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Abstract

Motivation: Cancer subtypes were usually defined based on molecular characterization of single

omic data. Increasingly, measurements of multiple omic profiles for the same cohort are available.

Defining cancer subtypes using multi-omic data may improve our understanding of cancer, and

suggest more precise treatment for patients.

Results: We present NEMO (NEighborhood based Multi-Omics clustering), a novel algorithm for

multi-omics clustering. Importantly, NEMO can be applied to partial datasets in which some

patients have data for only a subset of the omics, without performing data imputation. In extensive

testing on ten cancer datasets spanning 3168 patients, NEMO achieved results comparable to the

best of nine state-of-the-art multi-omics clustering algorithms on full data and showed an improve-

ment on partial data. On some of the partial data tests, PVC, a multi-view algorithm, performed bet-

ter, but it is limited to two omics and to positive partial data. Finally, we demonstrate the advantage

of NEMO in detailed analysis of partial data of AML patients. NEMO is fast and much simpler than

existing multi-omics clustering algorithms, and avoids iterative optimization.

Availability and implementation: Code for NEMO and for reproducing all NEMO results in this

paper is in github: https://github.com/Shamir-Lab/NEMO.

Contact: rshamir@tau.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent technological advances have facilitated the production of

multiple genome-wide high throughput biological data types, col-

lectively termed ‘omics’. These include genomics, transcriptomics,

proteomics and many more. Analysis of omics datasets was proven

invaluable for basic biological research and for medicine. Until re-

cently, research in computational biology has focused on analyzing

a single omic type. While such inquiry provides insights on its own,

methods for integrative analysis of multiple omic types may reveal

more holistic, systems-level insights.

Omic profiles of large cohorts collected in recent years can help

to better characterize human disease, facilitating more personalized

treatment of patients. In oncology, analysis of large datasets has led

to the discovery of novel cancer subtypes. The classification of

tumors into these subtypes is now used in treatment decisions

(Parker et al., 2009; Prasad et al., 2016). However, these subtypes

are usually defined based on a single omic (e.g. gene expression), ra-

ther than through an integrative analysis of multiple data types. The

large international projects like TCGA (McLendon et al., 2008) and

ICGC (Zhang et al., 2011) now provide multi-omic cohort data, but

better methods for their integrated analysis are needed. Novel,

improved methods that employ multiple data types for cancer sub-

typing can allow us to better understand cancer biology, and to sug-

gest more effective and precise therapy (Kumar-Sinha and

Chinnaiyan, 2018; Senft et al., 2017).

1.1 Multi-Omics clustering approaches
There are several approaches to multi-omics clustering (see the

reviews by Huang et al., 2017; Rappoport and Shamir, 2018; Wang

and Gu, 2016). The simplest approach, termed early integration,
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concatenates all omic matrices and applies single-omic clustering on

the resulting matrix. LRAcluster (Wu et al., 2015) is an example of

such a method, which probabilistically models the distribution of

numeric, count and discrete features. Early integration increases the

dimensionality of the data, and ignores the different distributions of

values in different omics.

Late integration methods cluster each omic separately, and then

integrate the clustering results, for example using consensus cluster-

ing (Monti et al., 2003). PINS (Nguyen et al., 2017) is a late integra-

tion method that defines connectivity matrices as describing the

co-clustering of different samples within an omic, and integrates

these matrices. Late integration ignores interactions that are weak

but consistent across omics.

Middle integration approaches build a single model that

accounts for all omics. These models include joint dimension reduc-

tion of omic matrices and similarity (kernel) based analyses.

Dimension reduction approaches include jNMF, MultiNMF (Liu

et al., 2013; Zhang et al., 2012), iCluster (Shen et al., 2009), and its

extensions iClusterPlus and iClusterBayes (Mo et al., 2013, 2018).

CCA is a classic dimension reduction algorithm (Hotelling, 1936),

which linearly projects two omics to a lower dimension such that

the correlation between the projections is maximal. MCCA (Witten

and Tibshirani, 2009) generalizes CCA to more than two omics.

Because of the high number of features and the complexity of di-

mension reduction algorithms, feature selection is required.

Similarity based methods handle these shortcomings by working

with inter-patient-similarities. These methods have improved run-

time, and are less reliant on feature selection. Examples are SNF

(Wang et al., 2014) and rMKL-LPP (Speicher and Pfeifer, 2015).

SNF builds a similarity network of patients per omic, and iteratively

updates these networks to increase their similarity until they con-

verge to a single network, which is then partitioned using spectral

clustering. rMKL-LPP uses dimension reduction, such that similar-

ities between neighboring samples is maintained in lower dimension.

For that purpose, it employs multiple kernel learning, using several

different kernels per omic, and providing flexibility in the choice of

the kernels. All the middle integration methods above use iterative

optimization algorithms, and in some cases guarantee only conver-

gence to local optimum.

