 

channel [43], similar to what has been suggested for the E3 ligase Hrd1 [27]. Conserved 

regions within Doa10 that might have a role in substrate recognition include the TEB4-

Doa10 (TD) domain, which includes three TMs, and the highly conserved 16-residue C-

terminal element (CTE) [47, 48].
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Another possibility is that Doa10 substrate recognition is mediated through adaptor proteins, 

such as molecular chaperones. Degradation of several Doa10 substrates requires Hsp40 and 

Hsp70 molecular chaperones [44, 53, 118]. While the Hsp40 co-chaperone Ydj1 is required 

for the degradation of Ste6* and CL1-containing substrates [44, 53], it is dispensable for the 

degradation of DegAB- and Deg1-bearing substrates, which instead require the Hsp40 Sis1 

[118]. It is worth noting that the E3 ligase Ubr1, which contains some substrate overlap with 

Doa10 [115, 119], also requires Ydj1 and Sis1 for the degradation of substrates [120]. A 

recent study showed that Ubr1 concentrates in the nucleus, and the Ubr1 pathway requires 

Ydj1 and the Hsp110 Sse1 for nuclear import of substrates [121]. Sis1 also mediates the 

nuclear import of misfolded proteins, but appears to be required at an additional step 

following nuclear import for the Ubr1 and San1 degradation pathways [121, 122]. Nuclear 

export, in addition to nuclear import, has been shown to be important for the degradation of 

some UPS substrates in yeast and mammals, although no ERAD substrate has been reported 

to require such export [123–125]. It is unlikely that the Doa10 pathway requires chaperones 

solely for nuclear import as Doa10 can target substrates in both the nucleus and cytoplasm 

[105]. These chaperones might be required simply for maintaining substrate solubility, 

which could be necessary for their ubiquitylation by Doa10. It is also possible that these 

chaperones act as adaptor proteins that deliver substrates or mediate their binding to Doa10 

[51, 118, 126].

5. Substrate Ubiquitylation

The ERAD machinery generally ubiquitylates substrates at the cytoplasmic/nuclear face of 

the ER/NE. The primary components catalyzing substrate-specific ubiquitylation are the 

membrane-residing E3 ligases along with their cognate E2 enzymes. Ubiquitin can be 

attached to substrates in a variety of ways, many of which are recognized by the proteasome. 

Attachment of a single ubiquitin (mono-ubiquitylation) to a protein is not usually sufficient 

for recognition by the proteasome and is typically involved in other regulatory processes; 

however, mono-ubiquitylation at multiple sites within a protein can target it for proteasomal 

degradation [127]. More commonly, ubiquitin is attached to proteins in the form of ubiquitin 

chains, which are formed when the C-terminus of a donor ubiquitin (G76) is attached to one 

of the seven lysine side chains (isopeptide linkage) or the alpha-amino group of the first 

methionine of an acceptor ubiquitin. Poly-ubiquitin chains can be homotypic or heterotypic: 

the former is composed of a single linkage type while the latter contains multiple linkage 

types and exhibits a branched topology [127]. E2 enzymes possess specific structural 

properties that dictate the ubiquitin-ubiquitin linkage type [128].

The primary yeast E2 enzymes involved in ERAD are Ubc6 and Ubc7 (with some 

contribution by Ubc1), which have distinct catalytic properties [12]. Ubc7 functions in every 

known ERAD pathway and like its mammalian ortholog, Ube2g2, forms K48-linked chains 

in vitro [129, 130]. These K48-linked chains can be assembled onto the active site cysteine 

of Ube2g2 and transferred to a lysine residue of a substrate en bloc (Fig. 3A) [129]. Ube2g2 

forms dimers in vitro, and this dimerization is required for ERAD in vitro [131]. Yeast two-

hybrid analysis suggests Ubc7 also can form dimers [49].
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Cue1 is a Ubc7 activator that tethers Ubc7 to the yeast ER membrane through interactions 

mediated by a C-terminal Ubc7-Binding Region (U7BR) [132]. Mammalian Ube2g2 is 

recruited to membranes through an analogous binding region, Ube2g2-Binding Region 

(G2BR), which can also be found in the E3 gp78 and the lipid droplet protein AUP1 [133, 

