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ABSTRACT
HIV-exposed but uninfected (HEU) children represent a growing population and show
a significantly higher number of infectious diseases, several immune alterations, compromised
growth, and increased mortality rates when compared to HIV-unexposed children. Considering
the impact that the gut microbiota has on general host homeostasis and immune system
development and modulation, we hypothesized that HEU children present altered gut microbiota
that is linked to the increased morbidity and the immune system disorders faced by them. Our
experiments revealed no differences in beta and alpha diversity of the gut microbiota between
HEU and unexposed children or between HIV-infected and uninfected mothers. However, there
were differences in the abundance of several taxa from the gut microbiota between HEU and
unexposed children and between HIV-infected and uninfected mothers. Functional prediction
based on 16S rRNA sequences also indicated differences between HEU and unexposed children
and between infected and uninfected mothers. In addition, we detected no differences between
HEU and unexposed children in relation to weight, weight-for-age z scores, albumin serum levels,
or microbial translocation and inflammation markers. In summary, HIV-infected mothers and their
HIV-exposed children present alterations in the abundance of several taxa in the gut microbiome
and the predicted functional metagenome when compared to uninfected mothers and unex-
posed children. Knowledge about the gut microbiome of HEU children in different settings is
essential in order to determine better treatments for this susceptible population.
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Introduction

From 2010 to 2016, the number of annual vertical
HIV transmissions worldwide decreased by 60%, and
it is estimated that more than 1 million new HIV
infections among children were averted during this
period.1 These numbers were achieved primarily due
to the development of prevention of mother-to-child
transmission programs, which had a rapid scale-up
since 2010.1 With less HIV infections among children
every year, health concerns are diverted towards the
growing population of HIV-exposed but uninfected
(HEU) children. According to several studies, HEU
children show increased morbidity, mortality, growth
problems, and immune system alterations when com-
pared to unexposed and uninfected children.2-4

However, the causes and mechanisms underlying
this are still far from being fully understood.

Considering the pivotal role that intestinal micro-
biota has in the development of the immune system
and general host homeostasis, it has been hypothe-
sized that the complications observed in HEU chil-
dren can be related to alterations in the gutmicrobiota
community.5,6 It is already well accepted that, com-
pared to uninfected ones, HIV-infected individuals
present an altered (dysbiotic) gut microbiota, in
both treated and untreated individuals.7-9 The dysbio-
sis of HIV-infected patients includes increased
richness,10,11 higher abundance of bacteria from the
Proteobacteria phylum,11-13 an increased proportion
of opportunistic pathogens,13-15 and lower abundance
of commensal bacteria.13-15 Besides, dysbiosis may
also lead to the disruption of the intestinal barrier,
allowing the translocation of entire microbes or their
components from the intestinal lumen to the systemic
circulation.16-18 This process, known as microbial
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translocation, has been linked to increased immune
activation in HIV-infected individuals.19

However, much less is understood about HEU
children. Several factors have been associated to the
immune alterations and higher morbidity rates exhib-
ited by these children, with an emphasis on the factors
directly related to mothers’ HIV infection, such as in
utero exposure to HIV, exposure to antiretroviral
therapy before and after birth,maternal immune com-
promise, and a maternal pro-inflammatory state.20

Also, it is known that the microbiota of mothers has
an impact on the development of newborns’
microbiota.21-23 Considering that HIV-infected
womenmay have alteredmicrobiota,24 it is reasonable
to hypothesize thatHIV-exposed children also present
dysbiosis. However, the intestinal microbiota of HEU
children has not yet been thoroughly analyzed, with
very few studies published to date.6,25Aprevious study
evaluating the gut microbial composition of HEU
children was based on culture techniques and thus
focused on a few components of the microbiome.25

With the recent development of next-generation
sequencing techniques, the microbiome of HEU chil-
dren canbe studied in significantlymore detail, reveal-
ing alterations in the microbial community structure
among HEU and unexposed infants, while relating
these alterations to the composition of oligosacchar-
ides in mothers' breast milk.6

Moreover, considering that the human gut
microbiota is widely variable, susceptible to altera-
tion according to life and nutritional habits, and
linked to environmental particularities of different
geographic regions,26 it is essential to evaluate the
gut microbiome of HEU children from different
regions and with different nutritional and life
habits. Furthermore, there are almost no data
from HEU children gut microbiota beyond infancy
(i.e., >1 y of age). Therefore, in order to contribute
to a better understanding of the health and immune
system alterations presented by HEU children, we
performed a cross-sectional study of Brazilian
mother–child pairs including HEU children and
unexposed uninfected children. The analysis
included microbiome characterization by 16S
sequencing, evaluation of translocation, and inflam-
mation markers of the participants’ diet. Our data
confirmed the absence of inter-individual diversity
in the gut microbiota of HEU children and their
mothers compared to unexposed children and their

mothers. It shows, for the first time, that several
microbiota components differ between HEU chil-
dren who are not breastfed and uninfected children.

