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Abstract

In this review we examine the effects of both over- and under-production of heme oxygenase-1 

(HO-1) and HO activity on a broad spectrum of biological systems and on vascular disease. In a 

few instances e.g., neonatal jaundice, overproduction of HO-1 and increased HO activity results in 

elevated levels of bilirubin requiring clinical intervention with inhibitors of HO activity. In contrast 

HO-1 levels and HO activity are low in obesity and the HO system responds to mitigate the 

deleterious effects of oxidative stress through increased levels of bilirubin (anti-inflammatory) and 

CO (anti-apoptotic) and decreased levels of heme (pro-oxidant). Site specific HO-1 overexpression 

diminishes adipocyte terminal differentiation and lipid accumulation of obesity mediated release 

of inflammatory molecules. A series of diverse strategies have been implemented that focus on 

increasing HO-1 and HO activity that are central to reversing the clinical complications associated 

with diseases including, obesity, metabolic syndrome and vascular disease.
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1. Introduction

Heme oxygenase (HO) is the rate limiting enzyme in the catabolism of heme, a 2 step 

enzymatic process that results in the formation of equimolar amounts of biliverdin, iron and 
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carbon monoxide (CO). The biliverdin formed is rapidly converted to bilirubin by biliverdin 

reductase[56, 57]. The heme catabolic process was first described by Schmid and his 

colleagues. HO was shown to be inducible by a broad spectrum of chemicals in addition to 

heme, its natural substrate. HO is present in the reticuloendothelial system, hematopoietic 

stem cells, bone marrow and in all cells studied [60, 61]. Many of the studies conducted in 

this period focused on how the activity of the enzyme could be up- or down regulated, the 

resultant biological responses to perturbations in HO activity and the potential clinical 

application of controlling the activity of this enzyme in humans. This has resulted in a two-

pronged approach that has focused on down-regulation (inhibition) of HO activity e.g., 

neonatal jaundice; and upregulation of HO activity e.g., obesity, hypertension, metabolic 

syndrome etc., leading to the development of new therapeutic modalities that could 

moderate disease progression in humans. This review examines how HO can be manipulated 

and highlights HO as an enzyme of critical importance for pharmacological development.

1.1. Heme Oxygenase

HO exists in two forms, HO-1, the inducible form, and HO-2, the constitutive form. Both 

isozymes degrade heme in an identical stereospecific manner to biliverdin with the 

concurrent release of CO and iron [62]. In mammals, biliverdin is rapidly reduced by 

biliverdin reductase to bilirubin [54, 55]. HO-1 and HO-2 are alike in terms of mechanism, 

cofactor and substrate requirements, as well as their susceptibility to inhibition by synthetic 

metalloporphyrins in which the central iron atom is replaced by other elements including tin, 

zinc, cobalt and chromium (reviewed in [59]). HO-1 is induced by a variety of drugs and 

chemical agents including statins, aspirin, niacin, certain prostaglandins, eicosanoids such as 

epoxyeicosatrienoic (EETs) and free and complexed metals [62]. Iron, bilirubin and CO, the 

three degradation products of heme degradation, have important regulatory functions in 

cells. Iron is an essential requirement for the synthesis of hemoglobin and ferritin. The 

constitutive nature of HO-2, however, makes it less attractive as a drug target (Figure 1).

The first therapeutic approach to regulate HO activity began by devising a means to 

downregulate HO activity by competitive inhibition. This was recognized early [63, 64] and 

achieved clinical fruition in neonatology when a safe, rapidly acting and effective method 

for transiently blocking bilirubin production in newborns was developed [64, 65]. The 

development of inhibitors of HO activity having a pharmacological profile permitting their 

use in infants provided the first demonstration of the potential clinical usefulness of agents 

that can downregulate HO. However, when selecting an inducer or an inhibitor of HO 

activity, one must consider the mechanism of induction/inhibition and duration of response. 

Rapid response of HO-1 mRNA by inducers such as cobalt protoporphyrin IX dichloride 

(CoPP) do not reflect an immediate increase in HO activity [66], suggesting that an increase 

of HO-1 mRNA is meaningless unless HO activity is also determined. Induction of HO-1 by 

heme or CoPP has a differential effect on the timing of an increase in HO activity, with heme 

resulting in a maximum increase in HO activity at 16 hr, whereas with CoPP maximal HO 

activity is attained at 3 days and lasts for extended periods of time up to 14 days after a 

single administration of the compound [62]. In metabolic syndrome and vascular disease, 

elevation of inducible nitric oxide synthase (iNOS) and peroxynitrite resulted in inactivation 

of HO-1 protein [67, 68] and decreased HO activity. These considerations regarding the time 
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frame of both induction and inhibition of HO activity, not just HO-1 expression levels, must 

be considered in the development of new therapeutic strategies targeting HO-1 for the 

treatment of obesity-hypertension and metabolic syndrome. As an alternative strategy to 

drugs, gene therapy has been identified as a long lasting (1 year) and effective way to induce 

HO-1 expression to prevent CVD [19, 67, 69–73].

Both biliverdin and bilirubin are potent antioxidants and may exert cellular protective effects 

against injurious stimuli in vivo and in vitro [74, 75]. CO has been identified as a second 

messenger in the central nervous system (CNS) [76] and suppresses endothelial cell 

apoptosis through activation of p38 MAPK [14, 77]. CO has a multitude of functions in 

biology and medicine which are described in series of articles [3, 4, 78] and include acting 

as a vasodilator via stimulation of soluble guanylate cyclase (sGC).

1.2. Detrimental Effect of High Levels of Heme Degradation; Inhibition of Heme 
Metabolism

Hyperbilirubinemia occurs in human newborns when the rate of bilirubin production is 

several fold greater than that of adults. The peak bilirubin levels that newborns achieve are 

dependent upon gestational age, 3 days after birth in full-term infants and later in preterm 

infants. The increase in plasma bilirubin occurs due to a rapid degradation of fetal 

hemoglobin and the immaturity of UDP-glucuronosyltransferase which is responsible for the 

formation of bilirubin mono- and di-glucuronides prior to excretion in the bile. This can lead 

to an increase in unconjugated bilirubin which, if severely elevated, can cross the blood 

brain barrier resulting in a spectrum of neurological insufficiencies ranging from the subtle 

to the overt, the latter manifest as kernicterus/bilirubin encephalopathy[79]. The levels of 

bilirubin that are considered sufficient for clinical intervention depend on a number of 

variables including gestational age, rate of increase in bilirubin and clinical considerations 

e.g. ABO incompatibility, G6PD deficiency, Rh and mode of treatment [80]. The current 

method of choice is phototherapy where soluble bilirubin photoisomers are produced and 

excreted in the bile [81]. The use of phototherapy has been questioned with regard to safety; 

DNA damage, erythrocyte damage, retinal damage; and also due to prolonged separation of 

mother and child [82]. In addition, phototherapy only photoisomerized ~15% of total 

bilirubin in the newborn making it inefficient in treating Crigler-Najjar individuals. Thus, the 

management of elevated levels of bilirubin by interdicting the formation of bilirubin rather 

than instituting clinical intervention when bilirubin levels reach a predetermined level by the 

use of inhibitors of heme oxygenase activity is an attractive proposition to clinicians, 

newborns and their parents.