To the best of our knowledge, to date, all middle integration

methods for multi-omics clustering developed within the bioinfor-

matics community assume full datasets, i.e. data from all omics

were measured for each patient. However, in real experimental set-

tings, often for some patients only a subset of the omics were meas-

ured. We call these partial datasets in the rest of the paper. This

phenomenon is already prevalent in existing multi-omic datasets,

such as TCGA (McLendon et al., 2008), and will increase as cohorts

grow. Being able to analyze partial data is of paramount import-

ance, due to the high cost of experiments, and the unequal cost for

acquiring data for different omics. Naive solutions like using only

those patients with all omics measured or imputation have obvious

disadvantages.

A close problem to multi-omics clustering was researched in the

machine learning community. In the area of ‘multi-view learning’

(reviewed in Zhao et al., 2017), methods for multi-view clustering

actually solve the multi-omic clustering problem. PVC (Li et al.,

2014) is such a method for clustering in the presence of partial data,

which is based on joint nonnegative matrix factorization, such that

the objective function only considers observed values. This method

has not been previously applied on multi-omic data.

1.2 Our contribution
We present NEMO (NEighborhood based Multi-Omics clustering),

a simple algorithm for multi-omics clustering. NEMO does not re-

quire iterative optimization and is faster than prior art. NEMO is

inspired and bulids on prior similarity-based multi-omics clustering

methods such as SNF and rMKL-LPP. NEMO’s novelty lies in its

simplicity, and in its support of partial data. Its implementation, as

well as code to reproduce the results in this paper, are available in

github: https://github.com/Shamir-Lab/NEMO.

We evaluated the performance of NEMO by comparing it to a

wide range of multi-omics clustering methods on several cancer data

types. On full datasets, despite its simplicity, NEMO performed

comparably to leading multi-omics clustering algorithms. In order

to evaluate performance on partial multi-omic data, we compared

NEMO to PVC and to data imputation followed by clustering using

several methods. In most tests on synthetic data and on real cancer

data, NEMO had clear advantage. Finally, we analyzed NEMO’s

clustering solution for Acute Myeloid Leukemia, and showed the

merit of using multiple omics with partial data.

2 Materials and methods

NEMO works in three phases. First, an inter-patient similarity ma-

trix is built for each omic. Next, the matrices of different omics are

integrated into one matrix. Finally, that network is clustered.

2.1 NEMO – full omics datasets
The input to NEMO is a set of data matrices of n subjects (samples

or patients). Given L omics, let Xl denote the data matrix for omic l.

Xl has dimensions pl � n, where pl is the number of features for

omic l. P ¼ Rlpl is the total number of features.

Denote by xli the profile of sample i in omic l (column i in Xl).

Let gli denote its k nearest neighbors within omic l, where Euclidean

distance is used to measure profile closeness. For omic l, an n � n

similarity matrix Sl is defined as follows:

Slði; jÞ ¼
1ffiffiffiffiffiffi

2p
p

rijl

exp �
jjxli � xljjj2

2 � r2
ijl

 !
(1)

where r2
ijl is defined by:

r2
ijl ¼

1

3
� 1

k

X
r2gli

jjxli � xlrjj2 þ
1

k

X
r2glj

jjxlj � xlrjj2 þ jjxli � xljjj2
 !

(2)

This similarity measure is based on the radial basis function ker-

nel (Buhmann, 2003). r2
ijl is a normalizing factor, which controls for

the density of samples by averaging the squared distance of the ith

and jth samples to their nearest neighbors and the squared distance

between these two samples (Wang et al., 2012, 2014; Yang et al.,

2008).

Next, we define the relative similarity matrix, RSl, for each

omic:

RSlði; jÞ ¼
Slði; jÞP

r2gli
Slði; rÞ

� Iðj 2 gliÞ þ
Slði; jÞP

r2glj
Slðr; jÞ

� Iði 2 gljÞ (3)

where I is the indicator function. RSlði; jÞ measures the similarity be-

tween i and j relative to i’s k nearest neighbors and to j’s k nearest

neighbors. Since different omics have different data distributions,

the relative similarity is more comparable between omics than the

original similarity matrix S.
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In the next step, NEMO calculates the n � n average relative

similarity matrix ARS as:

ARS ¼ 1

L

X
l

RSl (4)

RSl can be viewed as defining a transition probability between

samples, such that the probability to move between samples is pro-

portional to their similarity. Such transition distributions are widely

used to describe random walks on graphs (Lo Asz, 1993). ARS is

therefore a mixture of these distributions (Zhou and Burges, 2007).