Results

Characteristics of mother–child pairs

A total of 19 mother and child pairs (38 samples)
were recruited in Florianópolis, Santa Catarina
state, southern Brazil, from October 2016 to
May 2017. Twelve children were HEU, and seven
were unexposed and uninfected. No children were
breastfeeding at the time of recruiting and had not
breastfed within the previous eight months. There
were no statistically significant differences for gen-
der, skin color, and time or type of delivery between
HEU and unexposed children (Table 1). Four HEU
and two unexposed children consumed antibiotics
within three months of recruitment, as declared by
mothers. Of the 12 HIV-infected mothers, 11
reported to be under antiretroviral treatment and
presented undetectable viral loads at the time of
recruitment (Table 1). One HIV-infected mother
was a smoker and smoked during pregnancy.

Health and growth of HEU and unexposed
children

To evaluate the frequency of infections in the two
groups of children, mothers were asked to com-
plete a survey to identify the incidence of disease
in their children, with results indicating an
increased frequency of diseases in HEU children
when compared to unexposed ones. Mothers were
asked to consider as “disease” any signs of infec-
tions such as fever, coughing, sneezing, and sore
throat. For HIV-infected mothers, 25% reported
that their children showed signs of disease at least
once a month and 58.3% reported signs once in
every six months. In the case of uninfected
mothers, only one reported that her child showed
signs of the disease every month and one reported
signs of the disease every six months. Conversely,
a large proportion of uninfected mothers reported
that their children showed signs of disease yearly
(42.9%) or less than once a year (28.6%). When
inquired about the time since the child’s last infec-
tion, 83.3% of HIV-positive mothers reported that
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the last time they remembered their child being
sick was at least within the previous six months, in
contrast to the 57.1% of HIV-negative mothers
responding the same.

Moreover, three HEU children had bronchitis,
and one unexposed child had hypothyroidism. In
order to estimate the children’s nutritional state,
albumin serum levels were evaluated, but no sta-
tistically significant differences were found
between the two groups of children (data not
shown), and the same was found for weight and
weight-for-age z scores (Table 1). Taken together,
these data indicate that, although HEU children
seemed healthy at the time of the study, they dis-
play signs of infections more frequently than chil-
dren born from HIV-negative mothers.

HEU children present differences in gut
microbiome abundance

Microbiome composition was evaluated through 16S
rRNA sequencing of stool samples obtained from
HEU and unexposed children as well as theirmothers.
Bacterial DNAwas sequenced and generated approxi-
mately 14 million reads, with an average of 375,182.7
(±92,706.08) reads per sample. These were processed
and classified into a total of 1,246 operational

taxonomic units (OTUs). To analyze inter-
individual differences in the gut microbiome, the
Bray Curtis (BC) dissimilarity index was used and
showed that microbiome composition of mothers
and children differed among each other (Adonis
with 999 permutations, p < 0.01) (Figure 1A).
However, there were no statistically significant differ-
ences in alpha and beta diversity between the two
groups of children or the two groups of mothers
(p > 0.05), indicating no difference in diversity either
in between or within individuals (Figure 1A and B).
However, in terms of microbial composition at the
bacterial family level, the most abundant bacteria
detected in the gut microbiome belonged to
Ruminococcaceae in HIV-negative mothers (25.9%)
and Prevotellaceae in HIV-positive mothers (37.4%).
Lachnospiraceae was the most abundant bacteria
family in both groups of children (33.7% in HEU
and 26.7% in unexposed) (Figure 1C). At the genus
level, the most abundant bacteria belonged to
Bacteroides in both groups of children (25.2% in
HEU and 48.4% in unexposed) and Prevotella in
both groups of mothers (49.5% in HIV infected and
38.4% in uninfected).

To evaluate differential abundance of OTUs
between groups, we used a negative binomial distri-
bution model with the R package DEseq2. It was

Table 1. Clinical and demographic characteristics of the cohort of HIV-unexposed and HIV-exposed but uninfected (HEU) children
and their HIV-negative and HIV-positive mothers from Florianópolis, Brazil.