1.3. Heme Oxygenase Inhibitors, Clinical Use

In 1980 the Kappas group and Maines reported that metalloporphyrins in which the central 

metal iron of iron protoporphyrin (heme) had been replaced by tin and zinc respectively 

were competitive inhibitors of heme oxygenase activity. These studies were extended to 

chromium in an examination of HO activity inhibitors in the control of hyperbilirubinemia 

in a series of animal models of jaundice [65, 83]. Tin protoporphyrin (SnPP) was initially 

regarded as the metalloporphyrin of choice, however, tin mesoporphyrin (SnMP) proved 

more efficacious and was used in a series of clinical studies. Several other compounds 
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including ZnMP, CrMP and zinc 2,4-bis glyclol deuteroporphyrin are inhibitors of HO 

activity. Non metalloporphyrins including imidazole dioxolane compounds have been 

reported to inhibit HO activity as well as specific HO isoenzymes [84].

SnPP and SnMP have been reported to control serum bilirubin and biliary bilirubin levels in 

normal volunteers [85], liver disease[86] and Crigler-Najjar type 1 syndrome [87, 88]. 

Clinical trials in newborns with ABO incompatibility showed SnPP was efficacious in 

controlling hyperbilirubinemia [85]. A randomized, double blinded, placebo controlled dose 

ranging study in preterm infants demonstrated that the administration of SnMP within 24 

hours of birth moderated the development of hyperbilirubinemia and reduced the need for 

phototherapy by up to 75% in a dose dependent manner when compared to control 

newborns. A higher incidence of erythema was noted in SnMP-treated infants who received 

phototherapy compared with control newborns. The erythema was not dose dependent, was 

transient and resolved without sequelae [89]. A trial in near term and term infants showed 

that phototherapy was eliminated when SnMP was administered to infants when 

phototherapy would normally have been initiated [90]. This was confirmed in healthy infants 

of ≥ 38 and ≤ 41 weeks gestational age following an uncomplicated pregnancy with a PBC 

of between 15 mg/dL and 18 mg/dl 48–96 hours after birth. In the control group 19 of 86 

newborns required phototherapy (initiated at 19.5 mg/dL) compared with 0 of 80 in the 

SnMP-treated group [91]. GGPD deficiency is a genetic defect the predisposes newborns to 

severe hyperbilirubinemia. In this trial 31% of the control group required phototherapy due 

to hyperbilirubinemia while none of the 225 GGPD-deficient infants who received a single 

dose of SnMP required phototherapy and thus were able to be discharged earlier than the 

control infants [92]. The use of metalloporphyrins in the management of neonatal 

hyperbilirubinemia is reviewed in detail [59, 93, 94].

The approach of interdicting bilirubin production in the severely jaundiced newborn for a 

sufficient period of time to allow the maturation of UDP glucuronyl transferase makes 

clinical sense rather than waiting for the bilirubin level to rise until it reaches the point of 

clinical intervention requiring disposal. The efficacy of this approach has been convincingly 

demonstrated by the SnMP studies described above. In addition to efficacy no short- or long-

term adverse events have been noted in newborns administered SnMP. This shortens that 

time of medical care, does not interrupt parent/infant bonding and reduces cost to the 

parents, clinicians and hospital. In addition, a single injection is a boon in conditions/

countries where phototherapy is unavailable.

1.4. Porphyria

Porphyria refers to a group of disorders that result from an accumulation of porphyrins 

produced in the heme biosynthetic pathway and are classified as either acute, which largely 

affects the nervous system, and cutaneous, which mainly affects the skin. Porphyria is 

usually inherited as a result of deficiency in one of the eight enzymes in the heme 

biosynthetic pathway (Figure 2). In addition to hereditary forms, some porphyrias e.g., 

porphyria cutanea tarda can be acquired as a result of liver disease, excessive alcohol use 

and estrogen medications. Inhibitors of HO have been used to treat porphyria.
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Metalloporphyrins that inhibit HO activity and decrease bilirubin, CO and iron production 

increase the biliary excretion of unmetabolized heme [95, 96] but have no effect on the 

metabolic disposition of preformed bilirubin [85, 97]. SnPP/SnMP led to a prolonged 

increase in heme saturation of tryptophan pyrrolase indicating an increase in the “heme 

pool” related to tryptophan pyrrolase [96, 98] and SnMP also suppressed chemically induced 

hepatic porphyria. In addition, SnMP, when administered to bile duct cannulated rats, caused 

a prompt and sustained decrease in the levels of bilirubin in the bile and an enhancement of 

biliary heme excretion in these animals.

SnPP/SnMP were examined for efficacy in decreasing the excretion of heme pathway 

precursors in patients with intermittent and variegate porphyria. Both metalloporphyrins 

reduced the excretion of ALA, PBG and porphyrins indicating that the rate limiting enzyme 

of heme biosynthesis, ALA-synthase was inhibited by the metalloporphyrins [99, 100]. The 

mode of action remains unclear. In an animal model of porphyria both SnPP and SnMP 

reduced the rapid increase in ALA synthase. It may be that the metalloporphyrins act 

directly in a manner similar to heme, due to structural similarities, the normal feedback 

control mechanism of heme biosynthesis in liver. In contrast SnPP and SnMP potently 

inhibit HO activity which may result in increased intrahepatic concentrations of endogenous 

heme. This hypothesis is supported by the rapid transient increase in heme saturation and 

activity of the heme dependent hepatic enzyme tryptophan pyrrolase [96, 98] that occurs 

after SnPP/SnMP administration. Cutaneous photosensitivity was the only side effect noted 

in the patients. The photosensitivity was self-limiting. Further studies are necessary to 

determine whether these compounds may be therapeutically useful in porphyria patients.

1.5. Obesity, Ischemia Reperfusion Injury

Increased adipose tissue macrophages contribute to obesity induced metabolic syndrome. A 

high fat diet (HFD) fed to C57BL/6J mice increased HO-1 levels in visceral adipose tissue. 

After mice were irradiated and reconstituted with wild type or HO-1 +/− bone marrow they 

were fed a HFD for 24 weeks. HO-1 +/− chimeras were protected from insulin resistance 

induced by a HFD. There was a concomitant reduction in adipose macrophage infiltration 

and angiogenesis suggesting that HO-1 affects myeloid cell migration towards adipose tissue 

during obesity. CO and bilirubin enhanced macrophage migration by increased 

phosphorylation of p38 and FAK respectively. This highlights the novel role of 

hematopoietic cell HO-1 in promoting adipose macrophage infiltration and the development 

of insulin resistance during obesity. Myeloid HO-1 modulates macrophage polarization and 

protects against ischemia-reperfusion injury [101].

