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Role of the small GTPase Rap1 in signal transduction, cell dynamics and bacterial
infection
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ABSTRACT
Rap1 belongs to the Ras family of small GTPases, which are involved in a multitude of cellular signal
transduction pathways and have extensively been linked to cancer biogenesis and metastasis. The
small GTPase is activated in response to various extracellular and intracellular cues. Rap1 has
conserved functions in Dictyostelium discoideum amoeba and mammalian cells, which are important
for cell polarity, substrate and cell-cell adhesion and other processes that involve the regulation of
cytoskeletal dynamics. Moreover, our recent study has shown that Rap1 is required for
the formation of the replication-permissive vacuole of an intracellular bacterial pathogen. Here we
review the function and regulation of Rap1 in these distinct processes, and we discuss the
underlying signal transduction pathways.
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A conserved role for Rap1 in essential cell
processes

Small GTPases represent molecular switches that control
essential cellular processes such as signal transduction, cell
adhesion, chemotaxis andmotility, cell growth and division,
membrane dynamics and vesicle trafficking, as well as inter-
actions with pathogens. To this end, the small GTPases cycle
between an inactive GDP-bound and an active GTP-bound
state. The switch between these states is tightly controlled by
cognate guanine nucleotide exchange factors (GEFs) and
GTPase activating proteins (GAPs). GEFs facilitate the
release of the bound nucleotide and allow the more abun-
dant GTP to rebind, whereas GAPs stimulate the low intrin-
sic GTPase activity to stimulate the hydrolysis of the bound
GTP to complete the cycle.1

Rap1 belongs to the Ras superfamily of small
GTPases.2 The switch between its GDP-bound and
GTP-bound form is controlled by several specific GEFs
and GAPs.3 Rap1 is conserved in mammalian cells as
well as in the haploid social soil amoeba Dictyostelium
discoideum.4,5 In mammalian cells Rap1 plays a pivotal
role for cell growth, proliferation and survival.5,6 In Dic-
tyostelium antisense rapA RNA induction leads to a
gradually decreased growth rate and cell viability, and in
particular, Rap1-depleted amoeba show a reduced viabil-
ity in response to osmotic stress.7,8 Rap1 is likely

essential for the amoeba, as attempts at generating the
corresponding null mutant strain were unsuccessful.
Despite extensive studies in various biologic systems, the
Rap1 signaling pathways regulating these important pro-
cesses are still not completely identified and character-
ized.9 Dictyostelium is an excellent model for studying
Rap1-dependent processes, because of its genetic tracta-
bility, as well as the evolutionary conservation of the Rap
protein and the downstream signaling pathways that
govern cytoskeletal rearrangements. Here we highlight
recent findings in Dictyostelium and mammalian cells
that implicate Rap1 in the regulation of cytokinesis, cell
adhesion, chemotaxis, and pathogen vacuole formation.

Rap1 governs cell adhesion and phagocytosis

Rap1 has been intricately linked to pathways regulating
cell adhesion. In mammalian cells activation of Rap1 is
triggered by adhesion molecules, cytokines, growth fac-
tors like tumor necrosis factor a (TNFa) and interferon
g (IFNg), or second messengers that are coupled to
GEFs.5,10 During phagocytosis, Rap1 (and also the small
GTPase Ras) is activated by diacylglycerol, which recruits
the Rap1/Ras GEF RasGRP3.11 Rap1 controls cell adhe-
sion dynamics and phagocytosis, especially by mediating
the functions of integrins and cadherins.12,13 In this
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pathway Rap1 acts upstream of the integrin-associated
factor talin, and controls the recruitment of the cytoskel-
etal protein to sites of particle binding and phagocyto-
sis.14 The activation of Rap1 indirectly activates talin, as
active Rap at the cell membrane recruits the scaffold pro-
tein RIAM (Rap1-GTP-interacting adaptor molecule),
which subsequently binds talin and stimulates integrin
activation and formation of adhesion complexes.15,16

Rap1 is also essential for cell adhesion in Dictyostelium
(Fig. 1).8,17 The GEF GbpD is primarily responsible for
activation of Rap1 during substrate attachment.18,19 Active
Rap1 mediates cell adhesion via the Ser/Thr kinase Phg2
and talin. Interestingly, in addition to indirectly regulating
talin function, Dictyostelium Rap1 also directly binds and
activates the cytoskeletal protein. Recent data from our
laboratory revealed that the direct interaction of active