Given ARS, the clusters are calculated by performing spectral

clustering on ARS (von Luxburg, 2007). We use the spectral cluster-

ing variant that is based on the eigenvectors of the normalized

Laplacian, developed by Ng et al. (2001).

To determine the number of clusters, we use a modified eigengap

method (von Luxburg, 2007). The number of clusters is set to

argmaxiðkiþ1 � kiÞ � i, where k are ARS eigenvalues. Intuitively, this

objective maintains the idea of the eigengap while encouraging the

solution to have a higher number of clusters. This is desired since we

observed that often some increase in the number of clusters com-

pared to that prescribed by the eigengap method improved the prog-

nostic value for cancer data. The number of clusters determined by

this method is at least as high as the number determined using the

eigengap method.

As suggested by Wang et al. (2014), we set the number of neigh-

bors in each omic to be k ¼ #samples

#clusters
in case the number of clusters is

known. When the number of clusters is not known, we use

k ¼ #samples
6 , using 6 as a crude estimate for the number of clusters

observed in cancer datasets. We show NEMO’s robustness to that

parameter.

2.2 NEMO – partial datasets
NEMO can handle samples that were measured on only a subset of

omics. Specifically, we require that each pair of samples has at least

one omic on which they were both measured. Note that this holds in

particular if there is an omic for which all samples have measure-

ments, which is often the case for gene expression data. Under these

conditions, RSl is computed as in the full-data scenario, but ARS is

now only averaged on the observed values. Denote by JM(i, j) the

omic types available for both samples. Then:

ARSði; jÞ ¼ 1

jJMði; jÞj
X

l2JMði;jÞ
RSlði; jÞ (5)

Note that we require that all samples that have measurements

for some omic, have measurements for the same set of features in

that omic, such that even in the partial data settings each Xl is a full

matrix, albeit with fewer rows. For example, the expression of the

same set of genes is measured for all patients with RNA-seq data.

When patients have different sets of measured features in the same

omic, either intersection of the features or imputation of missing val-

ues is required.

On partial datasets, each omic l may have a different number of

samples #samplesðlÞ. The number k of nearest neighbors is chosen

per omic. Generalizing the full data setting, for omic l we set

k ¼ #samplesðlÞ
6 .

2.3 Time complexity
Computing the distance between a pair of patients in omic l takes

OðplÞ, so calculating the distance between all patients in all omics

takes Oðn2 � PÞ. The k nearest neighbors of each patient and its aver-

age distance to them in a specific omic can be computed in time

O(n) per patient (Blum et al., 1973), for a total of Oðn2 � LÞ. Given

the distances, the nearest neighbors, and the average distance to

them, each r2
ijl can be computed in O(k) time. Each entry in RSl is

also calculated in O(k). ARS calculation therefore requires

Oðn2 � PÞ, and spectral clustering takes Oðn3Þ, so the total time is

Oðn2 � Pþ n3Þ.
Other similarity-based methods such as SNF and rMKL-LPP

need the same Oðn2 � PÞ time to calculate the distances. However,

the iterative procedure in both SNF and rMKL-LPP requires Oðn3Þ
per iteration.

2.4 Clustering assessment
In datasets where the true clustering is known, to gauge the agree-

ment between a clustering solution and the correct cluster structure,

we used the adjusted Rand index (ARI) (Hubert and Arabie, 1985).

To assess clustering solutions for real cancer samples, we used

survival data and clinical parameters reported in TCGA. We used

the logrank test for survival (Hosmer et al., 2008) and enrichment

tests for clinical parameters. We used the v2 test for independence to

calculate enrichment of discrete clinical parameters, and Kruskal-

Wallis test for numerical parameters. It was previously observed

that the v2 approximation for the statistic of these tests produces

biased P-values that overestimate the significance (Rappoport and

Shamir, 2018; Vandin et al., 2015). In order to better approximate

the real P-values, we performed permutation tests on the clustering

solution, and reported the fraction of permutations for which the

test statistic was greater or equal to that of the original clustering so-

lution as the empirical P-value. Full details on the permutation test-

ing appear in Rappoport and Shamir (2018).

3 Results

We applied NEMO in several settings. First, we compared it to nine

multi-omics clustering algorithms on ten full cancer datasets. We

next compared NEMO to several methods on simulated partial

data, on multi-view image data and on real cancer datasets with

parts of the data artificially removed. Finally, we used NEMO on a

real partial cancer dataset.

3.1 Full datasets
We applied NEMO to ten TCGA datasets spanning 3168 patients.

The datasets are for the following cancer types: Acute Myeloid

Leukemia (AML), Breast Invasive Carcinoma (BIC), Colon

Adenocarcinoma (COAD), Glioblastoma Multiforme (GBM),

Kidney Renal Clear Cell Carcinoma (KIRC), Liver Hepatocellular

Carcinoma (LIHC), Lung Squamous Cell Carcinoma (LUSC), Skim

Cutaneous Melanoma (SKCM), Ovarian serous cystadenocarci-

noma (OV) and Sarcoma (SARC). For each dataset, we analyzed

three omics: gene expression, methylation and miRNA expression.