134]. Structural analysis revealed the G2BR of gp78 binds the “backside” of Ube2g2, the 

face of the E2 opposite to its catalytic-site cysteine, and this interaction stimulates Ube2g2 

activity in vitro [135]. Ubc7 interacts with the U7BR domain of Cue1 through a similar 

backside mechanism to stimulate ubiquitin transfer from Ubc7~ubiquitin to free or K48-

linked ubiquitin [136]. Furthermore, the U7BR domain also increases Ubc7 binding to the 

RING domains of Doa10 and Hrd1 [136]. In addition, Cue1 bears a ubiquitin-binding CUE 

domain that preferentially binds K48-ubiquitin chains and promotes Ubc7-mediated K48-

chain formation in vitro [137]. More recent work suggests the CUE domain specifically 

binds the ubiquitin moiety adjacent to the acceptor ubiquitin of a growing chain, which 

aligns Ubc7 with the distal end of the Ub chain and stimulates chain elongation [138]. Thus, 

the CUE domain promotes K48-chain formation and this function is required for the 

degradation of ERAD substrates [137]. While there is no apparent mammalian ortholog of 

Cue1, the E3 gp78 contains a CUE domain that promotes K48-chain formation in vitro 
[131].

The other major ERAD E2, Ubc6, is an integral component of the Doa10 pathway and early 

characterization of the Asi pathway also suggests Ubc6 involvement [17, 18]. Ubc6 and 

Ubc7 are both required for efficient degradation of most Doa10 substrates. This raises the 

question of why these ERAD pathways should require multiple E2s. These E2s have distinct 

catalytic properties. Ubc7 only synthesizes K48-linked chains, but this is not true for Ubc6. 

A stable isotope labeling with amino acids in cell culture (SILAC) experiment showed a 

~40–50% global decrease in K11-chain formation in yeast strains lacking Ubc6 or Doa10 

[12]. The degradation of Ubc6 was also significantly reduced in vivo in a K11R-ubiquitin 

mutant. These data suggest Doa10 acts with Ubc6 to assemble K11 chains [12]. K11 chains 

are rarely longer than dimers in yeast cells [139]; Ubc7 might attach K48 ubiquitin chains to 

Ubc6-catalyzed K11 dimers already linked to a substrate. Interestingly, the prevalence of 

K11 linkages increases in yeast and mammalian cells under ER stress conditions, suggesting 

K11-chain formation is an important component of ERAD [12, 140].

More recent work supports a sequential E2 model (Fig. 3B) based on in vitro ubiquitylation 

analysis with the Doa10 RING domain, Ubc7/Cue1ΔTM, and Ubc6ΔTM. Ubc7 only adds 

K48-chains onto the Doa10 RING domain if the RING is first mono-ubiquitylated by Ubc6 

[141]. This model was also supported in vivo through degradation analysis of Sbh2 and 

Ubc6; attachment of a non-cleavable ubiquitin to the N-terminal of Sbh2 or Ubc6 leads to 

efficient degradation in the presence of Ubc7 alone [141]. These data suggest Ubc6 

functions primarily in “ubiquitin priming,” or the initial ubiquitin attachment to a substrate. 

Interestingly, Ubc6 as well as its mammalian ortholog, Ube2j2, can attach ubiquitin not only 

to lysine amino groups but also to the hydroxyl side chains of serine and threonine residues, 

increasing the number of potential priming sites [141, 142]. E2 association sites within 

Doa10 are unknown, but yeast two-hybrid analysis implies that Ubc6 and Ubc7 function in 

the same Doa10 complex [49]. Finally, since interaction data suggest the Asi complex may 
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also use multiple E2s [17, 18], it is possible that a sequential E2 mechanism might also 

operate in this pathway [141, 143].

6. Retrotranslocation

Nascent protein translocation involves the insertion of integral membrane proteins into the 

ER membrane or the transport of luminal and secretory proteins to the ER lumen [144]. 