Hepatic ischemia-reperfusion injury (IRI) is a risk factor for acute and chronic rejection in 

liver transplantation. Decreased HO-1 levels in human post reperfusion liver transplant 

biopsies correlated with a decrease in liver function and patient survival. Macrophages are 

the main sources of HO-1 in human and mouse IR stressed livers. In a murine model of 

hepatic warm IRI, myeloid specific deletion lacked SIRT1/p53, exacerbated liver 

inflammation and IR hepatocellular death. In contrast SIRT1 activation restored p53 

signaling and rescued livers from IR damage suggesting a class of macrophages activated 

through a HO-1-SIRT1-p53 axis to protect against hepatic inflammation. This axis offers a 
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portal to new therapeutic strategies to benefit liver transplant recipients [102]. Recently, 

H202 protects against ischemia-reperfusion injury in a mouse fatty liver model via regulation 

of HO-1 and Sirt [103], while increase of HO-1 levels by EETs prevented fatty liver fibrosis 

and lipid uptake [104].

1.6. Detrimental Effects of Low Levels of Heme Degradation; Beneficial Effects of 
Overexpression of HO-1 and Increased HO Activity

Obesity and metabolic syndrome are on the increase in the US and in West Virginia and 

Mississippi specifically resulting in increased demands on these individuals and their 

families, healthcare professionals and on healthcare costs. Obesity is the major risk factor in 

vascular dysfunction, insulin resistance and vascular disease e.g., diabetes and hypertension 

[105–107]. This is manifest by decreased levels of HO-1 and increased levels of 

inflammatory cytokines and insulin resistance [108, 109]. The resultant consequences of 

obesity derived adipocyte dysfunction are significant as perturbations in adipocyte-derived 

paracrine factors impact the function of numerous organs including the vasculature [110–

112]. Increased levels of ROS and heme enhance pre-adipocyte differentiation and 

adipogenesis [31, 38, 59, 113]. It should be emphasized that increased levels of ROS do not 

increase HO-1 expression exacerbating the progression of obesity and metabolic syndrome 

[113] (Figure 3). Activation of the angiotensin II system and NADPH oxidase occurs in 

obesity with the resultant development of CVD, hypertension and diabetes, in part, as an 

impairment of adipocyte function [105, 114, 115]. Low levels of HO-1 are a direct result of 

the development of obesity mediated hypertension [116–118] and the inactivation of HO-1 

by peroxynitrite [39, 67, 68] increases cellular heme content [39, 67, 68].

Heme with increased levels of ROS, produces both vascular, adipocyte dysfunction [59, 104, 

119, 120] (Figure 3).

Local adipose tissue renin-angiotensin system and its activation of the systemic and adipose 

in rodents with diet-induced obesity and hypertension are well described [114, 115]. 

Additionally, Sodhi, et al. recently showed that increased levels of Ang II contribute toward 

adipose tissue dysregulation, which is abated by PPARδ-mediated upregulation and 

activation of the heme-HO system. Angiotensin II activates cellular oxidases and precipitates 

redox imbalance. Increased Ang II levels in adipocytes induce oxidative stress and attenuate 

adiponectin release. Additionally, upregulation of the antioxidant enzyme system, that is, the 

heme–heme oxygenase system (HO) has also been shown to reduce Ang II-induced 

oxidative stress, with abatement of associated cardiovascular complications. Induction of the 

HO-1 gene, both in vivo and in cell cultures, reduces adipocyte hypertrophy with an increase 

in adiponectin levels and the number of small adipocytes, which are regarded as ‘healthy’ 

insulin-sensitive adipocytes. Recent reports have indicated that inhibitors of the RAAS 

attenuate oxidative stress and improve the metabolic profile in various animal models. 

PPARδ-agonist-mediated HO-1 activation prevents oxidative stress and associated 

dysfunctional adipogenesis in animals with an overactive renin–angiotensin system. AngII-

dependent cardio-vascular pathologies in the 2k1clip model of hypertension are rescued in 

animals with increased levels of HO-1 is evidence of the ability of this antioxidant system to 

reverse the ROS-dependent effects of AngII [121].
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We will examine, in this review, the role of HO-1, HO activity and the heme degradation 

products biliverdin/bilirubin and CO in mitigating obesity, oxidative stress and improving 

cell survival. This review will also focus on the role of basic research on the heme 

degradation pathway in the development of therapeutic approaches to prevent the onset of 

obesity, hypertension and diabetes and the adverse events that are manifest in the 

development and progression of atherosclerotic disease, [122, 123].

1.7. Impact of Heme on Adipocyte Differentiation-Adipogenesis and Obesity

Heme is essential for the increase in pre-adipocyte differentiation, adipogenesis [31] and 

synthesis and an increase in heme is associated with recruitment of REV-ERB ligands and 

an increase in adipogenesis [113]. More recently, the heme-mediated increase of 3T3-cell 

differentiation was found to be dependent on suppression of sirtuin 1 (SIRT1) [124]. The 

effect of heme on cell differentiation was not limited to 3T3 cells as heme is indispensable 

for hematopoietic stem cells differentiation to myeloid and erythroid cell linages [125, 126]. 

While the decrease of cellular heme levels by an increase in heme degradation decreases 

adipogenesis, it increases osteoblast differentiation [127, 128]. Similar to HO-1 

overexpression, EET increased osteoblast differentiation but decreased adipocyte 

differentiation [128–131]. This finding was strengthened by administration of CoPP which 

perturbed adipocyte differentiation in adult rats and resulted in a prompt weight loss, without 

a decrease in food consumption[132]. This beneficial effect of CoPP of reducing adiposity is 

shared by other pharmacological agents including hemin, Apo-A1 mimetic peptide L-4F and 

D-4F, EET and peroxisome proliferators-activated receptors alpha. HO-1 expression is also 

transcriptionally regulated by PPARα and PPARγ, indicating a mechanism of anti-

inflammatory and antiproliferative action of PPAR ligands involved in the upregulation of 

HO-1 [133]. Hemin, EET, and L-4F are also associated with a decrease in visceral 

subcutaneous fat and an increase in insulin sensitivity [20, 123, 133–135], as well as a 

decrease in the number of large adipocytes (differentiated adipocytes) and an increase in the 

number of smaller “healthy” adipocytes [19, 130, 131, 136]. HO-1 derived CO and bilirubin 

attenuate obesity presumably via regulation of adiogenesis that maintains pre-adipocytes in 

an early differentiation stage, i.e., smaller adipocytes that are regarded as healthy, insulin 

adipocytes and are capable of producing adiponectin [135, 137, 138]. In contrast decreased 

hypertrophy resulted in large unflamed adipocytes and enhanced TNFα levels (Figure 4). 

Compounds which increase HO-1 levels and HO activity may have cardiovascular benefit as 

induction of HO-1 attenuates inflammatory markers and hypertension [139], reduces 

glomerular injury [140] and obstructive nephropathy [141]. In addition, CoPP induction of 

HO-1 protects skeletal muscle and ameliorates high fat diet induced liver injury [142–144].