Children Mothers

Unexposed HEU p HIV negative HIV positive p

Number of individuals 7 12 - 7 12 -
Age (years, median (IQR)) - - - 29 (27 to 33) 34 (24 to 35) 1.00
BMI (kg/m2, median (IQR)) - - - 24.86 (22.07 to

32.27)
27.78 (22.44 to

36.91)
0.4082

Age (months, median (IQR)) 24 (21 to 25) 18 (16.75 to 22.25) 0.02416 - - -
Female sex (%) 4 (57.14) 6 (50) 1.00 - - -
Vaginal delivery (%) 4 (57.14) 6 (50) 1.00 - - -
Term delivery (%) 5 (71.43) 9 (75) 1.00 - - -
Weight (g, median (IQR)) 12,426

(12,200 to 13,870)
11,200

(10,700 to 11,850)
0.1471 - - -

Weight-for-age z score (median (IQR)) 0.50
(−0.040 to 1.44)

0.68
(−0.3150 to 0.9650)

0.7914 - - -

TCD4+ T cell count (cells/mm3,
median (IQR))

- 2,636
(2,212 to 3,016)

- - 749.5 (600.2 to
816.0)

-

TCD8+ T cell count (cells/mm3,
median (IQR))

- 1,000
(792.5 to 1,486.8)

- - 792.0 (725.5 to
1,132.0)

-

CD4/CD8+ T cell ratio (median (IQR)) - 2.575
(2.143 to 3.132)

- - 0.65 (0.52 to 1.10) -

CD45+ (cells/mm3, median (IQR)) - 5,614
(4,518 to 8,207)

- - 2,056 (1,750 to
2,664)

-

On antiretroviral treatment (%) - - - - 11 (91.67%) -
Detectable viral load (%) - - - - 1 (8.33%) -
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possible to identify 35 OTUs that were differentially
abundant between HEU and unexposed children
(false discovery rate (FDR)-adjusted p-value <0.05)

(Figure 2A). Three of these OTUs were identified at
the genus level and corresponded to Bacteroides
uniformis, which was increased in unexposed
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Figure 1. Gut microbiome of mothers and children. Principal coordinate analysis (PCoA) of Bray Curtis distances among groups of
children and mothers (a); Richness (Chao1) and diversity (Shannon and Simpson) indexes (b); Relative abundance at the family level
for groups of mothers and children (c); Mean source proportions of bacteria from the children’s gut microbiota (d).
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children, and to Faecalibacterium prausnitzii and
Prevotella copri, which were increased in HEU chil-
dren. HEU children also showed increased propor-
tions of other OTUs belonging to the genera
Bacteroides, Dialister, Dorea, Klebsiella,
Lachnobacterium, Lactococcus, Phascolarc
tobacterium, Roseburia, and unidentified OTUs
from the families Clostridiaceae, Enterobacte
riaceae, Erysipelotrichaceae, Lachnospiraceae,
Ruminococcaceae, and the order Clostridiales. On
the other hand, unexposed children showed an

increase in the genus Paraprevotella. No significant
correlations (FDR-adjusted p-value > 0.05) were
observed for diversity estimates and weight, weight-
for-age z scores and TCD4+, TCD8+, or CD45+ cells.
In addition, no significant correlations (FDR-
adjusted p-value >0.05) were found for individual
OTU abundance and all previously mentioned clin-
ical markers. For the two groups ofmothers, we were
able to identify 16 differentially abundant OTUs
(FDR-adjusted p-value <0.05), with HIV-infected
mothers showing increased proportions of P. copri,

-10

Log 2-fold change in HEU relative to unexposed children
0 10 20

Increased in 
unexposed children

Increased in 
HEU children

-10 0 10
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Figure 2. Differentially abundant OTUs in the gut microbiome of mothers and children. Log 2-fold change of differentially abundant
OTUs between children (a) and mothers (b) categorized by the highest taxonomic level identified. Each dot corresponds to an OTU.
“o” = Order; “f” = Family; “g” = Genera.
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Prevotella stercorea, and other OTUs belonging to
Prevotella, Dialister, Ruminococcaceae, and
Bacteroidales. Conversely, HIV-negative mothers
showed increased proportions of OTUs belonging
to Bacteroides, Lachnospira, Oscillospira,
Clostridiaceae, Lachnospiraceae, Rikenellaceae, and
Clostridiales (Figure 2B).