Figure 1. Role of the small GTPase Rap1 in signal transduction, cell dynamics and bacterial infection. Rap1 is activated in response to
various extracellular and intracellular stimuli. During substrate attachment and cytokinesis, Rap1 is primarily activated by the GEFs
GbpD and GefQ, respectively. In the course of chemotaxis, the Ga2-stimulated RapGEF GflB determines the balance between Rap1 and
Ras activation at the leading edge of Dictyostelium cells. Other GEFs transducing the signals to Rap1 remain to be identified. Activated
Rap1 is a major regulator of cytoskeletal dynamics and stimulates cellular adhesion, actin filament formation and myosin disassembly
via the indicated pathways. Together, these cytoskeleton rearrangements are key for cytokinesis, adhesion, pathogen vacuole formation,
phagocytosis and chemotaxis.
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Dictyostelium Rap1 with the RA domain of talin provides
additional strength, which is essential for processes
demanding high adhesive forces, such as morphogenesis.17

A direct interaction between Rap1 and talin has also been
reported in mice;20 however, the biologic significance of
this interaction is not clear.

Rap1 coordinates cytoskeletal rearrangements
during cytokinesis and chemotaxis

In Dictyostelium Rap1 functions as a general regulator 
of cytoskeletal dynamics (Fig. 1). To regulate the
cytoskeletal dynamics during cell division, Rap1 is uni-  
formly activated in the cell cortex during the early stages
of cytokinesis. 8 In contrast, at the final stages of the
process, the small GTPase is restricted to the cell poles.
GefQ appears to be important for regulating Rap1 acti-
vation during cytokinesis. 8 Furthermore, a recent study
suggests that also RapGAP9 is crucial for Rap-mediated
cytokinesis progression. 21 Decreased  or increased Rap1 
activation impairs the growth rate and cytoskeletal
dynamics. Thus, Dictyostelium Rap1 drives cytokinesis
progression, likely by coordinating the major cytoske-
letal components, microtubules, actin and myosin II.

8

Similar to Dictyostelium, levels of Rap1 activation are
tightly controlled during cell division in Hela cells.22

Furthermore, hyper-activation of Rap1 in various human
cell lines and Drosophila 
defects.23,24 Together, this strongly suggests a conserved
and essential role for Rap in the regulation of cyto-
kinesis.

Rap1 and Ras also regulate the balance between
F-actin and myosin dynamics during chemotaxis of Dic-
tyostelium amoeba and mammalian leukocytes
(Fig. 1).25,26 In response to the chemoattractant cAMP,
both Rap1 and Ras are rapidly activated at the leading
edge of migrating Dictyostelium.4,27,28 The Ga 2222-stimu-
lated RapGEF, GflB, is an important regulator of the bal-
ance between Rap1 and Ras activation during
chemotaxis.29 In addition, Rap1 activity at the leading
edge is regulated by an unknown GEF that acts down-
stream of active Ras.30 Rap1 and Ras can activate the
Rac, PI3K and TORC2 pathways, which subsequently
results in actin polymerization and pseudopod extension
from the front of the cell28,31-40 (Fig. 1). Simultaneously,
Rap1 inhibits myosin assembly at the leading edge
through activation of its effector Phg2, while low levels
of active Rap1 at the side and back of the cell allow myo-
sin filament formation.25,26 Taken together, the spatial
and temporal Rap1- and Ras-mediated control of actin
and myosin rearrangement is essential for proper
chemotaxis.41

Rap1 localizes to the Legionella pathogen vacuole
and controls infection

Pathogenic bacteria intimately interact with eukaryotic
host cells to subvert immune functions and create a repli-
cation-permissive niche. Legionella pneumophila is an
environmental Gram-negative bacterium, which can cause
a severe pneumonia termed “Legionnaires’ disease”.42 The
facultative intracellular pathogen uses a seemingly con-
served mechanism to replicate in environmental protozoa
or immune system phagocytes within a unique
membrane-bound compartment, the Legionella-contain-
ing-vacuole (LCV).43 Host cells of L. pneumophila include
free-living amoeba such as Acanthamoeba or Dictyoste-
lium spp. as well as mammalian macrophages.