The protective role of HO-1 in fatty liver [120] and in ischemia-reperfusion injury has 

recently been reviewed [145]. Fructose-mediated non-alcoholic fatty liver is attenuated by 

HO-1-Sirt1 [143] presumably by PPAR γ binding to HO-1 and prevent adipocyte 

dysfunction [121]. 5-aminolevulinic acid/sodium ferrous sulphate decreased body weight, 

fat weight, hepatic lipid deposits and improved levels of blood glucose while suppressing 

glomerular tuft area in mice fed a HFD. These effects were a consequence of increased 

HO-1 expression [146]. Quercetin protected TNFα induced muscle atrophy under obese 

conditions through Nrf2 mediated HO-1 induction accompanied by the inactivation of NF-
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Kb [147]. Oxidative stress, inflammation, complement inactivation and lipid metabolites in 

the retina are linked to obesity in ob/ob mice suggesting a therapeutic target for HO-1 [148]. 

Similarly, lutein and zeaxanthin modulated oxidative stress and increased HO-1 gene in 

retinal tissue [149].

It should be emphasized that HO-1 does not directly increase adiponectin per se; the HO-1-

mediated antioxidant mechanism and decrease in heme are associated with an increase in 

thiol and superoxide dismutase levels and decreased levels of ROS resulting in increased 

levels of adiponectin [20, 38, 123, 134, 150, 151].

1.8. HO-1, Inflammation and Cardiovascular Disease

The protective role of HO-1 and CO on inflammation occurs in many different disease 

models including ethanol-induced liver cell death [152] and obesity induced liver fibrosis 

and lipid uptake increase, oxHDL and endothelial dysfunction in women with obesity [104, 

119, 120]. Resveratrol both in vitro and in vivo upregulates HO-1 expression, NAD(P)H; 

quinone oxidoreductase 1, gamma glutamylcysteine synthetase via activation of nuclear 

factor (erythroid-derived)-like 2 (Nrf2) genes. The beneficial effects of resveratrol were 

attenuated in Nrf(−/−) mice fed a HFD, indicating that the endothelial protective function of 

resveratrol is mediated by the activation of Nrf2 [153]. Resveratrol as well as other natural 

HO-1 inducers are reported to prevent CVD [154]. Furthermore, loss of RIIP3 reduced ROS, 

inflammatory response and lipid deposition in PAL-stimulated cells. This was associated 

with activation of Nrf2 and HO-1 and that HFD induced hepatic steatosis was regulated by 

RIP3 through TLR-4/NF-kB and Nrf-2/HO-1 pathways [155]. The beneficial effect of HO-1 

induction along with a subsequent increase in adiponectin and EET production is not limited 

to obesity. The HO-1-TTP signaling pathway has been shown to be effective in: 1) treatment 

of inflammatory diseases [156]; 2) induction of mitochondrial biogenesis [157]; 3) 

preservation of cardiac function [158]; 4) down regulation of inflammatory response to 

osteoarthritis [159]; 5) decreased LPS-induced vascular inflammation triggered by bacterial 

infection; 6) suppression of macrophage migration [160] 7) decreased contact 

hypersensitivity [161] and regulators of pregnancy and preeclampsia, highlighting a role as a 

valuable therapeutic tool in the management of a broad spectrum of health problems [162]. 

The absence of HO-1 exacerbated ventricle dilation in hypoxia [163], atherosclerosis and 

vascular remodeling [163]. CoPP-mediated upregulation of HO-1 inducing vascular and 

cardioprotection is well described [125,126] and includes HO-1 mediated breakdown of 

heme to bilirubin and CO, as well as direct signaling of HO-1 to nuclear transcription factors 

(Figure 5). CO releases molecules that offer cardioprotection [127] and both bilirubin and 

CO are potent antioxidants, antiapoptosis respectively, (Figure 5) that relieve oxidative 

stress, reduce pathological remodeling of the heart [164] and obesity, and increases left 

ventricular ejection fraction in humans and mice [165, 166]. Furthermore, HO-1 induction 

increases transcription of PGC-1, a key moderator of energy metabolism. PGC-1 targets 

SIRT3, a mitochondrial deacetylase, and promotes mitochondrial biogenesis, (Figure 6) 

suppression of ROS and improves mitochondrial FA oxidation [120] (Figure 6). 

Additionally, HO-1’s role in cardioprotection is amplified through reducing the proliferative 

response to vascular injury, and an increase in HO-1 inhibited lesion formation [128] in 

HO-1 deficient mice. Recently, Peterson et al. showed that HO-1 gene targeting of 
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endothelial cells yields positive effects on adiposity and vascular dysfunction [167]. These 

findings all highlight HO-1’s protective properties against obesity and cardiovascular 

dysfunction.

Furthermore, CoPP improved both cardiac function and coronary flow by reducing oxidative 

stress, restoring eNOS/iNOS balance and increasing HO-1 levels thereby improving both 

endothelial function and insulin sensitivity in an animal model of diabetes [19, 50, 168]. 

Endothelial progenitor cell function inversely correlates with the long term glucose control 

in diabetic patients which is associated with a decrease in HO-1 and adiponectin levels[169]. 

These results demonstrate that HO-1 levels determine atherosclerotic lesion progression 

[170] and that the induction of the HO-1 pathway provides an important adaptive 

mechanism to reduce the severity of vascular dysfunction, thus representing a potential 

therapeutic target for vascular diseases.

1.9. HO-1 /HO-2 on Hypertension

The biological action of HO-1 and HO-2 gene expression suggests a capacity to participate 

in the regulation of renal function and blood pressure [8, 171–175]. HO-2 deficiency 

contributes to a diabetes-mediated increase in superoxide anion and renal dysfunction [176]. 

Salt-sensitive hypertension in Dahl salt-sensitive rats is exacerbated by inhibition of HO 

activity via inhibition of the pressure-natriuretic response [177]. Inhibition of HO activity 

blunts pressure-natriuresis via two mechanisms; the first being a decrease in renal blood 

flow, implying that the renal HO system supports renal circulation via formation of CO 

[178–180]. This hypothesis is supported by the upregulation of HO-1 expression by both 

CoPP [181] and SnCl2 which increases mesenteric artery relaxation in spontaneously 

hypertensive rats (SHR) and decreases the CYP4A-mediated generation of vasoconstrictors 

by 20-HETE, and that HO-1-derived CO counterbalances 20-HETE mediated 

vasoconstriction [9]. Secondly, HO-1 can regulate renal tubular function by regulating ROS 

production in renal tubules and by regulation of renal sodium transporters such as the 

NKCC2 channel of the thick ascending loop of Henle [182].

