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Abstract
Objectives: Aging can reduce the specificity with which memory episodes are represented as distributed patterns of brain 
activity. It remains unclear, however, whether repeated encoding and retrieval of stimuli modulate this decline. Memory 
repetition is thought to promote semanticization, a transformative process during which episodic memory becomes grad-
ually decontextualized and abstracted. Because semantic memory is considered more resilient to aging than context-rich 
episodic memory, we hypothesized that repeated retrieval would affect cortical reinstatement differently in young versus 
older adults.
Methods: We reanalyzed data from young and older adults undergoing functional magnetic resonance imaging while 
repeatedly viewing and recalling short videos. We derived trial-unique multivariate measures of similarity between video-
specific brain activity patterns elicited at perception and at recall, which we compared between age groups at each repetition.
Results: With repetition, memory representation became gradually more distinct from perception in young adults, as 
reinstatement specificity converged downward toward levels observed in the older group. In older adults, alternative 
representations that were item-specific but orthogonal to patterns elicited at perception became more salient with repetition.
Discussion: Repetition transformed dominant patterns of memory representation away and orthogonally from per-
ception in young and older adults, respectively. Although distinct, both changes are consistent with repetition-induced 
semanticization.
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The detrimental effects of normal aging on episodic 
and associative memory are a well-documented phe-
nomenon. However, the advent of modern functional 
neuroimaging tools offers new means to map these cog-
nitive changes onto dynamic signals that reflect how 
memory is represented and processed in the brain. In 
particular, Multivoxel pattern analysis (MVPA) clas-
sification techniques (Haxby, 2012; Haynes & Rees, 
2006; Mahmoudi, Takerkart, Regragui, Boussaoud, & 
Brovelli, 2012; Norman, Polyn, Detre, & Haxby, 2006; 
Tong & Pratte, 2012) applied to functional magnetic 

resonance imaging (fMRI) can measure to what extent 
distributed patterns of brain activity elicited when an 
event is experienced are “reactivated” when the event 
is later retrieved from memory. The idea that memory 
consists of a kind of recapitulation of a state of acti-
vation established during perceptual encoding is not 
new (Damasio, 1989; Descartes, 1892; Gage & Hickok, 
2005; Hebb, 2005). The precision with which cortical 
reinstatement can now be quantified, however, is ex-
panding our understanding of the manner in which the 
brain represents memory.
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In young and healthy populations, MVPA classifiers can 
capture neural signal elicited at retrieval that distinguishes 
between object categories (e.g., scenes vs faces or objects; 
Kuhl, Rissman, Chun, & Wagner, 2011; Polyn, Natu, 
Cohen, & Norman, 2005), modalities (Lewis-Peacock, 
Drysdale, Oberauer, & Postle, 2012; Lewis-Peacock & 
Postle, 2012), encoding conditions (Johnson, McDuff, 
Rugg, & Norman, 2009; McDuff, Frankel, & Norman, 
2009), and even individual stimulus items (Bonnici et al., 
2012; Buchsbaum, Lemire-Rodger, Fang, & Abdi, 2012; 
Chadwick, Hassabis, Weiskopf, & Maguire, 2010; Johnson 
& Johnson, 2014; Ritchey, Wing, Labar, & Cabeza, 2013; 
Xue, 2018), providing evidence of reinstatement. Evidence 
linking the specificity of the reactivated neural pattern to 
behavioral measures of memory acuity (e.g., recall and rec-
ognition performance; McDuff et al., 2009; Ritchey et al., 
2013; Staresina, Henson, Kriegeskorte, & Alink, 2012) and 
to subjective ratings of memory salience (e.g., vividness; 
Dijkstra, Bosch, & van Gerven, 2017; St-Laurent, Abdi, & 
Buchsbaum, 2015) have established that neural reinstate-
ment can serve as an index of the sharpness of a memory’s 
neural representation.

