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ABSTRACT
Although biosynthetic trafficking can function constitutively, it also functions specifically for certain
developmental processes. These processes require either a large increase to biosynthesis or the
biosynthesis and targeted trafficking of specific players. We review the conserved molecular
mechanisms that direct biosynthetic trafficking, and discuss how their genetic disruption affects
animal development. Specifically, we consider Arf small G proteins, such as Arf1 and Sar1, and their
coat effectors, COPI and COPII, and how these proteins promote biosynthetic trafficking for
cleavage of the Drosophila embryo, the growth of neuronal dendrites and synapses, extracellular
matrix secretion for bone development, lumen development in epithelial tubes, notochord and
neural tube development, and ciliogenesis. Specific need for the biosynthetic trafficking system is
also evident from conserved CrebA/Creb3-like transcription factors increasing the expression of
secretory machinery during several of these developmental processes. Moreover, dysfunctional
trafficking leads to a range of developmental syndromes.
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Introduction

Biosynthetic trafficking builds and renews all cells. This
general role can be viewed as constitutive. However, cer-
tain developmental processes require specific responses of
the secretory system. For example, a particular develop-
mental process may require a significant increase to total
secretory output, as is the case when the Drosophila
embryo increases its plasma membrane (PM) content by
»25-fold in a few hours,1 or when the vertebrate embryo
produces and secretes huge amounts of extracellular
matrix (ECM) for bone development.2 Alternately, the
development of polarized cells requires specific proteins to
enter the biosynthetic trafficking system and then be tar-
geted to PM sub-domains.3 Here, we review developmen-
tal processes with specific dependencies on biosynthetic
trafficking and the molecular mechanisms involved. We
focus on the Arf family of small G proteins, their upstream
regulators and their downstream effectors. Implications for
developmental diseases and disorders are also highlighted.

An overview of biosynthetic trafficking and its
regulation by Arf family small G proteins

The biosynthetic pathway involves a complex network of
membrane bound organelles that deliver macromolecules

to the PM and extracellular space (Fig. 1A). The endo-
plasmic reticulum (ER) is an extensive, partially tubu-
lated membrane network that is continuous with the
outer nuclear membrane and spans a large volume of
the cytosol.4 Newly synthesized proteins translocate from
ribosomes into the lumen of the ER, a process coordi-
nated with protein folding and membrane integration.5,6

From the ER, proteins are trafficked to the Golgi appara-
tus. The Golgi is a system of membrane compartments
arranged in flattened stacks referred to as cisternae, with
cis cisterna engaged in ER trafficking and trans cisterna
directing transport toward the PM.7-9

Trafficking at the ER and Golgi is regulated by the
Arf family of small G proteins. Anterograde vesicle
transport from the ER to the Golgi is regulated by
family member Sar1.10,11 Sar1 organizes COPII coated
vesicles for budding of cargo from ER exit sites.9,12

Sar1 is activated at ER membranes by its guanine
nucleotide exchange factor (GEF) Sec 12. Sar1-GTP
then recruits the cargo adaptor complex of Sec 23
and Sec 24, which recruits the COPII coat compo-
nents Sec 13 and Sec 31. Sec 23 is also a GAP for
Sar1. In a negative feedback loop, coat assembly indu-
ces Sec 23 activity leading to Sar1 GTP hydrolysis and
coat disassembly.
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Outward material flow is, in part, counterbalanced by
retrograde transport within Golgi stacks and from the
Golgi to the ER. This retrograde transport retrieves
transport machinery for re-use. The COPI coat mediates
the budding events involved and also contains adaptor
proteins for recruiting cargo.9 COPI is recruited to Golgi
membranes by the small G proteins Arf1, Arf4, or Arf5.
At the Golgi, the Arf GEFs GBF1 and BIG1/2 activate
Arf small G proteins and interact with COPI subunits
and cargoes. Similar to the regulation of COPII coats,
Arf GAPs induce the GTP hydrolysis of Arfs for COPI
coat disassembly and recycling.10,11,13