1.10. HO-1 and Regulation of Lipid-mediators Signaling in Hypertension and Obesity

The cytochrome P450 (CYP) monooxygenases/epoxygenases family is responsible for 

formation of 20-HETE and EETs [183, 184]. Upon formation, EETs are subjected to rapid 

hydrolysis by epoxide hydrolases (EHs) and ROS (preventable by HO-1 induction) to their 

respective dihydroxyepoxytrienoic acids (DHETs), as well as to esterification primarily to 

glycerophospholipids. Vasodilatory, anti-inflammatory and anti-apoptotic actions of EETs 

well established as is the fact that sEH inhibition increases cellular and circulating EET 

[185, 186]. EET and HO-1 appear to act symbiotically to form a module that serves as a 

molecular “switch” to genetically reprogram the adipocyte phenotype to express lower levels 

of MEST and prevent hypoadiponectinemia [130, 131, 136]. EETs are the first lipid-

mediator derived from lipid metabolism via the CYP system known to regulate insulin 

sensitivity and abate obesity associated adipose tissue and vascular dysfunction; an effect 

which is reversed by inhibition of HO activity [12].
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The mechanism by which EET increases HO-1 could be related to an EET-mediated 

decrease in Bach1, a known suppressor of HO-1 gene expression or increase of PGC1α, that 

is associated with increase of HO-1 [187, 188]. It is also possible that EETs act as a 

transcriptional regulator of the HO-1 promoter through glucocorticoid and AP-1 binding 

sites which are present on the human promoter [189]. These binding sites can activate HO-1 

gene expression [189] and subsequently increase HO activity. Recently, a novel EET isomer, 

11,12-EET, promoted hematopoietic stem cell transplant by activating a unique activation 

protein 1 and of P13K the pathway [190]. Thus EET activation of HO-1 may lead to the 

clinical application of EETs in drug development. EET increases PGC1α and subsequently 

increases HO-1 [187, 191, 192]. Recently, upregulation of HO-1 increases EETs, that 

resulted in expression of PGC1α (Figure 7).

It is clear that the pleiotropic effect of the HO system and its subsequent signalling 

mechanisms lead to increases in EETs, adiponectin and NO bioavailability. Activation of 

EETs can also increase HO activity. The antioxidant action of HO metabolites is associated 

with expansion of small adipocytes which are associated with increased adiponectin and 

downstream signals that include phosphorylated liver kinase B1 (pLKB1), pAMPK, 

phosphorylated endothelial nitric oxide synthase (peNOS) and an increase in NO 

bioavailability [12, 20, 129, 131, 193]. Upregulation of these pathways is associated with 

improved vascular function and attenuation of hypertension. It is evident that the pleiotropic 

effect of the HO system and signalling mechanism [12, 19, 39, 194, 195] and increase in 

biliverdin leads to increases in the protection of EET from degradation by ROS and 

adiponectin. Recently, ablation of soluble epoxide hydrolase increases EETs, and reprogram 

white fat to beige like fat through an increase of HO-1 [196]. These results establish the 

interdependence of five protective pathways, namely HO, EETs, bilirubin, carbon monoxide 

and adiponectin, all of which are affected by perturbations in HO activity and result in the 

prevention of obesity, hypertension and insulin resistance. Activation of these pathways also 

protects the vasculature from injury which is known to increase organ dysfunction and 

vascular diseases (Figure 7).

1.11. HO-1/HO-2 and Health Impact in Obesity

Abdominal obesity is associated with insulin resistance and the pathogenesis of T2DM and 

hypertension, contributes to high serum levels of LDL and triglycerides but low serum levels 

of HDL, and leads to the development of atherosclerotic CVD. HO-1-mediated decreases of 

ROS and LDL occurred in a number of diabetes models [20, 50]. Upregulation of hepatic 

HO-1 decreased heme and ROS in liver resulting in lowered levels of oxHDL and oxLDL. 

The subsequent increase in pAKT AND Glut4 increased insulin sensitivity. In addition, 

pAMPK was increased resulting in decreased lipolysis and FFA levels and the attenuation of 

fatty liver. Leptin-deficient mice and mice fed a HFD exhibit a metabolic syndrome-like 

phenotype which includes an increase in LDL which is amenable to rescue by increases in 

HO-1, HO activity and adiponectin [20]. Chronic HO-1 induction increased oxygen 

consumption, and lowered body weight in obese melanocortin-4 receptor deficient mice with 

an improvement in vascular function [197, 198]. Induction of HO-1 by inducers by gene 

transfer increased the number of “healthy” adipocytes, increased plasma adiponectin levels, 

improved insulin sensitivity and decreased inflammatory adipokine levels and blood 
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pressure. (Figure 8). This beneficial effect of HO-1 induction on adipocyte morphology was 

confirmed in Zucker diabetic rats [199] and in ob/ob diabetic mice, where increased levels of 

HO-1 and HO activity prevented weight gain and decreased visceral and subcutaneous fat 

levels. Upregulation of HO-1 decreased adipogenesis in mesenchymal stem cells (MSCs) 

and increased adiponectin levels in culture media, these positive effects of increased HO-1 

levels are reversed by inhibition of HO activity [108, 134]. These studies affirm the presence 

of an HO-1-adiponectin-EET regulatory module that is crucial in the development of 

therapeutic approaches to ameliorate the deleterious effects of obesity, diabetes and 

metabolic syndrome. Chronic HO-1 induction also increases oxygen consumption [104, 

200]. This effect on oxygen consumption is independent of the melanocortin-4 system as 

chronic treatment of obese melanocortin-4 receptor deficient mice results in the attenuation 

of obesity and type II diabetes [197, 198]. The effect of HO-1 induction of oxygen 

consumption is likely mediated through increased levels of CO since chronic CORM 

treatment increased oxygen consumption and attenuated obesity in mice fed a high fat diet 

[201].

While induction of HO-1 improved insulin sensitivity, downregulation of the peripheral 

endocannabinoid system, and a reduction in adipose tissue volume and adipose tissue 

remodeling, some sex dependent differences occur [20, 135]. Adipocyte HO-1 induction by 

CoPP, L-4F and VECAD promoter HO-1 attenuated metabolic syndrome in both obese male 

and female mice although the rate of weight gain was slowed only in obese male animals. 

[18, 20, 134]. These results emphasize that gender differences are critical in the development 

of therapeutic approaches targeting induction of HO-1 for the treatment of obesity and 

diabetes [20].

Another approach which may be beneficial for the treatment of obesity is the adipose-

specific induction of HO-1. Induction of HO-1 in adipocytes reversed the detrimental 

metabolic consequences of obesity, including insulin resistance and dyslipidemia as well as 

decreasing blood pressure in a mouse model of obesity [20, 202]. These studies further 

highlight the protective cardiovascular role of the HO-1-adiponectin axis in hypertensive 

animals [50].

While adipose specific targeting of the HO-1 gene was successful in attenuating adiposity, 

vascular dysfunction and hypertension in mice fed a HFD, one report indicated that HO-1 

overexpression in adipocytes does not protect against HFD induced obesity and the 

development of insulin resistance [203]. These differences in phenotypes reported between 

these two studies are not clear, although the specific activity of HO in the adipose tissue of 

the transgenic model was not reported. However, elevated levels of HO-1 derived bilirubin 

as seen in humans and mice with hyperbilirubinemia due to Gilbert’s Syndrome are resistant 

to hepatic steatosis [204]. Further, Serum bilirubin levels are negatively associated with 

abdominal obesity [205]. HO-1 derived bilirubin via biliverdin reductase A reduces hepatic 

steatosis [206]. In agreement with the concept that bilirubin plays an important role, obesity 

patients with Gilbert’s Syndrome and elevated levels of bilirubin are resistant to hepatic 

steatosis by decreased phosphorylation of PPARα [207]. More importantly serum bilirubin 

levels are negatively associated with abdominal obesity and hypertriglyceridemia [208].
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In addition, HO-1-derived bilirubin attenuates obesity, as does HO-1 derived CO. Chronic 

treatment with a CO-releasing molecule reverses dietary induced obesity in mice [209]. 