LCV formation requires the bacterial Icm/Dot (intra-
cellular multiplication/defective organelle trafficking)
type IV secretion system (T4SS), which translocates
approximately 300 (!) different “effector proteins” into
host cells, where they modulate specific components of
the machineries catalyzing transcription, translation, sig-
nal transduction or vesicle trafficking.44-46 Some of these
effectors target phosphoinositide lipids,47 the retromer
complex,48 or small GTPases of the Arf,49 50,51

or Ran family.52,53 LCVs avoid fusion with lysosomes,
but extensively communicate with the host endosomal,
secretory and retrograde trafficking path-ways, as well
as with the endoplasmic reticulum (ER).44,54,55

Intact LCVs can be isolated and purified by a 2-step
procedure, including an immuno-affinity purification
step and density gradient separation.56,57 To this end, the
distinct and specific LCV localization of the Icm/Dot-
secreted effector protein SidC is exploited.58-60 Upon
treatment with an anti-SidC antibody and a secondary
antibody coupled to magnetic microbeads, LCVs are
retained in a magnetic field, washed, eluted and further
enriched by Histodenz density gradient centrifugation.
Using this protocol, pathogen vacuoles harboring
L. pneumophila have been isolated from Dictyostelium,61

murine RAW 264.7 macrophages,62 and bone marrow-
derived macrophages (BMM) of infection-permissive
A/J mice.63 Proteomics analysis of these LCVs revealed
more than 1150 host cell factors,64 including 13 Rab
GTPases, Ran and Rap1.61,62 The localization to the LCV
membrane and impact on intracellular growth of
L. pneumophila of some of the Rab GTPases, as well as
of Ran and Rap1, was validated by fluorescence micros-
copy and RNA interference, respectively.52,62,65

The presence of active Rap1 on LCVs was recently
found to correlate with intracellular replication of
L. pneumophila65 (Fig. 1). In a comparative proteomics
approach the proteome of isolated pathogen vacuoles
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from Dictyostelium amoeba or RAW 264.7 macrophages
infected with either the parental L. pneumophila strain
Lp02 or the “pentuple” mutant (“Dpentuple”) was deter-
mined. The Dpentuple strain, which lacks 5 gene clusters
comprising ca. 13% of the genome and at least 31% of
the effector proteins, is defective for intracellular replica-
tion in Acanthamoeba and Dictyostelium, but grows in
BMM derived from the A/J mouse strain.66 In the com-
parative proteomics study, Rap1 was identified on Dic-
tyostelium LCVs containing the parental strain Lp02 but
not the Dpentuple mutant and on macrophage LCVs
containing either strain.65 The localization pattern of
active Rap1 was validated by fluorescence microscopy
and quantitative imaging flow cytometry using Dictyoste-
lium strains producing GFP-Rap1,8,67 or the Rap1-GTP
probe RalGDSRBD-GFP.

26,67 In these experiments, GTP-
bound Rap1 preferentially localized to LCVs harbouring
strain Lp02 rather than to vacuoles containing Dpentuple
mutant bacteria. Therefore, the accumulation of active
Rap1 correlates with the formation of a replication-per-
missive pathogen vacuole. In agreement with this notion,
the depletion of Rap1 by RNA interference reduced
intracellular growth of L. pneumophila. In summary,
Rap1 was found to represent a novel LCV host compo-
nent that localizes preferentially to replication-permis-
sive pathogen compartments and is implicated in
intracellular bacterial replication (Fig. 1).65

Strikingly, the LCV localization pattern of a down-
stream target of Rap1, integrin-associated talin, mirrored
that of the small GTPase. In Dictyostelium talin was
exclusively identified in the Lp02 LCV proteome and not
in the Dpentuple LCV proteome, whereas in macro-
phages talin was present in both proteomes. Taken
together, the accumulation of Rap1 and talin on LCVs
correlates with intracellular replication of L. pneumo-
phila, and thus, the 2 host factors likely interact with
each other not only during phagocytosis, but also in the
context of bacterial infection and pathogen vacuole
formation.

Concluding remarks

Rap1 is conserved in Dictyostelium amoeba as well as
in mammalian cells, and its activation is regulated by vari-
ous extracellular and intracellular stimuli. Rap1 func-
tions mainly in controlling cytoskeleton rearrangements;
it stimulates cellular adhesion, actin filament formation,
and myosin disassembly. Rap1-mediated pathways are
crucial for pleiotropic cellular processes, including cell
adhesion, chemotaxis and motility, cell growth and divi-
sion, membrane dynamics and vesicle trafficking. More-
over, our recent study has shown that the small GTPase
is also required for pathogen vacuole formation and

intracellular replication of a bacterial pathogen in Dic-
tyostelium and macrophages.

Abbreviations

ER endoplasmic reticulum
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