When some of the patients lacked measurements for some of the

omics, we included only those patients that had data from all omics.

We have previously used these datasets to benchmark multi-omics

clustering methods (Rappoport and Shamir, 2018). Datasets sizes

varied between 170 and 621 samples. See Rappoport and Shamir

(2018) for full details and preprocessing. Results for the execution

of all methods on all datasets appear in Supplementary, Tables 1–4.

Clustering results for NEMO on all datasets are in Supplementary

File S2.
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We compared NEMO on each dataset to nine different multi-

omics clustering methods. As early integration methods we used

LRAcluster, and k-means and spectral clustering on the concaten-

ation of all omic matrices. For late integration we used PINS. We

used MCCA, MultiNMF and iClusterBayes as joint dimension re-

duction methods. Finally, SNF and rMKL-LPP represented

similarity-based integration. We set k, the number of neighbors in

NEMO to k ¼ #samples
6 . For all methods, we chose the number of

clusters in the range 2-15 using the methods recommended by the

authors. The results of the nine methods were taken from our bench-

mark study (Rappoport and Shamir, 2018), where full details on the

execution of all methods are available. (For MCCA, LRAcluster and

k-means the results are slightly different, since here we increased the

number of k-means repeats they perform in order to increase their

stability.)

To assess the clustering solutions we compared the survival

curves of different clusters, and performed enrichment analysis on

clinical labels (see Section 2). To avoid biases, we chose the same set

of clinical parameters for all cancers: age at initial diagnosis, gender

and four discrete clinical pathological parameters. These parameters

quantify the progression of the tumor (pathologic T), cancer in

lymph nodes (pathologic N), metastases (pathologic M) and total

progression (pathologic stage). In each cancer type we tested the en-

richment of each parameter that was available for it.

Table 1, Figure 1 and Table 2 summarize the performance of the

ten algorithms on the ten datasets. NEMO found a clustering with

significant difference in survival for six out of ten cancer types, while

all other methods found at most five. None of the methods found a

clustering with significantly different survival for the COAD, LUSC

and OV datasets. The P-value for KIRC, the only other dataset for

which NEMO did not reach significance, was 0.063. NEMO had an

average logrank P-value of 1.64, second after MCCA (1.75).

NEMO found at least one enriched clinical parameter in eight of the

ten datasets, the highest number found and tied with spectral clus-

tering, LRACluster, rMKL-LPP, PINS and MCCA. The average

number of enriched clinical parameters for NEMO was 1.5, second

only to rMKL-LPP with 1.6. Standard deviations across the different

datasets for Figure 1 appear in Supplementary Figure S1.

Compared to the other methods, NEMO tended to choose an

intermediate number of clusters per dataset (average 4.5, see

Table 1). This number of clusters is small enough so that the clusters

will be highly interpretable, but still capture the heterogeneity

among cancer subtypes.

Table 1. Aggregate statistics of the tested multi-omics clustering methods across ten cancer datasets

K-means Spectral LRAcluster PINS SNF rMKL-LPP MCCA MultiNMF iClusterBayes NEMO

Significantly different survival 2 3 5 5 4 4 5 4 2 6

Significant clinical enrichment 7 8 8 7 7 8 8 6 5 8

Number of clusters 2.6 (1.3) 3.3 (2.3) 9.4 (3.8) 4.6 (3.8) 2.8 (0.8) 6.7 (1.6) 10.6 (5.0) 2.2 (0.4) 2.2 (0.4) 4.5 (2.8)

Runtime (s) 394 (374) 4 (2) 3388 (3295) 449 (958) 13 (11) 233 (43) 20 (10) 28 (12) 4298 (1703) 10 (4)

Note: First row: number of datasets with significantly different survival. Second row: number of datasets with at least one enriched clinical label. Third row:

mean number of clusters. Fourth row: mean runtime. Best performers in each category are marked in bold. The numbers in parentheses are one standard

deviation.