Repetitive administration of CO donors such as CORM 401 produce transient uncoupling 

activity of CO resulting in a lower weight gain and increased insulin sensitivity in obese 

mice fed a HFD [210].

HO-1 overexpression ameliorated the development of non-alcoholic fatty liver disease in 

obese leptin deficient mice via a decrease in hepatic heme [211]. In addition, increased 

levels of HO-1 decreased hepatic lipid droplet size, fatty acid synthase levels, PPARα and 

glucose transporter 1; these beneficial effects were reversed by inhibition of HO activity 

indicating that low levels of HO-1 and HO activity exacerbate the development of obesity 

induced fatty liver [198, 211]. As in 3T3 adipocyte cells, an increase in heme increases 

adipogenesis [31, 113] without upregulation of HO-1 [113]; however, chronic induction of 

HO-1 decreases adipocyte heme which in turn decreases adipogenesis [131]. This decrease 

in adipogenesis is also associated with an increase in the levels of CYP-epoxygenase-derived 

EETs and adiponectin [212].

In a human study, increasing BMI in patients undergoing CABG correlated with increased 

levels of ROS and increased expression of p47 phox and xanthine oxidase and decreased 

levels of HO-1, eNOS and mitochondrial aldehyde dehydrogenase. In addition, VCAM-1 

was elevated the right atrial myocardial tissue and with CCL5/RANTES in serum [213]. In 

an animal model of metabolic syndrome an EET agonist (AUDA) improved mitochondrial 

function and increased levels of PGC1α and HO-1 expression and normalized levels of 

inflammatory cytokines. Raspberry ketone increased the expression of HO-1 with an 

accompanying increase in brown like adipocyte formation. This effect was reversed by 

inhibition of HO activity [214]. Similarly, CoPP inhibited the development of type 2 

diabetes in mice [215]. The use of natural occurring polyphenolic derivates to stimulate the 

HO system in metabolic dysfunction with a focus on the clinical role of HO-1 and HO 

activity to restore the balance between pro- and antioxidant systems has been recently 

reviewed [216].

A number of other clinical studies have examined the relationship between HO-1 and 

obesity. CD163 expression was upregulated in human adipose tissue and soluble CD163 

concentration was elevated in obese (BMI > 40 Kg m−2) compared to lean subjects (BMI < 

30 Kg M−2). The HO-1 gene was upregulated in adipose tissue and expressed predominantly 

in macrophages [217, 218] and in fat tissue [212]. Similarly, diminished upregulation of 

visceral adipose HO-1 correlates with waist-to-hip ratio and insulin resistance [219]. 

Visceral adipose tissue expression of HMOX1 negatively correlated with insulin resistance 

[219]. Morbid obesity is associated with thrombophilia. Adipocytes obtained from obese 

patients exhibited increased HO activity as nonsmoking bariatric patients increased COHb 

concentrations, indicative of HO-1 upregulation [220]. Assessment of HO activity by 

measuring CO production may yield conflicting results unless adequate steps are taken to 

differentiate between HO-dependent and HO-independent CO generation [221–223]. 

Increased CO formation in an HO-independent manner due to photo-oxidation was observed 

via the peroxidation of lipids along with the auto-oxidation of organic molecules such as 

phenols and flavonoids as a result of severe stress [221]. These differences in HO dependent 
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versus HO independent CO generation must be considered when interpreting the results of 

studies in which CO production is measured as an index of HO activity.

1.12. Therapeutic Potential of HO-1 and Signaling Pathways

Induction of HO-1 restores six mitochondrial carriers, i.e., carnitine, citrate, phosphate, 

deoxynucleotide, ATP and dicarboxylate in diabetes [40]. An increase in AKT 

phosphorylation is also critical to cell survival in diabetes [224]. The alteration in 

mitochondrial function both in vitro and in vivo correlated with the levels of activation of 

AKT and the BcL-2 family of proteins [225, 226]. A decrease in BcL-2 family members 

contributed to apoptosis and the translocation of cytochrome c from the mitochondria to 

cytosol [224, 225, 227]. Activation of AKT augmented ATP synthesis [228] and promoted 

the association of hexokinase with the voltage-dependent anion channel (VDAC) channel 

and, in so doing, resulted in VDAC closure which blocked release of cytochrome c. The lack 

of HO-1/HO-2 resulting in decreased HO activity increased apoptotic cell death [118, 229, 

230]. While these results suggest that increases in mitochondrial HO-1 may favorably 

modulate the balance between pro-and anti-apoptotic mechanisms, the clinical applicability 

of targeting either HO-1 or its metabolites, bilirubin and CO, specifically to the 

mitochondria has not been tested as therapeutic approach for the treatment of diabetes, 

although pre-clinical results support such a clinical application [16].

Obesity is a major cardiovascular risk factor and is manifest by increasing BMI in 

individuals undergoing CABG who have increased levels of ROS, p47 phox and xanthine 

oxidase, decreased levels of HO-1, eNOS and mitochondrial aldehyde dehydrogenase and 

elevated levels of inflammatory markers [213]. Improved endogenous epoxyeicosatrienoic 

acid levels improves heart function in metabolic syndrome (Figure 9). This effect is blocked 

by SnMP [231]. Brown like adipose tissue is considered “healthy” adipose tissue and 

promoting white adipose tissue to acquire brown like characteristics is a therapeutic 

approach to treat obesity. Raspberry ketone increased HO-1 and p62 while decreasing Atg12 

in rats. This effect was blocked by inhibition of HO activity [214]. CoPP activated the Nrf2/

HO-1 pathway potentiating the antinociceptive action of CB2R in type 2 diabetic mice 

[215]. Irisin regulates HO-1/adiponectin levels in perivascular adipose tissue with a resultant 

improvement in endothelial function in obese mice fed a HFD [232]. The ability of naturally 

occurring phenols to upregulate the HO system to improve metabolic syndrome in obesity 

and obesity related disease has recently been reviewed [216]. CYP450 epoxygenase derived 

EET reversed heart failure in obesity-induced diabetic cardiomyopathy through PGC-1α 
activation. An EET agonist decreased pericardial adipose expression of NOV, normalized 

fraction shortening, increased PGC-1α and HO-1 levels, insulin receptor phosphorylation 

and improved mitochondrial function. Deletion of PGC-1α reversed these effects in an 

obese mouse model of the metabolic syndrome [233]. HO-1 induction improved insulin 

sensitivity, down regulated the peripheral endocannabinoid system, reduced adipose tissue 

volume and resulted in adipose tissue remodeling in an obesity diabetic animal model [135]. 