For trafficking to the PM, cargo-ladened vesicles exit
the Golgi from the trans Golgi network (TGN), a
dynamic membrane compartment associated with multi-
ple clathrin adaptors responsible for the sorting of car-
goes into secretory vesicles destined for endosomes and
the PM.8 Various classes of adaptors are found at the
TGN, including the AP1 family, the GGA family, Epsin
related proteins, and the exomer complex.8 Under the
regulation of different small G proteins from the Arf and
Rab families, including Arf1, Arf4, Arf-like-1 (Arl-1),
Rab6, and Rab8, adaptors connect cargo proteins to cla-
thrin coated pits that bud from the Golgi.10,11,14

Membrane supply for cleavage of the Drosophila
embryo

The early Drosophila embryo develops as a syncy-
tium.1,15,16 After 9 nuclear divisions at the center of the
embryo, nuclei move to the embryo periphery and con-
tinue their synchronous nuclear divisions without cell
division. At the periphery, the nuclear divisions become
coordinated with phases of PM growth. From interphase
to metaphase, partial cleavage furrows ingress around
each nuclear compartment, providing anchorage for
mitotic spindles and preventing the collision of neigh-
boring spindles. From metaphase to telophase, the fur-
rows regress, and for the next cycle, new furrows form
around each daughter nuclei. This synchronized growth
and dissolution of PM furrows occurs through cycles
10–13. At cycle 14, furrow ingression is dramatically
increased and not reversed. Instead, the furrows become
the lateral and basal PM of »6000 columnar cells. These
PM growth periods increase total PM area by »25-fold
to form the blastoderm (Fig. 1B).

Exocytic trafficking is a major contributor to the
inward PM growth of cleavage furrows. Although not
cellularized, each nucleus of the syncytial embryo

Figure 1. Roles of biosynthetic trafficking for animal development. (A) The biosynthetic secretory pathway and its molecular regulators.
The Sar1 small G protein promotes anterograde traffic from the endoplasmic reticulum (ER) by promoting the assembly of COPII-coated
vesicles. At the Golgi, Arf1, Arf4, and Arf5 regulate retrograde COPI vesicle trafficking. At the trans Golgi network (TGN), Arfs assemble
clathrin-coated vesicles to deliver biomolecules to endosomal compartments and the plasma membrane (PM). (B) Developmental pro-
cesses under high secretory demand. Left, delivery of membrane to cleavage furrows promotes their ingression for embryo cleavage.
Middle, PM growth promotes dendritic growth and arborisation. Right, secretion of ECM promotes bone development. (C) Developmen-
tal processes regulated by biosynthetic trafficking in polarized epithelial cells. Left, increases in apical membrane and apical ECM secre-
tion promotes lumen growth in epithelial tubes. Middle, trafficking of polarity determinants promotes the establishment and
maintenance of planar cell polarity. Right, biosynthetic trafficking promotes the formation and maintenance of primary cilia. See main
text for details.
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organizes its own ER and Golgi membrane systems.17

The activity of Golgi Arf-GEFs is needed for furrow
ingression,17 and Arf1 localizes to the Golgi and is
needed for furrow ingression,18 Golgi organization and
Golgi COPI coats.19 Additionally, Arl1 promotes the
Golgi localization of the golgin Lava Lamp,20 which is
important for dynein-mediated translocation of Golgi
elements toward the embryo surface where the PM is
found.21,22 Post-Golgi trafficking to the PM depends on
the exocyst complex. The exocyst complex localizes to
PM domains near the embryo surface,23 where new
membrane inserts.24 The small G protein RalA localizes
to the PM and is required for recruiting the exocyst com-
plex.25 Both RalA and the exocyst appear to recruit
Rab8-positive Golgi vesicles and Rab11 vesicles to the
PM.25,26 These studies outline a biosynthetic pathway
critical for this developmental stage of high plasma
membrane growth.

Recently, the Arf GAP Asap was found to promote
Arf1 localization at the Golgi for furrow ingression.19

Although an Asap-Arf1 interaction site contributed to
furrow biosynthesis, no evidence for Asap at the Golgi
was found. Instead, Asap localized primarily to the PM,
and thus may displace Arf1-GTP from this or other
post-Golgi membranes for recycling to the Golgi. Such
recycling may optimize Golgi output to meet the high
demand of furrow biosynthesis. Intriguingly, Asap
becomes sequestered to the nuclear region just before the
onset of furrow regression, a period also marked by mild
alterations to Golgi structure. Thus, cell cycle regulation
of Asap localization may help couple Golgi output with
the furrow ingression-regression cycles of the early
embryo.