Elimination of membrane or luminal proteins by ERAD requires the reverse of this process, 

known as retrotranslocation [145]. The molecular mechanisms regulating this process 

remain obscure. The Sec61 translocon has a protein-conducting channel that provides the 

route for translocation of nascent proteins into the ER, usually cotranslationally, and it has 

been postulated that a protein-conducting channel with similar properties would be required 

for retrotranslocation [144, 146]. Additionally, proteasomes have also been suggested to 

facilitate the retrotranslocation of certain ERAD substrates [147–149]. In this section, we 

discuss current ideas on how the different ERAD pathways might drive substrates through 

the ER membrane back into the cytosol for degradation by the proteasome [145, 150].

6.1. Retrotranslocation of ERAD-L substrates

ERAD-L substrates must be able to dock on the luminal side of the ER membrane, initiate 

movement across the bilayer, and become decorated with the appropriate ubiquitin 

modifications on the cytoplasmic side of the ER for full extraction from the membrane and 

degradation by the proteasome. Probably the most mysterious of these steps has been the 

traversal of the lipid bilayer by an initially at least partially folded and often heavily 

glycosylated soluble protein. Over the years, several proteins have been proposed to serve as 

a retrotranslocation channel for ERAD-L substrates, including the Sec61 translocon, the 

Derlins, and Hrd1 itself [146]. Hrd1 is a promising candidate for this role. First, 

overexpression of Hrd1 bypasses the requirement of other Hrd1 complex membrane 

components, including Hrd3, Usa1, and Der1, for the degradation of ERAD-L substrates 

[151]. Moreover, Hrd1 interacts directly with ERAD-L substrates through its transmembrane 

domain [151, 152]. More recently, CPY* fused with a transmembrane domain (CPY*-TM) 

was reconstituted into proteoliposomes with Hrd1 [153]. Hrd1 alone catalyzes the 

retrotranslocation of CPY*-TM by a mechanism that requires auto-ubiquitylation of specific 

Hrd1 RING residues (Fig. 4A) [153].

A structure for Hrd1-Hrd3 was recently determined by electron cryomicroscopy (cryo-EM) 

methods to an average resolution of ~4 Å [27]. This structure revealed a Hrd1 dimer in 

which each protomer has eight TMs, six of which are arranged to form a pair of symmetry-

related aqueous funnels that are sealed at the end nearer to the luminal side and lined with 

conserved hydrophilic residues [27]. The putative Hrd1 channels may permit entry of 

substrate elements with specific characteristics, such as hydrophilic residues that can 

transiently interact with hydrophilic residues in the transmembrane segments of the channel. 

The function of Hrd1 dimerization is unclear from the structure. ERAD-M substrates might 

enter the Hrd1 channel through a lateral gating mechanism, analogous to the movement of 

integral membrane proteins through the Sec61 lateral gate during protein translocation [27, 

144]. Hrd1 contains conserved residues within its transmembrane domain that are found in 
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the mammalian orthologs of Hrd1 (HRD1 and gp78) and other mammalian E3 ligases, such 

as RNF145 and TRC8, suggesting these membrane-resident E3 ligases could also form 

aqueous channels facilitating substrate retrotranslocation [27].

Additional components of the Hrd1 complex likely contribute to retrotranslocation. For 

instance, the polytopic membrane protein Der1 interacts with Hrd1 through the scaffold 

protein Usa1 [33, 81]. Der1 is required specifically for the degradation of ERAD-L 

substrates and its TMs interact directly with these substrates [32, 82]. Derlins might also be 

involved in mammalian ER retrotranslocation, and this function is likely conserved across 

eukaryotic Derlins, including yeast Der1 and Dfm1 (addressed below in Section 6.2).

6.2. Retrotranslocation of membrane substrates

While recent studies have provided strong support for a model in which Hrd1 acts as a 

retrotranslocation channel, other results involving a chimeric Hrd1 protein suggest 

otherwise, at least for ERAD-M substrates. A chimera composed of the Hrd1 RING domain 

fused to a stable ER membrane protein (Hmg1) undergoes auto-ubiquitylation, membrane 

extraction, and degradation in the absence of Hrd1 [154]. How then is this chimeric protein, 

also referred to as a self-ubiquitylating substrate (SUS), being retrotranslocated in the 

absence of the Hrd1 transmembrane domain? A recent genomic screen revealed that the 

Derlin Dfm1 is required for degradation of SUS [38]. Dfm1 is an integral membrane protein 

that binds the Cdc48 ATPase complex (discussed in Section 6.3) through two C-terminal 

SHP-box motifs [35].