These results suggest that HO-1 is a therapeutic target to improve obesity and its associated 

health risks and complications.
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HO-1 expression is transcriptionally regulated by PPARα in human vascular endothelial and 

smooth muscle cells. This is indicative of both anti- inflammatory and anti-proliferative 

action of PPAR by upregulation of HO [133]. The discovery that downregulation of PGC-1α 
prevented the beneficial effect of EET-mediated increase of HO-1 and mitochondrial 

integrity and metabolic function in an animal model of obesity [187]. Ablation of adipose 

tissue HO-1 expression increased levels of white fat when compared to beige fat and 

decreased levels of PGC-1α in female mice [234]. CYP-450 epoxygenase derived 

epoxyeicosatrienoic acid reverses heart failure in an animal model of obesity induced 

cardiomyopathy through increased levels of PGC-1α [235]. More recently, beneficial effects 

of increased levels of the HO-1 and PGC-1α module include enhanced antioxidant activity 

and improved LV function are linked. HO-1-PGC-1α levels in epicardial fat promoted 

antioxidant formation with an increase in thermogenic gene levels essential for attenuating 

cardiometabolic dysfunction. Beta cell destruction, a result of elevated intracellular levels of 

ROS, comprising superoxide radicals, hydrogen peroxide and nitric oxide, is a process that 

occurs through both apoptotic and necrotic mechanisms [236]. T cell-mediated infiltration of 

the pancreas led to ROS generation and increased levels of proinflammatory cytokines. The 

HO system regulates T cell proliferation and immune response [237, 238]. The lack of HO-1 

modulates T cell proliferation and maturation while CoPP increases HO-1 levels in CD4+ T 

cells [46, 239]. An increase in HO activity decreased infiltrated CD11c+ dendritic cells 

suggesting that increased HO activity can prevent the development and/or moderate the 

diabetic state [59]. HO-1 upregulation provided cytoprotection to pancreatic beta cells in 
vivo [240, 241]. Increased HO-1 levels have a salutary effect, modulating the pancreas 

phenotype and making beta cells resistant to oxidative stress and, thus, preventing the 

development of type 1 diabetes. A protective effect is also seen in diabetes where insulin 

increased HO-1 levels through the pI3K/Akt pathway and Nrf2 in renal cells [242]. HO-2 

deficiency in diabetic HO-2 knockout mice caused major renal morphological injury and 

impaired renal function that was rescued by upregulation of HO-1 in the STZ animal model 

of diabetes [176].

The significant role that upregulation of HO-1 plays in obesity/diabetes stems from the 

presence of binding sites for several transcriptional factors including CRE B, OKT1, STATS 

and glucocorticoid-response elements that are expressed on the human HO-1 promoter [189, 

243]. Targeting HO-1 and the products of the degradation of heme stems from the finding 

that induction of HO-1 increases oxygen consumption, heat production and lowers body 

weight [197]. Upregulation of HO-1 reduces body weight in obese animals, while also 

decreasing adipokines including TNF, IL-6, MCP-1 and increasing adipocyte secretion of 

adiponectin (Figure 7).

1.13. HO-1 Genetic Polymorphism and its Impact on Metabolic Diseases

The existence of genetic polymorphism in the HO-1 gene indicates the potential importance 

of HO-1 in the pathogenesis of cardiovascular and pulmonary diseases [244]. The larger the 

size of the (GT)n repeats in the HO-1 gene promoter, the greater the chance of reducing 

HO-1 indelibility by ROS in cigarette smoke and reducing bilirubin, resulting in the 

development of emphysema [244]. Patients with short (<25 GT) dinucleotide repeats in the 

HO-1 gene promoter on either allele had less restenosis than patients with longer (≥25 GT) 
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dinucleotide repeats [245]. Diabetic patients who have Gilbert syndrome, have a lower rate 

of vascular complications, compared to individuals with normal bilirubin levels and diabetes 

[246]. Individuals with shorter (GT)n repeats, when compared to individuals with longer 

(GT)n repeats, have a higher transcriptional activity and thus higher HO-1 levels. In an 

Asian population, with type-2 diabetes and carrying longer (≥32) (GT)n repeats had higher 

oxidative stress and increased susceptibility to the development of coronary artery disease 

and atherosclerosis [247]. Individuals with significant risk factors (hyperlipidemia, diabetes, 

and smoking) for coronary artery disease and who possessed shorter (<27) (GT)n repeats 

were associated with less disease [248]. A cohort study found that patients with short (<25 

GT) dinucleotide repeats in the HO-1 gene promoter on either allele had restenosis 

significantly less often that patients with longer (≥25 GT) dinucleotide repeats [249]. These 

data imply that up-regulation of HO-1, associated with shorter dinucleotide repeats, may be 

protective after balloon angioplasty. However, not all studies support the clinical effect of 

genetic polymorphism, for example, in a study of 1807 patients with coronary artery disease, 

no clinically relevant association of a HO-promoter polymorphism and ischemic events after 

coronary stenting was reported [250]. In support of this finding, no evidence of a protective 

effect for short alleles, i.e., low (GT)n repeat, for graft or recipient survival in clinical renal 

transplant was seen [251]. In addition to (GT)n dinucleotide-length polymorphism, a single 

nucleotide polymorphism in the HO-1 promoter, T(−413)A, correlated with a reduced 

incidence of ischemic heart disease [252]. In a study of 3,104 patients with vascular disease, 

restenosis after percutaneous coronary intervention was associated with angiotensin II-type l 

receptor 116 A/C polymorphism but was not associated with polymorphism of HO-1 [253]. 

These studies both advocate and/or contradict the role of the HO-1 gene in genetic 

polymorphism and atherosclerotic processes. In Japanese obese male subjects, higher 

numbers of individuals with a BMI < 25 kg/m2 had sparse dermis. The number of 

individuals with the long allele of the HMOX-1 promoter was higher in the obese sparse 

dermis group [254]. In more than 800 patients aged between 45–84 years [255], there was an 

association between the HO-1 variable number tandem repeat polymorphism and CVD 

confined to subjects with a high number of repeats on both HO-1 alleles, providing evidence 

of atherogenesis and decreased antioxidant defense system in vascular high risk subjects. 

These studies support an important role of HO-1 gene regulation in the atherosclerotic 

disease processes.

Recent research has focused on obesity and the human state. In human mammary epithelial 

cells (HMEC) estrogen-receptor positive MCF-7 cells and triple negative MDA-MB-231 

cells leptin induced ROS production to a different degree in the 3 cell lines, most noticeably 

in HMEC where HO-1 levels increased[256]. Markers of obesity and growth in preeclamptic 

and normotensive pregnant women and HO-1 was higher in maternal and cord blood of 

preeclamptic women compared to normotensive pregnant women [257]. A potential role for 

statins as an inducer of the HO system in the treatment of preeclampsia has recently been 

advocated [258]. HO-1 induction attenuates fructose-induced hepatic lipid deposition, 

prevents hepatic fibrosis development and abates NAFLD vascular dysfunction. These 

effects are mediated by activation of SIRT1 gene expression [143]. Bariatric surgery 

decreases HO-1 levels in morbidly obese individuals with severe obstructive sleep apnea and 

is associated with decreases in insulin resistance and inflammation [259].
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A new approach would examine whether increasing HO-1 expression via either 

pharmaceutical or genetic agents has the potential to correct for the GT repeat leading to low 

expression, or whether introducing anti-oxidative agents may correct for the increased 

oxidative stress caused by low HO-1 expression. Genetic testing may also have a role in 

identifying patients with HO-1 polymorphisms for which HO-1 based therapies could have a 

corrective effect.