To evaluate the relationships between mother–
child gut microbiota, we used SourceTracker,27

a tool to perform estimations of source proportions
using Bayesian modeling of uncertainty based on
known and unknown source environments.
Although the majority of infant microbiota was con-
sidered from unknown sources, we observed that
a relatively large proportion of themicrobiota of HIV-
exposed children could be tracked to HIV-infected
mothers, with a smaller proportion of the microbiota
from unexposed children being traceable to their
respective mothers. These results could indicate
a stronger similarity in gut microbiota between HEU
children and HIV-infected mothers compared to
unexposed children and their mothers. However,
those differences did not meet the threshold of statis-
tical significance (p > 0.05) due to the high contribu-
tion of the unknown sources to the overall gut
microbiota (Figure 1D).

To further analyze the interactions involving the
gut microbiome, functional profiles were inferred
based on 16S data using PICRUst. It was possible to
identify nine KEGG orthologs that differed between
HEU and unexposed children and 13 that differed
between HIV-positive and HIV-negative mothers
(FDR-adjusted p-value <0.05). This indicates that
the alterations in the gut microbiome of HEU chil-
dren occur not only in microbial abundance but may
also occur at the functional level.

Mothers and children present similar diet
independent of HIV exposure

Differences in food consumption among the
groups were evaluated according to answers to
the food frequency questionnaire (FFQ). Food
consumption pattern was similar between the
two groups of children and the two groups of
mothers (Figure 3A and B). The only statistically
significant difference was in alcohol consump-
tion (wine and beer excluded) between HIV-

positive and HIV-negative mothers (p = 0.035),
with HIV-positive mothers reporting increased
consumption of alcohol (Figure 3B).

To better understand the impact of diet on the
microbial community structure in different groups,
correlation analyses were performed between diver-
sity and richness estimates and the frequency of con-
sumption of each food item. However, no significant
correlations were found for children and mothers
(FDR-adjusted p-value >0.1). To analyze the impact
of diet on the interindividual variance of the micro-
biota, we next sought to evaluate the association of
interindividual variation and the frequency of food
consumption through the explained variation (R2),
according to the BC distance for each food from the
FFQ. The food items that presented the highest asso-
ciation to microbiome interindividual variance were
yogurt for children and dairy for mothers (Figure
3C and D). These analyses indicate that diet did not
have a strong influence in gut microbiota diversity in
the studied groups, possibly due to the low variability
in the food consumption pattern among individuals.

We also evaluated the relationship between the
frequency of food consumption and abundance of
individual OTUs, with results revealing a negative
correlation between Bacteroides ovatus and fruit
consumption in children (FDR-adjusted
p < 0.05). In mothers, OTUs belonging to
Veillonella dispar and Ruminococcus sp. and an
OTU from the Order Bacteroidales correlated
negatively with bread consumption, while OTUs
from Oscillospira sp. and Anaerostipes sp. and two
OTUs belonging to the family Ruminococcaceae
correlated positively with alcohol consumption
(FDR-adjusted p < 0.05). However, none of the
OTUs which were found to be statistically differ-
ent between the two groups of children or the two
groups of mothers presented correlation with food
consumption, indicating that the differences
observed among the groups were not caused by
differences in food consumption.

HEU children do not present alterations in
microbial translocation and inflammation
markers in plasma

Since alterations in gut microbiota are related to
microbial translocation and immune activation,
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plasmatic markers of microbial translocation and
inflammation were also evaluated. Although HEU
children showed increased levels of IL-6, IL-8, and

IL-10 compared to unexposed children, these differ-
ences were not statistically significant (Figure 4A). An
equivalent result was observed for C-reactive protein
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GUT MICROBES 605



(p = 0.08) (assessed for seven HEU and four unex-
posed children) (Figure 4B), and no statistical differ-
ences were also observed for lipopolysaccharide-
binding protein (LBP) and the monocyte activation
marker soluble CD14 (Figure 4D and E). Spearman
correlation tests were performed in order to evaluate
the relationship between each of the plasmatic mar-
kers assessed and: (i) individual OTU abundance, (ii)

abundance at the family level, and (iii) alpha diversity
estimates. However, no statistically significant corre-
lations (FDR-adjusted p-value >0.05) were observed.
HIV-infected and uninfected mothers showed similar
levels of inflammatory cytokines and LBP (Figure
4C and D). However, HIV-infected mothers showed
increased sCD14 plasma levels when compared to
uninfected mothers (p = 0.02) (Figure 4E).
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Discussion

Here, we evaluated the gut microbiota composi-
tion, diet habits, and microbial translocation mar-
kers in peripheral circulation in HEU children and
their mothers and compared them to unexposed
children and their mothers. Although we could
not find differences in microbiota alpha and beta
diversity or in microbial translocation and inflam-
mation markers, we did find several OTUs that
were differentially abundant between the studied
groups, indicating that these individuals show
compositional alterations in the gut microbiota.