Table 2. Results of applying the ten algorithms on cancer datasets

Alg/Cancer AML BIC COAD GBM KIRC LIHC LUSC SKCM OV SARC Means #sig

kmeans 1/2.9 0/0.6 0/0 2/2.3 0/0.2 1/0.2 1/0.2 2/0.6 1/0.1 2/1.3 1/0.8 7/2

spectral 1/1.7 2/1.6 0/0.2 2/2.2 0/0.3 2/0.4 2/0.3 2/0.9 1/0.8 2/1.3 1.4/1 8/3

lracluster 1/2 4/1.3 0/0.5 1/1.4 1/4.6 0/0.8 1/0.9 2/2.7 1/0.6 2/1 1.3/1.6 8/5

pins 1/1.2 4/1.3 0/0 1/3.6 0/1.8 2/2 1/0.1 2/2.8 0/0 2/1.2 0.9/1.3 7/5

snf 1/2.9 2/1 0/0.2 1/4.1 1/2.1 2/0.2 0/0.6 1/0.6 0/0.2 2/2.1 1/1.4 7/4

mkl 1/2.4 5/0.6 0/0.5 2/3 1/1.1 3/1 0/0.3 1/2.6 1/0.1 2/2.5 1.6/1.4 8/4

mcca 1/1.4 0/3.2 1/0.3 2/1.8 1/3.9 2/0.9 0/0.4 2/4.3 1/0.7 2/0.6 1.2/1.8 8/5

nmf 0/1.3 0/1.3 0/0.3 1/2.1 1/1.9 3/2.9 1/0.3 2/4.5 0/0.3 2/1.1 1/1.6 6/4

iCluster 0/1 3/0.2 0/0.2 0/1 0/2 2/1 2/0.6 3/4.4 0/0 2/0.8 1.2/1.1 5/2

nemo 1/2.1 3/1.4 0/0.2 1/2 1/1.2 3/3.3 0/0.4 3/3.9 1/0.1 2/1.8 1.5/1.6 8/6

Note: The first number in each cell is the number of significant clinical parameters detected, and the second number is the �log10 P-value for survival, with

bold numbers indicating significant results. Means are algorithm averages. #sig is the number of datasets with significant clinical/survival results. We use 0.05 as

the threshold for significance.

Fig. 1. Mean performance of the ten algorithms on ten cancer datasets. Y

axis: average significance of the difference in survival among clusters

(�log10 logrank test’s P-values). X axis: average number of enriched clinical

parameters in the clusters. The dotted lines highlight NEMO’s performance
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NEMO had the the second fastest average runtime after spectral

clustering of the concatenated omics matrix. (The same was true for

the geometric mean runtime, see Supplementary Table S5). All

methods except for LRAcluster and iClusterBayes took only a few

minutes to run on datasets with hundreds of samples and tens of

thousands of features. However, due to NEMO’s simple integration

step, it was the fastest of all non-trivial integration methods, includ-

ing other similarity-based methods (SNF and rMKL-LPP). The run-

time improvement over SNF was minor for most datasets in the

experiment, and was mainly seen in the largest dataset (BRCA),

where SNF took 43 s and NEMO 19. For rMKL-LPP, the time

reported does not include the similarity computation, as this code

was not provided by the authors, but was implemented by us, so its

total runtime is higher. Details regarding the hardware used appear

in Supplementary File S1. We note that since NEMO’s integrated

network is sparse, its spectral clustering step can be further

improved using methods for spectral clustering of sparse graphs (e.g.

Lanczos, 1950). This advantage in runtime, and NEMO’s improved

asymptotic runtime compared to other similarity-based methods

(see Section 2) will become more important as the number of

patients in medical datasets increases.

3.2 Simulated partial datasets
We next evaluated NEMO’s performance on simulated partial data-

sets. We tested two scenarios. In the first we created two clusters

using multivariate normal noise around the clusters’ centers, and

then created two omics by adding to these data different normal

noise for each omic (see Supplementary File S1). The simulation is

therefore designed such that both omics share the same underlying

clustering structure. In the second scenario, we added a third omic

that does not distinguish between the clusters. To simulate partial

data, we removed the second omic data in an increasing fraction,

which we denote h, of randomly chosen samples, for h ranging be-

tween 0 and 0.8. We generated 10 different full datasets, and for

each dataset and for each value of h we performed ten repeats. Here

we report the average ARI between the computed and the correct

clustering for each h.

We compared NEMO’s performance to PVC, and also to

MCCA and rMKL-LPP, the top performers on the full real data. To

run PVC on the dataset, we subtracted the minimal observed value

from each omic, making all values non-negative, and set PVC’s k

parameter to 0.01. Since PVC’s implementation supports only two

omics, we ran it only in the first scenario. To run rMKL-LPP and

MCCA on partial data, we completed the missing values using KNN

imputation on the concatenated omics matrix. We used KNN im-

putation since it was shown to perform well in omic data

(Troyanskaya et al., 2001). We ran the procedure on the concaten-

ated matrix because it allows imputation of values for samples that

lack one of the omics, using the similarity of a sample to other sam-

ples in other omics, and assuming that the different omics are corre-

lated. As the number of clusters in the simulated data was known to

be 2, we set NEMO’s parameter k to half the number of samples as

described in the Section 2. Full details about PVC’s execution appear

in Supplementary File S1. MCCA was applied twice, using two low

dimensional representations (See Supplementary File S1 for details).