Membrane supply for dendrite and synapse growth

Neurons can gain a huge surface area to form axons and
dendrites for cell-cell communication throughout the
body. Most neurons develop multiple branched dendritic
extensions that are capable of integrating various incom-
ing signals.27 The secretory pathway plays a significant
role in dendritic growth and arborisation28 (Fig. 1B). In
particular, the Sar1-COPII axis is required for dendritic
growth. Removal of Sar1 from either Drosophila neurons
or cultured rat hippocampus neurons leads to Golgi
morphology defects and reduction of dendritic exten-
sions, without effects on axonal growth.29 The position
of the Golgi is normally polarized within neurons such
that post-Golgi trafficking is directed toward growing
dendrites.30 Moreover, neurons differ from other cells in
that they possess individual structures termed Golgi out-
posts that are enriched in dendrites versus axonal exten-
sions.29,30 Perturbations of Golgi Arf GEFs or Arf1

reduce dendritic growth.30 Arf4 has also been implicated
in dendritic growth of the hippocampus, as mice hetero-
zygous for a Arf4 null allele have behavioral and cogni-
tive disabilities that correlate with abnormal dendritic
growth, and Arf4 loss or gain leads to reduced or
increased dendritic growth, respectively, in culture.31

Thus, similar to the syncytial Drosophila embryo, biosyn-
thetic machinery is essential for the total membrane
growth requirement of dendritic networks.

Additionally, biosynthetic trafficking contributes to
neuronal synapses, the specialized membrane domains
responsible for the release, detection and uptake of neu-
rotransmitters.32 In Drosophila, Arl1 and the Arf-GEF
Gartenzwerg (Garz; a GBF-1 homolog) promote Arfap-
tin function at the Golgi, and the 3 proteins act together
for the development of synapse numbers.33

ECM supply for bone development

Bones are essential for the structure and movement of
vertebrates. Most bones develop through endochondral
ossification.2,34 Mesenchymal cells migrate to sites of
bone development and differentiate into chondrocytes to
deposit a cartilage template. Ossification is then medi-
ated by osteoblasts, which mineralize the cartilaginous
template. These steps require massive amounts of ECM
secretion (Fig. 1B).

For the deposition of cartilage, chondrocytes secrete
ECM components including specific collagens and proteo-
glycans.2 Mutations affecting these ECM components are
associated with developmental diseases such as skeletal
dysplasias.35,36 Significantly, disruptions to biosynthetic
trafficking also leads to skeletal development defects.36 For
the ER, mutations affecting components of the COPII
coat (Sec 13, Sec 23a, Sec 24d, or the small G protein
Sar1b) are all associated with impaired skeletal develop-
ment. In particular, the autosomal recessive syndrome cra-
nio-facial-sutural dysplasia (CLSD) maps to a mutation
affecting a conserved phenylalanine residue of Sec 23a.37

Fibroblasts from CLSD patients display abnormally
enlarged ER membranes that contain increased and often
excessively tubulated ER exit sites.37,38 In vitro experi-
ments have also shown that the disease mutant of Sec 23a
is unable to recruit members of the outer COPII coat, Sec
13 and Sec 31.38 Moreover, a nonsense mutation produc-
ing an early stop codon in zebrafish Sec 23a leads to mal-
formations of craniofacial cartilage associated with
abnormal ECM deposition.39 Similarly, depletion of Sec
13 in human fibroblasts impairs collagen secretion, and
loss of Sec 13 in zebrafish leads to craniofacial abnormali-
ties resembling those with Sec 23a disruption.40 Sar1b
knock-down in zebrafish embryos also leads to abnormal
craniofacial skeletal development with retention of
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collagen in intracellular compartments, abnormalities
accompanied by additional multi-organ effects.41 A second
autosomal recessive skeletal disorder, osteogenesis imper-
fecta, has been linked to mutations of the COPII coat
component Sec 24d.42,43 Fibroblasts from patients with
this disorder display enlarged ER membranes that retain
ECM components,42 and similarly, zebrafish and medaka
mutants of Sec 24d display distended chondrocyte ER
membranes, sub-cellular retention of ECM components,
and skeletal malformations.44,45