Several studies report an increased rate of infec-
tions and hospital admissions in HEU children.4,28,29

In this study, the rate of infections was evaluated
through mother’s answers to a survey. Although
this is a general way to evaluate the rate of infections
and mothers may differ in their perception, the
reports indicate an increased frequency of diseases
in HEU children compared to unexposed children,
in accordance with the literature.We did not observe
statistically significant differences between HEU and
unexposed children with regard to weight and
weight-for-age z score. Although previous studies
show that HEU children present lower weight and
weight-for-age z scores when compared to unex-
posed children,30-32 there are still uncertainties
whether these differences are due to HIV exposure
or if there are other causes such as socioeconomic or
behavioral factors that explain the reduced physical
development of HEU children.28,31

Analysis of the gut microbiome composition
showed that the most abundant bacteria family in
the two groups of children was Lachnospiraceae,
while the most abundant genus was Bacteroides,
similarly to a previously reported study on chil-
dren’s gut microbiota.33 Moreover, no differences
were observed between HEU and unexposed chil-
dren regarding alpha and beta diversity. However,
analysis of the differentially abundant OTUs
between the two groups of children in our study
revealed that HEU children present increased pro-
portions of OTUs belonging to the families
Lachnospiraceae, Prevotellaceae, Ruminococcaceae,
Enterobacteriaceae, Veillonellaceae, Clostridiaceae,
Streptococcaceae, and Erysipelotrichaceae, with the
majority of differentially abundant OTUs belonging
to the family Lachnospiraceae. A decrease in the

proportion of bacteria from the Lachnospiraceae
family has been previously reported in HIV-
infected individuals when compared to uninfected
controls.12,15,16 However, an increased proportion
of bacteria from the Lachnospiraceae family has
previously been observed by Bender et al. (2016)6

in HEU children when compared to unexposed
children, but this difference was not considered
the statistically significant difference. It has been
described that several members of the
Lachnospiraceae family produce short-chain fatty
acids, especially butyric acid34, which is essential
to the maintenance of the gut epithelial barrier
and related to the modulation of immune
responses, contributing to gut microbiota
homeostasis35. Therefore, increased proportions of
OTUs belonging to Lachnospiraceae could be an
indication that alterations in the gut microbiota of
HEU children are not necessarily indicators of
a pathogenic state. The fact that HEU children in
our study did not show alterations in microbial
translocation markers also corroborates this
hypothesis.

In his comparison of the gut microbiome compo-
sition between HEU and unexposed children,
Bender et al. (2016)6 reported abundance and diver-
sity results that slightly differ from ours. However,
the alterations in the microbiome of HEU children
reported by him were related to an altered composi-
tion of human milk oligosaccharides (HMOs) in the
breast milk of HIV-positive mothers.6 HEU children
in our study were not breastfed, which may be the
reason for these discrepant results. It is also relevant
to notice note that, when compared to the results
observed by Bender et al., our data indicate that
HMOs are not the only cause of dysbiosis in HEU
children. Therefore, it is possible that the alterations
in the microbiota of these children are related to
alterations in their mothers. Our results on the
source proportions estimative with SourceTracker27

further indicate that the HEU children’s gut micro-
biota suffer, at least in part, some influence from
their mother’s altered gut microbiota.

We also observed differences between HIV-
infected and uninfected mothers in the abundance
of some taxa, but not in richness or alpha and beta
diversity. This was unexpected since alterations in
gut microbiome richness and diversity of HIV-
infected individuals have been described in several
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cases.11,15,36 However, the impact of antiretroviral
therapy on the gut microbiota is still not entirely
clear, with some reports showing that diversity
alterations in the gut microbiota can remain after
antiretroviral treatment37,38 and others showing
that treatment can revert these changes to a point
where diversity indexe of the microbiota of HIV-
infected individuals is similar to the one of unin-
fected individuals.14 Therefore, it is possible that
the absence of alterations in diversity indexes in
this report is related to the fact that the majority of
HIV-infected women in our study had been
receiving antiretroviral therapy for an extended
period and presented undetectable viral loads.