The involvement of Dfm1 in ERAD has been controversial. While some groups could link 

Dfm1 to ERAD [102, 155], others observed no degradation defects in dfm1 null cells [47, 

156]. In their recent study, Neal et. al determined that Dfm1 is required for the 

retrotranslocation of numerous integral membrane substrates, including several Hrd1 

substrates as well as the ERAD-C substrate Ste6* [38]. Dfm1 function requires sequences 

conserved in the rhomboid and pseudorhomboid proteins as well as its SHP-box motifs [35, 

38–40]. Furthermore, Dfm1 is important for Cdc48 association with the membrane, a 

function that was previously attributed to the Cdc48 cofactor Ubx2 [157, 158]. The exact 

mechanism of Dfm1-mediated retrotranslocation is still unclear; however, the Derlins have 

been proposed to aid in the recognition of misfolded substrates as well as promote their 

retrotranslocation through TM unwinding and local membrane thinning [159].

Conflicting results from earlier studies could be explained by the rapid phenotypic reversion 

that dfm1 null cells undergo upon ERAD-M substrate overexpression. Suppression of the 

dfm1 null phenotype occurs by increasing Hrd1 levels through chromosomal duplication, 

which also restores Cdc48 association with the membrane [38]. These results suggest Hrd1 

may not normally be essential for the retrotranslocation of ERAD-M substrates, in contrast 

to ERAD-L substrates (Fig. 4B). Other integral membrane ERAD ligases may also form 

protein-conducting channels that facilitate ER extraction of their respective substrates, as 

previously suggested for Doa10 [43]. Whether Dfm1 is required for the retrotranslocation of 

all integral membrane substrates, including those targeted specifically by the Doa10 and Asi 

degradation pathways, remains to be determined. It is possible that different proteins 

promote retrotranslocation at different stages of the process, particularly for ERAD-L 
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substrates. For instance, a substrate might be transferred between different translocation 

factors or channels may be formed from multiple components.

6.3. The Cdc48/p97 ATPase complex

Cdc48 (p97 or valosin-containing protein (VCP) in mammals) is a homohexameric AAA+ 

ATPase that separates polypeptides from within protein complexes or from membranes. This 

“segregase” activity is required for many cellular processes [160]. Cdc48 and its essential 

co-factors Ufd1 and Npl4 are a central component of the ERAD machinery required for the 

retrotranslocation of many luminal and membrane substrates. Cdc48Ufd1-Npl4 is a cytosolic 

protein complex recruited to the ER membrane for its role in ERAD. This recruitment is 

likely mediated by several receptors in the membrane, including the Ubx2 ER membrane 

protein, which contains an N-terminal ubiquitin-associated (UBA) domain as well as a C-

terminal UBX domain that binds Cdc48 [158]; the Derlin Dfm1 with its Cdc48-binding 

SHP-boxes [38]; and the Hrd1 E3, given that its overexpression promotes Cdc48 membrane 

recruitment, potentially as a result of its auto-ubiquitylation [38, 152].

Recent structural and biochemical analysis using purified components has provided insight 

into some of the mechanistic details of Cdc48 activity. First, Cdc48Ufd1-Npl4 binds 

ubiquitylated substrates at the face of the Cdc48 ring complex containing the Cdc48 N-

terminal domains. Cdc48 ATPase activity appears to drive substrate unfolding, which allows 

passage of the unfolded polypeptide through the Cdc48 central pore [161, 162]. This 

inference was supported by photocrosslinking experiments as well as the use of a Cdc48-

FtsH protease chimera, which led to substrate proteolysis following polypeptide movement 

through the Cdc48 pore. Another Cdc48 cofactor, the deubiquitylating enzyme Otu1, is 

required for substrate release following substrate unfolding and initial polypeptide transfer 

through the Cdc48 pore [162]. Deletion of the OTU1 gene in yeast has no impact on ERAD; 

however, expression of a catalytically inactive Otu1 (C120S) stabilizes Cdc48-dependent 

substrates in vivo, suggesting functional redundancy among DUBs in this pathway [152]. 