A few brain imaging studies that have contrasted 
memory signal between young and older adults, including 
our own (St-Laurent, Abdi, Bondad, & Buchsbaum, 2014), 
have reported an aging-related decrease in the specificity 
of the memory representation (Abdulrahman, Fletcher, 
Bullmore, & Morcom, 2017; Johnson, Kuhl, Mitchell, 
Ankudowich, & Durbin, 2015; McDonough, Cervantes, 
Gray, & Gallo, 2014; Trelle, Henson, & Simons, Preprint; 
but see Wang, Johnson, de Chastelaine, Donley, & Rugg, 
2016). Such decrease is consistent with a phenomenon 
known as “de-differentiation” (Burianová, Lee, Grady, & 
Moscovitch, 2013; Carp, Park, Hebrank, Park, & Polk, 
2011; Carp, Park, Polk, & Park, 2011; Grady, 2012; Park 
et al., 2012; St-Laurent, Abdi, Burianova, & Grady, 2011), 
whereby older adults show a loss of selectivity or tuning 
within cortical areas that generally show a degree of func-
tional specialization for sensory, motor, or perceptual 
features. Of note, the presence of aging-related dedifferen-
tiation at encoding has been shown to predict poor subse-
quent recall of associative stimuli (Saverino et  al., 2016; 
Zheng et al., 2018). In our study (St-Laurent et al., 2014), 
we observed a slight reduction in neural pattern specificity 
during encoding in older compared to young adults (al-
though see Trelle et al., Preprint; Zheng et al., 2018), and 
a much larger aging-related loss of specificity at retrieval. 
Although the influence of aging-related encoding factors on 
subsequent recollection cannot be denied (Craik & Rose, 
2012), the age difference we observed at encoding was too 
subtle to account entirely for the magnitude of the speci-
ficity loss we observed at retrieval.

The aging-related decrease in cortical reinstatement 
specificity we observed is also consistent with the well-
documented reduction in episodic and associative memory 
performance that is observed in old age (e.g., Henson et al., 

2016; Meusel, Grady, Ebert, & Anderson, 2017; Nyberg 
& Pudas, 2019; Spaniol & Grady, 2012). An interesting 
question that arises, however, is whether repeated encoding 
and retrieval may influence the representational spec-
ificity of neural activity patterns in our participants, and 
how age affects any such memory transformations. One 
well-known and important tenet in the modern history 
of memory research is that semantic memory (i.e., knowl-
edge of decontextualized facts) is more resilient to the 
effects of aging than context-rich episodic memory (Allen, 
Sliwinski, & Bowie, 2002; Craik & Jennings, 1992; Grady, 
2012; Mitchell, 1989; Nilsson, 2003; Nyberg, Backman, 
Erngrund, Olofsson, & Nilsson, 1996; Rönnlund, Nyberg, 
Backman, & Nilsson, 2005; Spaniol, Madden, & Voss, 
2006) especially when it is relational or associative (Old & 
Naveh-Benjamin, 2008; Saverino et  al., 2016; Spaniol & 
Grady, 2012). For example, semantic knowledge can mit-
igate age differences in episodic and associative memory 
performance in some contexts (e.g., Mohanty, Naveh-
Benjamin, & Ratneshwar, 2016). Changes in dynamic 
neural connectivity patterns have also been associated with 
an increased reliance on crystallized cognition and general 
knowledge at the expense of specific details in older adults 
when they recall personal episodic memories (Spreng et al., 
2018).

Of note, factors, such as the passage of time (Sekeres 
et al., 2016; Sekeres, Winocur, Moscovitch, et al., 2018), re-
hearsal, and repeated retrieval (Antony, Ferreira, Norman, 
& Wimber, 2017; Moscovitch, Nadel, Winocur, Gilboa, 
& Rosenbaum, 2006; Nadel & Moscovitch, 1997), are 
thought to contribute to the transformation of the epi-
sodic memory trace into a more semanticized or decontex-
tualized form. According to Trace Transformation Theory 
(Sekeres, Winocur, & Moscovitch, 2018; Winocur & 
Moscovitch, 2011), episodic memories can be transformed 
and reorganized with time and experience into “semantic” 
representations that retain gist and map onto more general 
schematic knowledge, but can also lose specific details, in-
cluding visuospatial elements that make the memory rich 
and vivid. Within this framework, repeated retrieval could 
transform the nature of the memory representation with 
each additional iteration, leading to the gradual formation 
of a more gist-like representation that is abstracted away 
from the originally experience, and whose neural signature 
is increasingly more distinct from the neural patterns first 
elicited during encoding.