We did observe differences in OTU abundance
between HIV-infected and uninfected mothers, with
OTUs classified in the families Rickenellaceae,
Lachnospiraceae, Clostridiaceae, and Bacteroidaceae
increased in HIV-negative mothers and OTUs from
Prevotellaceae and Paraprevotellaceae increased in
HIV-positive mothers. Moreover, the most abundant
family in mothers’ gut microbiota differed between
those who are HIV positive and HIV negative, with
Ruminococcaceae more abundant in HIV negative
and Prevotellaceae in HIV positive. In accordance,
an increased proportion of Prevotellaceae and
a decrease in the proportion of Bacteroidaceae have
been described in HIV-positive individuals multiple
times.16,36,39

We also observed an increased proportion of P.
copri in both HIV-infected mothers and HEU chil-
dren, which could indicate a contribution from the
dysbiotic microbiota of HIV-infected mothers to the
alterations in their children’s microbiota. It is tempt-
ing to speculate that increased P. copri could repre-
sent an adaptation of HEU children’s microbiota to
ensure Th17 cell development, since this bacterium
has been postulated to be the human equivalent of
Segmented Filamentous Bacteria (SFB), which is
pivotal for murine Th17 T cell development in the
gut lamina propria.40,41 The increased presence of
Th17-inducer bacteria in the microbiota of HEU
children could be associated to the hyper-
responsiveness of T-cell-mediated immunity
observed in HEU children2 or even interact with
host genetics to promote subsequent development
of autoimmune disorders, like rheumatoid
arthritis.41,42 Further studies will be needed to con-
firm these observations and to determine the impact

of P. copri on HEU children immune system devel-
opment. Analysis of the predicted functional meta-
genome further indicates that there are alterations in
the gut microbiome of HEU children and HIV-
infected mothers, although it is important to men-
tion that results represent predictions based on the
16S rRNA data and thus should be interpreted only
as an indication of alteration rather than conclusive.

Our study did not reveal a substantial impact of
diet on the gut microbiome. There were no signifi-
cant differences between the diet habits of HEU and
unexposed children, and few differences were
observed between the two groups of mothers. We
also evaluated the impact of diet on microbiome
composition of our groups, and it revealed a low
impact of the food items evaluated in both alpha
and beta diversity estimates. Although diet is a well-
recognized and important factor that modulates gut
microbiota,43 the fact that we did not observe
a major influence may be due to low variability in
diet among individuals of the studied groups and
their homogeneity regarding the origin and socio-
economic profile.

Even though some studies report alterations in the
immune response of HEU children,2,20 HEU and
unexposed children in our evaluations did not pre-
sent significant differences regarding the presence of
soluble markers in plasma. A previous study with
HEU children from Brazil also revealed similar levels
of microbial translocation and inflammation mar-
kers in plasma of HEU and unexposed children.44 In
HIV-infected individuals, alterations in gut micro-
biota are generally linked to increased microbial
translocation.18 Although we show that HEU chil-
dren present differences in gut microbiota composi-
tion, there were no signs of microbial translocation,
indicating that the microbiota alterations observed
in HEU children are not directly linked to microbial
translocation.

There were also no significant differences
between HIV-infected and uninfected mothers in
the concentration of plasmatic inflammatory cyto-
kines. Increased immune activation and inflamma-
tion are a characteristic of HIV infection, but it has
been reported that viral load suppression with
prolonged antiretroviral therapy can partially or
even entirely reverse pro-inflammatory pathways
in HIV-infected individuals.45 The mothers who
participated in this study were in good health,
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including the HIV-infected ones who presented
undetectable viral loads and high TCD4+ and
TCD8+ cell counts, possibly explaining the equiva-
lent levels of inflammatory cytokines in plasma
relative to HIV-negative mothers. However,
immune activation was not entirely suppressed
by antiretroviral therapy as HIV-infected mothers
still showed increased soluble CD14 in plasma.
Both results, normal T cell counts and increased
sCD14 in plasma in HIV+ mothers with undetect-
able viral loads and under retroviral therapy, were
also observed by Villanueva-Millan et al.46

We recognize that our study presents limita-
tions. This was a cross-sectional study with
a small number of participants in a single loca-
tion. Moreover, some important characteristics
such as age, mode of delivery, and breastfeeding
were variable between the groups. Nonetheless,
efforts were made to recruit unexposed children
who were not breastfed for an extended period,
but they were still breastfed during the first
months of life. HEU children, in contrast,
received supplement formula since birth, follow-
ing guidelines of the Brazilian Ministry of Health
making it difficult to match the characteristics
between HEU and unexposed children.