Interestingly, the substrate that passed through the Cdc48 pore in the in vitro experiments 

still was conjugated to short ubiquitin oligomers, implying that the ubiquitin moieties were 

also unfolded in order to pass through the narrow pore, which cannot accommodate a folded 

ubiquitin molecule.

Another Cdc48 co-factor, Ufd2, is required for efficient degradation of several ERAD 

substrates [126, 149, 163, 164]. Ufd2 was originally identified as a ubiquitin chain-

elongation enzyme (“E4”); however, a recent study suggests Ufd2 does not efficiently 

elongate ubiquitin chains and instead attaches a single ubiquitin moiety onto proximal 

ubiquitins to form K48-ubiquitin branches [165, 166]. Ufd2 may function following 

substrate release from Cdc48 to increase substrate affinity for the proteasome or the 

proteasome shuttle factors Rad23 and Dsk2 [167]. In yeast, Ufd2 interacts with the C-

terminal tails of Cdc48 near where substrates are released; however, Ufd2 interacts with the 

N-terminal domain of p97 in humans, and it has yet to be determined whether Ufd2 

functions before or after Cdc48/p97 action [168].
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7. Other Ub-dependent degradation processes at the ER and NE

7.1. Autophagy at the ER and NE

Autophagy (macroautophagy) is the engulfment of a small volume of cell contents into a 

double membrane-bounded structure called an autophagosome, which eventually fuses with 

the lysosome (vacuole in yeast) where its contents are degraded by resident hydrolases 

[169]. While this review focuses on protein degradation mediated by the UPS, autophagic 

processes that use ubiquitin-like protein (UBL)-conjugating systems are also significant 

contributors to ER protein degradation, and these autophagic pathways can also specifically 

target ubiquitylated cargos [169]. At the center of autophagy are the UBLs Atg12 and Atg8, 

which have ubiquitin-like folds and are broadly conserved [170]. These UBLs undergo a 

series of reactions analogous to the ubiquitylation cascade to yield, on the one hand, an 

Atg12-Atg5 conjugate and on the other, an Atg8 conjugate to the lipid 

phosphatidylethanolamine (PE) [171]. The Atg12-Atg5 conjugate binds Atg16 to form an 

E3-like complex that stimulates Atg8-PE formation [172]. Atg8-PE conjugates are crucial 

for autophagosome formation [173, 174].

In selective autophagy, autophagy receptors bind both specific cargo and Atg8-PE, thereby 

bringing the cargo into developing autophagosomes [175]. Cargos are often ubiquitylated, 

and the autophagy receptors also have ubiquitin-binding domains. Selective autophagy 

pathways have been characterized for various cellular components, including the ER and 

nucleus, termed “ER-phagy” and “nucleophagy,” respectively [169]. Atg39 and Atg40 are 

yeast autophagy receptors that mediate the degradation of ER and INM components in 

response to nitrogen starvation [176]. Atg39 primarily localizes to the nuclear membrane, 

while Atg40 localizes to the cortical and cytoplasmic ER [176]. FAM134B is the functional 

counterpart of Atg40 in mammalian cells and has been implicated in sensory neuropathy in 

humans [177]. Atg39 does not contain any clear mammalian orthologs; however, 

nucleophagy has been reported in mammalian cells and a functional counterpart of Atg39 is 

likely present [178, 179]. Autophagosomes containing nuclear components have been 

described in mammalian cells encoding mutations in lamin A and emerin [178]. A more 

recent study determined that the nuclear lamina protein lamin B1 is degraded by 

nucleophagy in response to oncogene-induced senescence and other tumorigenic stresses 

[180]. Based on these studies, nucleophagy and ER-phagy represent important degradation 

processes that target ER and nuclear components in response to a variety of cellular stresses; 

however, many of the molecular mechanisms governing these processes have yet to be 

explored in detail.