Figure 2 shows that NEMO outperformed other methods in

both simulations. Furthermore, NEMO performed better on data

that were not imputed than on data that were imputed. This shows

the advantage of using NEMO directly on partial datasets, rather

than performing imputation. In both scenarios, the performance of

all methods deteriorated as the fraction of missing data increased. A

notable exception was MCCA when using the low dimensional rep-

resentation of the first omic. We believe this representation was

barely affected by the second omic. Interestingly, adding a third

omic that contributes no information to the clustering solution

decreased the performance, but this decrease was minor for all

methods.

PVC performed poorly compared to NEMO in the two-omics

simulation. In fact, PVC with all data for both omics performed

worse than NEMO with 80% missing data in the second omic. We

suspect that since PVC is based on linear dimension reduction, it

does not capture the spheric structure of the clusters. Since PVC’s

implementation supports only two omics, we could not test it in the

second scenario.

3.3 Image dataset
To further test NEMO’s performance in a complicated dataset

where the true clustering is known, we ran the different methods on

Handwritten, an image dataset which contains 2000 images of the

digits 0–9, with 200 images of each digit. This dataset is widely used

by the machine learning community to benchmark multi-view meth-

ods (Zhao et al., 2017). We used two ‘omics’ for this dataset. The

first contains 240 pixel averages for windows of size 2 � 3. The se-

cond contains 76 Fourier coefficients of the images. For perform-

ance reasons, we used only 500 randomly sampled images. We

simulated partial data by randomly removing data for half the

Fig. 2. Performance on simulated partial data. We executed the algorithms with an increasing fraction of samples missing data in one of the omics, and compared

the resulting clustering to the ground truth using ARI. The left plot uses two omics, and the right plot uses three omics where the third one contains only noise
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samples from the second omic. Like in the simulated data, NEMO

was compared to the methods with best performance on the full can-

cer datasets. Data for methods other than NEMO and PVC was

imputed using KNN, and the data were clustered assuming ten clus-

ters. We repeated this clustering process ten times, each time select-

ing at random the samples that were removed in the second omic.

Supplementary Table S6 contains the mean ARI between the

obtained clusters and the true clustering. On this dataset, with full

data, rMKL-LPP and NEMO were comparable, and they both great-

ly ourperformed the other methods. On partial data, NEMO was

best.

3.4 Partial cancer datasets
We next compared NEMO to other methods on partial cancer data-

sets, by simulating data loss on the ten full TCGA datasets analyzed

above. We tested two scenarios, (i) using three omics for all sub-

types, and (ii) using only two omics, to allow comparison with PVC.

We randomly sampled a fraction h of the patients and removed their

second omic data. The other omic(s) data were kept full. The h val-

ues tested were between 0 and 0.7. In all datasets, the first omic was

DNA methylation, and the second (from which samples were

removed) was gene expression. In the three-omic scenario, the last

omic was miRNA expression. We repeated each test five times, and

the P-values reported here are the geometric averages of the

observed P-values.

Full details on how each method was executed are in

Supplementary File S1. We set the number of clusters in PVC to be

the same as determined by NEMO, since no method to determine

the number of clusters was suggested for PVC. We used survival

analysis and enrichment of clinical labels to assess the quality of the

clustering solutions. Full results for this analysis are in

Supplementary File S3.

Figure 3 shows the mean results on three omics across all ten

cancer types. NEMO performed best with respect to survival, fol-

lowed by NEMO with imputation. rMKL-LPP performed best with

respect to clinical parameters, followed by NEMO with and without

imputation.

Note that in contrast to simulated data, here the performance of

the methods did not consistently deteriorate as more data were

removed. This is somewhat surprising, as gene expression (the omic

that was partially removed) is believed to be the most informative

omic. While on average performance across the cancer types was

not consistent, we did see a decrease in performance on some of the

datasets. The difference between the performance of MCCA for full

data here (h¼0) and its previous results (Fig. 1) is due to the fact

that MCCA optimizes its objective with respect to one omic at a

time, which makes the solution sensitive to the order of the omics.

We also ran MCCA using the original omic order (see

Supplementary Fig. S8). Still, NEMO outperformed MCCA with re-

spect to survival in all runs except on full data with all three omics

(the setting for the original full data experiments).

In the second scenario, out of the datasets that had statistically

significant survival results, NEMO was best performer for AML,

GBM and SARC, while PVC was best for BIC and SKCM

(Supplementary Fig. S4). PVC (using the number of clusters deter-

mined by NEMO) had best mean survival and clinical enrichment

across all datasets (Supplementary Fig. S6). This shows the merit of

PVC (and of NEMO’s method to determine the number of clusters)

in datasets with two omics. Interestingly, for both NEMO and PVC,

the mean performance across all ten full two-omics datasets was bet-

ter than the performance of all methods on full three-omics datasets

in terms of survival (Fig. 3 and Supplementary Fig. S6; see also

Supplementary Fig. S7 for MCCA with the reverse omic order).