As for ER machinery, Golgi trafficking machinery has
been recently implicated in bone disorders.46 Heterozy-
gosity for a mutation of the ARCN1 gene, encoding the d
subunit of the COPI coatomer, was linked to human cra-
niofacial syndromes. Knockdown of ARCN1 in fibro-
blasts induces the ER stress response and disrupts ECM
transport, and Arf GEF inhibition phenocopies the
ARCN1 knockdown, implicating COPI recruitment by
Arf GEFs and Arfs.

Secretion for lumen development in an epithelial
tube

The development of epithelial tubes is essential for ani-
mal physiology. The Drosophila tracheal system is an
excellent model for tube morphogenesis in vivo. It is a
segmented and hierarchical network of air-filled tubes
that deliver oxygen throughout the body.47,48 An essen-
tial element of a tube is its lumen. Polarized secretion of
apical PM determinants, such as the transmembrane
protein Crumbs, and lumen ECM materials plays an
essential role in lumen expansion and regulation.49,50

(Fig. 1C). In the Drosophila tracheal system, sar1
mutants display ER and Golgi morphology disruptions,
sub-cellular retention of tube lumen materials, and
decreased tube lumen diameters.51 Disruptions of COPII
secretory machinery phenocopy these tracheal disrup-
tions.51,52 Thus anterograde trafficking via COPII
vesicles seems to be required for lumen expansion.
Whether the secretion of a specific COPII cargo or sim-
ply general trafficking is required remains unknown.
However, mutations affecting the COPII component Sec
24 were shown to have cell autonomous effects on lumen
development,52 and ER export of the apical membrane
determinant Crumbs requires Sar1 and COPII.53

At the Golgi, trafficking through Arf1 and the COPI
complex also plays an essential role in lumen expansion.
Without the COPI components gCOP or dCOP, Golgi
and ER membrane organization becomes irregular,
secretion of luminal proteins is disrupted, Crumbs levels
at the apical PM are lower, and tube diameter
decreases.54 The Arf GEF Garz is also needed for tracheal
tube development. Garz normally localizes to the cis

Golgi of tracheal cells, and in the absence of Garz, Golgi
localization of Arf1 and COPI coatomer are both dra-
matically reduced, and ER-Golgi organization is
compromised.55,56

Exocytosis for notochord and neural tube
development

In chordates, the notochord plays important structural
and signaling activities. The notochord is derived from
chordamesoderm which elongates along the anterior-
posterior body axis through cell-cell intercalation and
secretes ECM for its structural integrity.57,58

The cell-cell intercalation events that elongate the
notochord depend on PM domains gaining distinct
molecular composition polarized in the plane of the tis-
sue (planar cell polarity; PCP)59 (Fig. 1C). Recent work
indicates that Arf1 and its effector AP-1 are required for
controlling PCP in different tissues of Drosophila and
zebrafish embryos. Disrupting Arf1 or AP-1 activity
leads to PCP defects in the Drosophila wing. Arf1 and
AP-1 colocalize to trans Golgi membranes of the cells
involved and promote the biosynthetic trafficking of the
PCP protein Frizzled.60 Interestingly, expression of a
constitutively active Arf1 construct in zebrafish embryos
resulted in abnormal organization of the notochord and
shortening of body length.60 In addition to its elongation,
the notochord must also secrete ECM to support body
structure. In zebrafish, loss of COPI subunits or Arf GEF
activity leads to notochord defects associated with dis-
rupted ER-Golgi structure and defects in ECM secre-
tion.61 Thus, Arfs and biosynthetic trafficking may be
important for both the PCP and the ECM of the
notochord.