7.2. Nuclear Pore Complex Quality Control

The ONM and INM fuse at nuclear pore complexes (NPCs). NPCs provide a selectivity 

filter that mediates the exchange of nuclear and cytoplasmic components and imposes a size 

barrier that limits passage of larger macromolecules, including transmembrane proteins with 

large extraluminal domains [1]. Passage of larger molecules requires active transport 

mechanisms mediated by nuclear transport receptors [1, 181]. NPCs are composed of ~30 

different subunits, called nucleoporins (Nups), which are present in multiple copies, creating 

a structure of ~120 MDa in vertebrates [182]. The proper assembly of NPCs is vital for 
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maintaining nuclear integrity and compartmentalization. Defective NPC assembly 

intermediates are recognized and cleared through a quality control mechanism involving the 

ESCRTIII machinery and the AAA+ ATPase Vps4 in budding yeast [183]. These 

misassembled NPCs are sequestered in distinct clusters, which are retained in the mother 

cells following mitosis [183]. Interestingly, perturbations of the nuclear assembly process 

leads to proteasomal degradation of Nup85 in an ESCRTIII/Vps4-dependent manner. It 

remains unclear which E3 pathway(s) targets Nup85 or if other misassembled NPC subunits 

are degraded by proteasomes. Other studies have indicated several additional Nups are 

ubiquitylated in yeast, and Nup96 is degraded by the UPS in a cell cycle-dependent manner 

in mammalian cells [184–186]. Overall, these studies suggest the UPS implements quality 

control mechanisms for misassembled NPC intermediates.

8. Conclusions

ERAD has been investigated for ~30 years, and most of the ERAD machinery has likely 

been identified. Recent studies have improved our understanding of the mechanisms 

underlying ERAD substrate recognition, ubiquitylation, and retrotranslocation. Still, many 

important mechanistic details remain unresolved. One of the most puzzling questions in the 

field has been centered on the retrotranslocation of substrates at the ER. Recent studies have 

provided insight into the components involved in retrotranslocation and have also suggested 

retrotranslocation can be achieved through multiple avenues. One of these is mediated by the 

membrane-resident E3 ligase Hrd1, which appears to form a protein-conducting channel. 

Additional ERAD E3 ligases may well also mediate the retrotranslocation of their respective 

substrates and might also form protein channels in the ER membrane. Many aspects of how 

the ERAD E3 ligases interact with their cognate E2 enzymes remain to be clarified; the 

same is true for understanding the mechanism and significance of different ubiquitin chain 

linkages in the degradation of ERAD substrates. The involvement of molecular chaperones 

in substrate recognition as well as the mechanisms enabling ERAD E3 ligases to recognize 

such a remarkably diverse array of substrates will require considerable additional 

investigation. With the help of recent advances in structural biology, most notably high-

resolution cryo-EM methods, and the development of other novel approaches, future studies 

will undoubtedly provide many insights into these fundamental ERAD mechanisms in the 

coming years.
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Figure 1. ERAD substrate classes.
Proteins targeted by ERAD are classified into three substrate classes based on the location of 

their misfolded domains or degrons (designated by an orange star). The different substrate 

classes bear degrons located in the ER lumen (ERAD-L), ER membrane (ERAD-M), or 

cytoplasm/nucleoplasm (ERAD-C). ERAD-L and ERAD-C substrates include integral 

membrane proteins as well as soluble proteins that are targeted for degradation at the ER 

membrane.

Mehrtash and Hochstrasser Page 27

Semin Cell Dev Biol. Author manuscript; available in PMC 2019 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mehrtash and Hochstrasser Page 28

Semin Cell Dev Biol. Author manuscript; available in PMC 2019 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. The three known ER/NE-resident ERAD E3 ligases in S. cerevisiae.
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(A) The Hrd1 complex. The Hrd1 complex resides in the ER but is limited in its ability to 

reach the inner nuclear membrane (INM); it is capable of targeting both ERAD-L and 

ERAD-M substrates. The components of the Hrd1 complex involved in degrading ERAD-M 

and ERAD-L have some distinctions. The core components of the Hrd1 complex – Hrd1p, 

Hrd3 and Usa1 – are involved in both ERAD-M and ERAD-L pathways. Hrd1 functions 

primarily with the E2 enzyme Ubc7, which is activated and recruited to the ER membrane 

by the cofactor Cue1. Hrd3 is important for the structural integrity of the Hrd1 complex and 

substrate recruitment, while Usa1 promotes Hrd1 oligomerization. The degradation of 

ERAD-L substrates (left panel) requires the luminal components Yos9, Kar2, and Scj1 as 

well as the Derlin Der1. The luminal components and Der1 are dispensable for targeting of 