Performing imputation increases the runtime of the algorithms.

For example, the average time (across 5 runs) to perform imputation

for the BIC dataset with methylation and mRNA expression omics,

when h ¼ 0:5, was 560 s. This is a necessary preprocessing step for

methods that do not directly support missing data. In contrast, not

only do NEMO and PVC not require imputation, but they also run

faster as the fraction of missing data increases. The runtime of

NEMO on the same two-omic BIC dataset decreased from 42 s with

full data to 21 s with h ¼ 0:7. PVC was slower than NEMO, and its

runtime decreased from 92 to 27 s.

3.5 Robustness analysis
We sought to assess NEMO’s robustness with respect to the param-

eter k, the number of neighbors, and with respect to the number of

clusters. We first tested robustness on the simulated data. We exe-

cuted NEMO on the three-omic simulated data described previous-

ly. We used k ¼ 10; 20; . . . ;200 and compared the obtained

clustering to the known clustering using the Adjusted Rand Index.

Supplementary Figure S9 shows that in that setting, NEMO was

highly robust to the choice of k, except for low values.

We next performed clustering on the ten cancer datasets using

k ¼ 25;35; . . . ; 105, a range that includes all k values we used in the

full and partial data analyses. Supplementary Figure S10 shows the

P-values for logrank test for each value of k. Generally, the perform-

ance of NEMO was robust with respect to k. In a few cases, such as

the GBM, SKCM and SARC datasets, the results varied more de-

pending on k. This is partially explained by the different number of

clusters NEMO chose for different values of k (see Supplementary

Fig. S12). We conclude that usually changing k has little effect on

Fig. 3. Performance on partial cancer datasets as a function of the fraction of samples missing data in one of the omics. Left: survival analysis. Right: clinical

parameters. Results are averages across ten three-omics cancer datasets
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the number of clusters and on the significance. In those cases where

significance changed with k, it was usually a result of change in the

number of clusters chosen (compare Supplementary Figs S10, S11

and S12). We next clustered the ten datasets using a number of clus-

ters ranging from 2 to 15. Supplementary Figures S13 and S14 show

the effect of the different number of clusters on the survival analysis

and number of enriched clinical parameters. We note that NEMO is

less robust to the number of clusters chosen than to k.

3.6 Acute myeloid leukemia analysis
We applied NEMO to an AML cohort of 197 patients from TCGA.

This is a partial dataset, containing 173 patients with gene expres-

sion profiles, 194 with methylation and 188 with miRNA profiles.

As it is partial, the dataset cannot be directly clustered using other

algorithms for multi-omics clustering. To apply these methods, one

must limit analysis to a sub-cohort of 170 patients that have full

data, or perform imputation. NEMO suggested five clusters for this

dataset; their sizes appear in Figure 4. When plotting survival curves

of the clusters (Fig. 4), we found them to be significantly different

(P-value ¼ 3.5e�4). The significance was higher than obtained by

all other nine clustering methods on the full data subcohort (lowest

P-value 1.3e�3 using k-means). This shows the higher significance

gained from analyzing more samples, including partial data.

We compared the prognostic value of NEMO’s clusters to that

of the FAB (French-American-British) classification. FAB is a well-

accepted clinical classification for AML tumors (Bennett et al.,

1976), which is based on quantification of blood cells. We per-

formed logrank test using the FAB label as clustering solution, and

obtained a P-value 5.4e�2, which shows NEMO’s favorable prog-

nostic value. Executing NEMO using only a single omic, results for

gene expression, methylation and miRNA expression data had log-

rank P-values 3.4e�2, 3.4e�3 and 3.7e�3 respectively. These

results demonstrate the improved clustering obtained by NEMO

using multi-omic data.

We performed enrichment analysis for each NEMO cluster using

the PROMO tool, which allows systematic interrogation of all clin-

ical labels (Netanely et al., 2016). In addition to the significantly dif-

ferential survival, the clusters were found to be enriched in other

clinical labels. Cluster 1 had particularly young patients, and

showed favorable prognosis. Cluster 2 had poor prognosis, older

patients, and was enriched with FAB label ‘M0 undifferentiated’. 17

out of 19 patients with label ‘M0 undifferentiated’ appeared in this

cluster. This label corresponds to the undifferentiated acute myelo-

blastic AML subtype, which is known to have poor prognosis (Bene

et al., 2001). Cluster 3 showed favorable prognosis, and was

enriched with the M3 FAB label, which corresponds to the acute

promyelocytic leukemia (APL) subtype. All 19 patients in this cluster

were labeled with M3, and only one patient outside cluster 3 had

this label. APL is caused by a translocation between the genes

RARA on chromosome 17 and PML on chromosome 15, and is

known to have favorable prognosis (Wang and Chen, 2008). Cluster

4 was enriched with the M5 label, which corresponds to acute

monocytic leukemia. Indeed, it was also enriched with a high mono-

cyte count. Finally, cluster 5 was enriched with patients with no

known genetic aberrations. All the clustering results and enriched

clinical labels are included in Supplementary Files S4 and S5.