Previous studies have compared the gut micro-
biota of HEU children to that of unexposed
children.6,25 However, to the best of our knowl-
edge, these studies were not conducted in settings
where children were not breastfed. The results
presented here are relevant as they show that
even in a region where breastfeeding is not recom-
mended for HIV-infected mothers, their children
still show a slightly altered microbiota. This war-
rants further evaluations, especially of extensive
prospective studies, with regard to the implications
for HEU children’s health given the differences
observed in their microbiota composition. Based
on these results, it could also be interesting to plan
the introduction of probiotics or prebiotics as
supplementation to infant formulas. The use of
probiotics in infant formulas for HIV-exposed
infants has already been tested and demonstrated
to be safe.47 A better understanding of the gut
microbial composition may point to new bacteria
that could be used as a supplement with the goal to
improve the health of HEU children.

Methods

Study population and inclusion criteria

This was a cross-sectional study in which the study
population was comprised of 19 women and their
children with age between 16 and 26 months.
Mother–child pairs were grouped according to
maternal HIV infection status as follows: (i) HIV-
exposed uninfected children and their HIV-positive
mothers (n = 12) and (ii) HIV-unexposed uninfected
children and their HIV-negative mothers (n = 7).
Following the Brazilian guidelines that HIV-exposed
children should not be breastfed,48 efforts were made
to recruit only unexposed uninfected children that
had not been breastfed for at least 1 y, in order to
minimize bias in the gut microbiota evaluation. The
Hospital Infantil Joana de Gusmão Ethics
Committee approved this study under the protocol
number 2.022.007, and all volunteers provided writ-
ten informed consent before enrollment.

Sample collection and processing

Mothers were recruited during children’s routine
appointments at the Hospital Infantil Joana de
Gusmão in Florianópolis, SC, Brazil. All mothers
signed a consent form, answered a survey about
life and nutritional habits, and received containers
and instructions to perform the stool collection
from themselves and their children. Samples were
then collected either at the volunteers’ residence or
at the hospital and kept frozen at −20°C until
arrival at the laboratory, where DNA extraction
was performed with the commercial kit QIAamp
DNA Stool Mini Kit (Qiagen, 51504) and stored at
−20°C. A sample of sterile water was used as
negative control for the DNA extraction and sub-
mitted to the same procedures as the biological
samples. For microbial translocation markers and
inflammatory cytokine assessment, blood samples
were also collected from mothers and children at
the time of recruitment, and plasma was separated
and stored at −80°C. Information about height,
T CD4+ and T CD8+ cell counts, viral load, and
albumin plasma levels were obtained from
patients’ hospital records. For the evaluation of
participants’ diet, a short FFQ was created based
on literature covering foods that might influence
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on the microbiota49 and typical and most con-
sumed food in the region of study. Weight-for-
age z scores were calculated according to WHO
child growth standards.50

Library preparation and sequencing

DNA was quantified with the Qubit dsDNA HS kit
(Thermo Fisher Scientific, Q32851) and amplified
with the Illumina primers S-D-Bact-0341-b-S-17
(forward) and S-D-Bact-0785-a-A-21 (reverse)51

targeting the V3 and V4 regions of the 16S
rRNA. Polymerase chain reactions were performed
with 10 µL of the polymerase GoTaq Colorless
Master Mix 2x (Promega, M7143), 1.0 μL of the
forward primer, 1.0 μL of the reverse primer, 40 ng
of the extracted DNA, and ultrapure sterile water
as necessary to reach the final volume of 20 μL.
Amplification conditions consisted in an initial
denaturation at 94°C for 3 min, followed by 28
cycles of denaturation at 94°C for 30 s, annealing
at 53°C for 1 min, and extension at 72°C for 2 min,
with a final extension period at 72°C for 6 min.
Amplification was performed with positive and
negative controls and confirmed through electro-
phoresis in agarose gel, with resulting amplicons in
the size of approximately 500 base-pairs on posi-
tive and sample reactions. For library preparation,
PCR product was purified with AMPure XP
(Beckman Coulter, A63881), adaptors for sequence
identification were added with the commercial kit
Nextera XT Index (Illumina, FC-131–2001), and
samples were quantified through qPCR with the
KAPA Universal Library Quantification Kit
(Illumina, KK4824) commercial kit. After quanti-
fication, a 3 nM equimolar pool was prepared and
sequencing was performed with all samples multi-
plexed in a single run, using a V2 reagent kit
2 × 250 bp (500 cycles) (Illumina, MS-102–2003)
at the Illumina MiSeq platform.