1.14. Concluding Remarks

The wide spectrum of inducers of HO-1 highlights the pivotal role this enzyme plays in 

providing protection against metabolic insults in humans. This offers an obvious target for 

designing compounds with clinical application in multiple human disease states. This is in 

contrast to inhibitors of heme oxygenase activity where the successful use of inhibitors of 

HO activity has been widely described.
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Figure 1: 
Drug actions in the heme degradation pathway. HO-1 (inducible) and HO-2 (constitutive) 

cleave free heme or denatured heme proteins to generate CO, ferritin, and biliverdin, which 

is subsequently converted to bilirubin by biliverdin reductase. CO has both anti-

inflammatory and anti-apoptotic properties [3, 4, 14, 15]. Ferritin is essential for cellular 

redox reactions [24–26]. Serum bilirubin levels are positively linked with a decreased risk of 

CVD and protection against diabetes and vascular dysfunction [36, 37]. Drugs focused on 

the heme degradation pathway predominantly induce HO-1 activity, possibly by interacting 

with the gene promoter. Biliverdin reductase functions via a direct increase of HO-1 or an 

increase in bilirubin levels to promote a reduction in oxidative species [54, 55], and 

mesobiliverdin enhances β-cell function in the pancreas through its antioxidant properties 

[36]. This pathway provides the basis for multiple pharmaceutical and genetic agents that 

can protect against CVD by increasing HO-1 expression.
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Figure 2: 
Heme synthetic pathway. The rate-limiting synthetic enzymes are believed to be ALA 

synthase and, in part, porphobilinogen deaminase (PBGD). Both enzymes exist in 

adipocytes and in erythroid and non-erythroid forms. In non-erythroid cells such as liver, 

kidney, heart, ALA synthase essentially plays a housekeeping role, maintaining intracellular 

heme levels. High levels of heme thus repress the synthesis of ALA synthase while 

stimulating heme degradation through the induction of HO-1[31, 32]. In the origin of 

hematopoietic-derived cells such as adipocyte and erythroid cells, heme is essential for 

cellular proliferation and differentiation, and increase ALA synthase mRNA levels and 

enzyme activity. Further, excess heme enhances the synthesis of globin mRNA [59]. An 

iron-binding element has been located on the 5′ untranslated region of the erythroid type 

cells ALA synthase, so it is possible that the enzyme is actually regulated by intracellular 

levels of iron. Thus, an increase in heme may induce HO-1, increasing the levels of free iron 

which in turn stimulate the formation of adipocyte ALA synthase mRNA and adipocyte 

during differentiation.

Drummond et al. Page 33

Arch Biochem Biophys. Author manuscript; available in PMC 2020 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Obesity increases risk for cardiovascular disease. Obesity leads to an increase in ROS within 

adipocytes, accomplished by increasing NADPH oxidase activity, mitochondrial ROS 

production, and heme levels while repressing antioxidative enzymes such as HO-1 and SOD. 

This increase in adipocyte ROS and heme leads to increased adipocyte differentiation, 

maturation, resulting in increased production of proinflammatory compounds such as 

cytokines and decreased production of antioxidative compounds and compounds preventing 

adipocyte growth and differentiation. The consequences of obesity-mediated adipocyte 

dysfunction may lead to vascular dysfunction which is a prelude to vascular disease and 

hypertension.
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Figure 4: 
Schematic representation of the pathway from mesenchymal stem cell to mature adipocyte 

and where perturbations in the levels of HO-1 may affect this pathway. CO and bilirubin 

maintain pre-adipocytes in an early differentiation stage through regulation of adipogenesis.
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Figure 5: 
Schematic representation of HO-1 pathways. HO-1 catalyzes the breakdown of stress 

inducing heme into its byproducts biliverdin/bilirubin, CO and free iron. Biliverdin/bilirubin 

attenuates adiposity via remodeling of hypertrophic adipocytes and inhibition of ROS-

mediated adipogenesis. CO has anti-inflammatory and anti-apoptosis properties and offers 

cardioprotection via inhibition of vasoconstrictors. HO-1 also protects vascular function 

from deleterious free iron.
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Figure 6: 
HO-1 upregulates EET and PGC1α to increase mitochondrial biogenesis and integrity, 

which inhibits FAS and adiposity. Additionally, HO-1 has been shown to translocate to the 

nucleus and upregulate transcription factors to reduce insulin resistance and adiposity and 

increase metabolic function, although the exact mechanisms of this pathway have yet to be 

fully elucidated. HO-1 also promotes cardioprotective properties, shows improved kidney 

function and attenuates NAFLD and obesity.
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Figure 7: 
Schematic representation of the potential mechanism of HO-1 signaling pathways. HO-1 

signaling pathways act to improve vascular function and attenuate adiposity adipocyte 

differentiation. Some of these signaling targets are insulin receptors, adiponectin, via an 

increase in small adipocytes, EET, SIRT-1, Wnt10b, and β-catenin. The decrease in ROS as 

a result of an increase of HO-1 and HO-1 derived biliverdin/bilirubin provides stability to 

EET, leading to an enhancement of insulin sensitivity and an increase in vascular function. 

HO-1 also translocates into the mitochondria, increasing mitochondrial biogenesis and 

transport carriers and decreasing mitochondrial ROS [40–42].
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Figure 8: 
Fatty acids (FAs) are metabolized in the mitochondria by β-oxidation. In the insulin 

resistance state, FAs increase in circulation and insulin resistance increases. FAs are 

transported into the cell by a membrane protein, activated by binding with coenzyme A and 

transported into the mitochondria by binding with carnitine. Excessive FAs cause 

mitochondrial dysfunction, TG accumulation, increased inflammation and LDL oxidation. 

Increased levels of HO-1 decrease oxHDL and oxLDL, increase pAMPK, stimulate lipolysis 

and decrease FFAs concentration.
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Figure 9: 
Diminished HO-1 levels increased ROS resulting in increased inflammation [1–7] and 

vasoconstriction [8, 9] and decreased vasodilation [10–12], endothelial progenitor cells [13] 

and endothelial and cardiac cell function [16–23]. As seen in the scheme, ROS increase pro-

inflammatory molecules [7, 27–30], angiotensin II [18, 29, 30, 33–35], free radicals [38, 39], 

VSM proliferation [43–49], LDL [20, 50], endothelin [51–53], and IL-18 [58]. The overall 

effect is the worsening of cardiovascular disease and the development of the disease state.
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