4 Discussion

We presented the NEMO algorithm for multi-omics clustering, and

tested it extensively on cancer datasets and in simulation. NEMO is

much simpler than existing multi-omics clustering algorithms, has

comparable performance on full datasets, improved performance on

partial datasets without requiring missing data imputation, and

faster execution.

The main insight NEMO uses is that the local neighborhood of

each sample best captures its similarity patterns in each omic. We

believe that NEMO’s performance stems largely from this insight.

Previous methods used local similarities, and NEMO suggests that

the performance of these methods was largely due to that use, rather

than to other steps performed by these algorithms.

NEMO’s simplicity makes it more flexible and more easily

adapted to different circumstances. It requires only the definition of

a distance between two samples within an omic, and can therefore

support additional omics, numerical, discrete and ordinal features,

as well as more complicated feature types, such as imaging, EMR

data and microbiome. In addition to enabling clustering, the net-

work produced by NEMO represents the similarity between samples

across all omics, and can thus be used for additional computational

tasks. Future work will test the usability of NEMO on discrete data

types, and of its output network for tasks other than clustering.

We showed that NEMO can be used to analyze partial multi-

omic datasets, i.e. ones in which some samples lack measurements

for all omics. Partial datasets are ubiquitous in biology and medi-

cine, and methods that analyze such datasets hold great potential.

This challenge is exacerbated by the high cost of high-throughput

experiments. While the price of some experiments is decreasing, it is

still high for other omics. Methods that analyze partial datasets may

affect experimental design and reduce costs, and, as we demon-

strated, they can outperform full-data methods applied only to the

subset of samples that have all omics. The demand for algorithms

that analyze partial datasets is likely to further increase, as more

high throughput methods become prevalent, and the number of

omics in biomedical datasets increases.

NEMO has several limitations. First, in partial data, each pair of

samples must have at least one omic in common. This assumption

holds if one omic was measured for all patients, which is often the

case for gene expression. Second, the choice of k, the number of

nearest neighbors, requires further study. NEMO currently chooses

Fig. 4. Kaplan-Meier plot for the five clusters obtained by NEMO on the AML

partial dataset (logrank P-value¼3.5e�4). The number of patients in each

cluster is shown in parentheses
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the same k for all samples, implicitly assuming that all cluster sizes

are equal. Choosing different k for different samples based on the

estimated size of their cluster may further improve NEMO’s results.

Third, unlike some dimension reduction methods, NEMO does not

readily provide insight on feature importance. Given a clustering so-

lution, importance of features to clusters can be computed using dif-

ferential analysis.

We compared NEMO to PVC in the context of missing data.

PVC was developed within the machine learning community for the

task of partial multi-view clustering, and has not been applied to

omic data previously. Remarkably, on average, in terms of survival

analysis, PVC (using the number of clusters of NEMO) outper-

formed all other methods on the partial cancer datasets with two

omics, while NEMO was better on the simulated partial datasets. As

PVC is limited to two omics, extension of that NMF-based algo-

rithm to more omics and to include a mechanism for determining

the number of clusters is desirable.

In some of the cancer datasets the results obtained using only

mRNA expression and DNA methylation were superior to those

achieved when also considering miRNA expression. In addition, in

some of the datasets we did not observe a significant decrease in per-

formance when removing a fraction of the gene expression data for

cancer patients. This phenomenon suggests that multi-omics cluster-

ing does not necessarily improve with more omics (see also

Rappoport and Shamir, 2018). A possible explanation is that the

different omics are highly correlated, such that additional omics do

not add signal. At least for some of the cancer types, this was not the

case. Alternatively, it is possible that omics contain contradicting or

independent signals, such that removal of data from one omics

strengthens the overall structure of the data. While NEMO per-

formed well with an additional omic that contains no signal, future

work is needed to deal with omics that contain independent or con-

tradicting signals.

5 Conclusion

Clustering cancer patients into subgroups has the potential to define

new disease subtypes that can be used for personalized diagnosis

and therapy. The increasing diversity of omics data as well as their

reduced cost creates an opportunity to use multi-omic data to dis-

cover such subgroups. NEMO’s simplicity, efficiency and efficacy

on both full and partial datasets make it a valuable method for this

challenge.
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