PCP, cell-cell intercalation and asymmetric cell divi-
sion also organizes the neural tube in vertebrate
embryos. The neural tube is derived from the neural
plate, a portion of the ectoderm located dorsally to the
notochord that gives rise to the central nervous system.62

The COPII coat component Sec 24b is critical for the
trafficking of the PCP protein Vangl2 and proper neural
tube development in mice,63,64 and 4 mutant variants of
the Sec 24b gene have been linked to neural tube closure
defects in humans.65 Loss of Sec 23a in mice also causes
severe neural tube opening and embryo lethality,
although the neural tube defect observed in Sec 23a
mutant embryos arises from a reopening of a closed neu-
ral tube rather than failure of primary closure.66

Exocytosis for ciliogenesis

Primary cilia are microtubule-based, PM protrusions
with a specific membrane composition. Cilia mediate
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developmental signaling, and mutations affecting cilia
structure lead to a class of diseases called ciliopathies.
Trafficking of specific cargo to the base of cilia is essen-
tial for ciliogenesis and cilia function.67,68 (Fig. 1C).
A clear example of trafficking from the Golgi to the pri-
mary cilium has been documented for rhodopsin trans-
port in frog photoreceptor cells69 At the Golgi, Arf4 and
its Arf GAP ASAP1 help recruit rhodopsin as vesicle
cargo.70,71 Arf4 and ASAP1 directly bind rhodopsin
through 2 different protein sequence motifs.70,71 More-
over, ASAP1 acts as a scaffold to organize multiple pro-
teins for rhodopsin trafficking. ASAP1 binds Rab11 and
its interacting partner FIP3, and recruits the Rab GEF
Rabin8 which in turn binds and activates Rab8.70-72

Rab8 and Rab11 target rhodopsin-containing vesicles to
the cilia, apparently by tethering of the vesicle to the cil-
ium base through the exocyst complex component Sec
15.69 Thus, an Arf-Rab cascade directs rhodopsin traf-
ficking from the Golgi to the primary cilium of photore-
ceptor cells.

Transcriptional regulation of biosynthetic machinery
during development

Biosynthetic trafficking must be linked to transcription
and translation of the cargo being transported. More-
over, a conserved transcription factor family plays a
widespread role in increasing the expression of the secre-
tory machinery. The CrebA/Creb3-like transcription fac-
tors recognize a consensus motif within enhancer
regions of genes for secretory machinery and promote
their expression.73 This expression is critical for animal
development. As examples, CrebA drives expression of
Sar1 and COPII components to promote dendritic
growth in Drosophila,74 Creb3l2/BBF2H7 promotes tran-
scription of COPII coat genes for ECM secretion and
skeletal development in mice and zebrafish,75 and CrebA
induces secretory gene expression for tube morphogene-
sis and secretion of the Drosophila salivary gland.73,76

Widespread use of a conserved transcriptional mecha-
nism for the expression of biosynthetic trafficking
machinery indicates the importance of induced biosyn-
thetic trafficking for specific developmental processes.

Concluding remarks

We have reviewed how specific developmental pro-
cesses rely on increases to total biosynthetic output or
on the biosynthetic trafficking of specific proteins. The
membrane trafficking machinery involved can be upre-
gulated for particular developmental processes, and is
coordinated locally by Arf family small G proteins.
Such trafficking is critical for major developmental

processes, and abnormal trafficking results in develop-
mental syndromes.

Numerous questions remain. For many develop-
mental processes, it is unclear whether the biosyn-
thetic trafficking of specific cargo is critical. In such
cases, the phenotypes resulting from removal of traf-
ficking machinery should mimic those resulting from
removal of cargo. How such cargo finds its final desti-
nation would also require definition. For cases in
which a general increase to biosynthesis is required
the amount of biosynthetic machinery could become
limiting. How widely used are CrebA/Creb3-like tran-
scription factors for elevating expression of biosyn-
thetic trafficking machinery, and do distinct
transcriptional programs exist for such increases?
How is the Golgi positioned for polarized secretion in
different cell types? How prevalent are specific devel-
opmental roles of trafficking machinery isoforms, and
are such roles due to tissue-specific expression or
unique protein activities of the isoforms? Moreover,
post-translation modifications and interactions with
cargo can modify the behavior of biosynthetic
trafficking machinery,77 but have not been evaluated
during animal development. Thus many avenues are
open for pursuing a fuller understanding of the bio-
synthetic trafficking that underpins animal
development.
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