Bioinformatics analysis

Low-quality sequences were filtered with
Trimmomatic v0.3652 according to sequence size
and Phred score. Nucleotides with a Phred score
under 20 at the beginning and end of each
sequence, or groups of nucleotides that showed
a mean Phred score every five nucleotides inferior

to 20, were considered low quality and thus
removed. Sequences shorter than 100 nucleotides
were also removed. Paired-end sequences were
merged with PEAR v0.9.8 (2015-04-09),53 and the
resulting contigs were filtered to maintain only
sequences with between 435 and 468 bp, which
corresponded to the most frequent sequence
length, in order to remove sequences that were
too short or that had issues during pairing.
Chimera removal, determination of OTUs, and
taxonomic assignment were performed as
described elsewhere.54 Briefly, to search for and
remove chimeric sequences, we used a script
developed by Comeau, Douglas, and Langille54

that uses VSEARCH v1.11.1 (13 April 2016)55

(implementing the UCHIME56 algorithm) to filter
out chimeric reads from multiple files. We classi-
fied the reads into OTUs at 97% identity using
a QIIME 1 v1.9.157 pipeline for open-reference
OTU picking which includes the open-source
methods SortMeRNA v2.0-dev (2014-10-31)58 for
reference picking and SUMACLUST v1.0.0059 for
the de novo OTU picking. The resulting OTU table
was filtered to remove unwanted OTUs, including
those resulting from unfiltered chimeras, clusters
containing only one sequence (singletons), and
low-confidence OTUs, using a dynamic cutoff of
less than 0.1% of the total number of sequences.
Finally, the OTU table was normalized per sample
by subsampling so that all samples have the same
depth (15,722 reads). Taxonomy determination
was performed using the 13.8 release of the
Greengenes database. The functional prediction
was based on the Kyoto Encyclopedia of Genes
and Genomes (KEGG) and performed with
PICRUSt v1.1.2 (30 August 2017)60 using data
normalized considering 16S rRNA gene copy
number to predict KEGG orthologs and KEGG
pathways.

Microbial translocation markers and
inflammatory cytokine assessment

To estimate microbial translocation, plasma solu-
ble CD14 (sCD14) and LBP were quantified from
plasma samples in triplicate with commercially
available kits ELISA-sCD14 DuoSet (R&D
Systems, Minneapolis, USA) and Human LBP
DuoSet ELISA (R&D Systems), respectively.
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Inflammatory cytokines IL-12p70, TNF, IL-10, IL-
6, IL-1β, and IL-8 were assessed through cyto-
metric bead array with a Human Inflammatory
Cytokines Kit (BD Biosciences, Franklin Lakes,
USA). Information about C-reactive protein levels
was obtained from hospital records.

Statistical analysis

Statistical analyses were performed in R.61 The sig-
nificance of quantitative demographic data was
tested with Mann–Whitney–Wilcoxon and
Student's t-tests for nonparametric and parametric
variables, respectively. For qualitative variables,
Fisher’s exact test was applied. Diversity estimates
were performed with the phyloseq R package.62 To
test the statistical significance of alpha diversity esti-
mates among groups of mothers and children,
a Student’s t-test was applied, and to analyze beta
diversity statistical significance, an Adonis test with
999 permutations was applied. All correlations were
evaluated through Spearman rank correlation. To
identify taxa that were differentially abundant
between groups, an OTU table not normalized was
used. OTUs with zero counts in more than 80% of
the samples were removed, and a differential analysis
test based on the negative binomial distribution was
performed with the R package DESeq2.63 OTUs with
an adjusted p-value inferior to 0.05 according to
Wald binomial significance test with Benjamini–
Hochberg correction were considered as statistically
different. Differences in the predicted functional
metagenome were also analyzed with DESeq2,
under the same parameters described above. To
evaluate the relationship between mother–child
microbiome, we applied a Bayesian model using
SourceTracker,27 and differences in the mean pro-
portions between groups were evaluated through
Kruskal–Wallis with Turkey post-hoc test.
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