ERAD-M substrates (right panel) by the Hrd1 complex, which instead requires the Derlin 

Dfm1. Ubx2 or Dfm1 recruits Cdc48 and its associated cofactors Ufd1 and Npl4 to the ER 

membrane. The Cdc48 ATPase complex mediates the extraction of Hrd1 substrates into the 

cytosol prior to proteasomal degradation. (B) The Doa10 complex. The Doa10 complex 

localizes throughout the ER, including the INM. It primarily targets ERAD-C substrates, 

although a few ERAD-M substrates have been characterized. Doa10 function usually 

requires the presence of two E2 enzymes, Ubc6 and Ubc7. The Cdc48 ATPase complex 

contributes to the extraction of Doa10 membrane substrates into the cytosol for proteasomal 

degradation. The Derlin Dfm1 might also be required for the extraction of Doa10 membrane 

substrates. (C) The Asi complex. The Asi complex resides in the INM. Substrate features 

recognized by the Asi complex are less defined, but the complex might target both ERAD-C 

and ERAD-M substrates. Asi1 and Asi3 are essential components of the Asi complex while 

Asi2 is only required for the degradation of certain substrates. The Asi complex functions 

with the Ubc7 E2, and early characterization also suggests Ubc6 and Ubc4 involvement (not 

shown). The Cdc48 ATPase complex (not shown) is required for the extraction of Asi 

membrane substrates, but it is unclear if Ubx2 or Dfm1 is also required for this process.
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Figure 3. Models for ERAD substrate ubiquitylation.
(A) Substrate ubiquitylation by Ubc7 and Hrd1. Ubc7 is thought to assemble K48-linked 

chains onto its active site cysteine residue, followed by en bloc chain transfer to a lysine 

residue of a substrate. Stepwise ubiquitin chain assembly on the substrate could also occur. 

(B) Sequential ubiquitylation mechanism by Ubc6 and Ubc7 in the Doa10 pathway. 
These E2 enzymes might target substrates by a sequential E2 mechanism, where Ubc6 and 

Ubc7 function at distinct steps. (I) In the first step, Ubc6 attaches a single ubiquitin molecule 

to a lysine, serine, or threonine residue of a substrate in a process called ubiquitin priming. 

Ubc6 is capable of forming K11-linked chains, and ubiquitin priming might involve the 

attachment of short K11-linked chains. (II) After substrates are modified with either a single 

ubiquitin or short K11-linked chain, Ubc7 transfers ubiquitin molecules stepwise or K48-

linked chains en bloc to the initial ubiquitin (shown here).
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Figure 4. Hrd1 retrotranslocation models.
(A) Retrotranslocation of ERAD-L substrates. (I) After an ERAD-L substrate is 

recognized by the Hrd1 complex, Hrd1 undergoes auto-ubiquitylation at specific RING 

residues. (II) Hrd1 auto-ubiquitylation promotes the movement of the substrate through the 

Hrd1 protein channel. (III) Hrd1 ubiquitylates the substrate on a cytosolically exposed 

region. (IV) At the final step of retrotranslocation, the Cdc48 ATPase complex is recruited to 

the ubiquitylated substrate and mediates substrate extraction into the cytosol, allowing for 

proteasomal degradation. Proteasomes may in some cases directly mediate substrate 

extraction. (B) Retrotranslocation of ERAD-M substrates. (I) Dfm1 can mediate the 

retrotranslocation of membrane proteins in the absence of Hrd1. Following E3-mediated 

ubiquitylation, Dfm1 recruits the Cdc48 ATPase complex to the ER membrane and 

facilitates the retrotranslocation of membrane proteins. (II) Alternatively, Hrd1 might also 

facilitate retrotranslocation of certain membrane proteins in the absence of Dfm1. Hrd1 

auto-ubiquitylation probably recruits the Cdc48 complex to the ER membrane for ER 

extraction. The Cdc48 cofactor Ubx2 (not shown) is dispensable for the retrotranslocation of 
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ERAD-M substrates in the absence of Dfm1. Other membrane-resident ERAD E3 ligases, 

such as Doa10, might also directly mediate retrotranslocation of their respective substrates.
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