As a memory’s specific context gradually becomes 
blurred with each additional repetition, it is unclear 
whether salient aging-related differences in memory spec-
ificity are maintained or reduced. For example, if episodic 
memory is more specific and detailed in young compared 
to older adults, it might undergo a more dramatic transfor-
mation as a consequence of iterative retrieval in younger 
compared to older individuals. To address this idea, we 
report results from a reanalysis of our data to determine 
how repeated encoding and retrieval influences patterns of 
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cortical reinstatement as a function of age. In our previous 
study (St-Laurent et al., 2014), we compared the ability to 
reactivate patterns of activity evoked by multimodal video 
stimuli in older adults (aged 64–78  years), relative to a 
group of younger adults (aged 21–32  years). Young and 
older participants were scanned while they alternated be-
tween viewing and recalling a set of 11 short video stimuli. 
In total, each video was seen and retrieved 21 times. As 
noted, neural patterns of activity were nearly as reliable be-
tween the two age groups during stimulus encoding, while 
neural reactivation averaged over repetition for each video 
showed a marked decrease in older adults’ ability to reacti-
vate video-specific activity patterns during retrieval.

For the purpose of addressing the current question, we 
assessed pattern classification at each trial to determine 
how, and to what extent, aging and repeated encoding 
and recall attempts influenced patterns of reactivation. 
As is often done in studies examining fMRI measures of 
memory reactivation (see Xue, 2018, for a review), we 
defined reactivation operationally as the similarity be-
tween activity patterns evoked during encoding and re-
trieval by a given stimulus. As our study involved 21 
repeated encoding and retrieval trials for each stimulus 
item, we were also able to quantify the reliability of ac-
tivity patterns across repetitions within each condition 
(the encoding and retrieval conditions, respectively). By 
assessing activity patterns within condition, we were able 
to capture video-specific patterns present across repeated 
retrieval trials, regardless of whether such patterns re-
semble the ones elicited at encoding. For example, if 
memory becomes transformed as a function of learning 
or repetition, activity may become increasingly dissimilar 
from encoding-related patterns but nevertheless be stable 
across retrieval attempts. With this approach, we assessed 
whether the consistency of retrieval-specific patterns 
evolved differently over trials as a function of age; and, 
moreover, whether our previous finding of age-related de-
differentiation during memory retrieval is evident for all 
repetitions—with the very first retrieval attempt being of 
special interest because it more stringently meets the defi-
nition of episodic memory as context-specific, that is, of a 
memory specific to a time and place (Tulving, 2002). We 
hypothesized that reactivated memories, which are more 
detailed and specific in young adults, should undergo a 
steeper decline in pattern specificity as a function of repe-
tition than those of older adults, which may already have 
a more semantic or transformed signature to begin with.

Method

Participants

Nineteen young adults (aged 20–33  years) and 14 older 
adults (aged 64–78 years) of either sex (see Table 1) were 
recruited through the Baycrest participant pool, and 
tested according to a protocol approved by the Rotman 

Research Institute’s Research Ethics Board. Of the 19 
young adults, the data from 14 were previously reported in 
St-Laurent et al. (2014), and the full set of 19 were studied 
in St-Laurent et al. (2015). Analyses of data from the 14 
older adults were also previously reported in St-Laurent 
et  al. (2014). For the current analysis we used the larger 
group of 19 younger adults to increase statistical power. 
Older participants were screened over the phone for de-
mentia with a modified version of the Telephone Interview 
for Cognitive Status (Welsh, Breitner, & Magruder-Habib, 
1993). We used a score of 30/50 as a cutoff point, although 
the lowest score we observed in our sample was 32. All 
participants were in good health and had no history of neu-
rological or psychiatric disorder, high blood pressure, or 
diabetes. All participants had normal hearing, normal color 
perception, and normal or corrected-to-normal vision.

fMRI Task

We used a set of short but complex audiovisual videos to 
elicit brain-wide patterns of activation (Buchsbaum et al., 
2012). Fifteen short video clips were gathered from online 
sites (Vimeo.com and YouTube.com). Four clips were re-
served for practice, and 11 were used for the in-scan task 
(Figure 1). Videos and their soundtracks were edited and 
exported to an .avi format using iMovie. Each video was 
associated with a short descriptive title shown in conjunc-
tion with the video. This title also served as a retrieval cue 
during recall trials.

Participants performed a cued recall task while 
undergoing fMRI scanning. They viewed and mentally 
replayed the same set of 11 short videos over seven func-
tional runs of 8 min each. Perception (or “encoding”) and 
recall trials were intermixed throughout the runs according 
to a pseudorandom order that differed between runs and 
participants. For a particular video, encoding and recall 
trials always alternated, with the restriction that they were 
separated by at least two (maximum eight) intervening 
trials featuring or cueing a different video. Each video was 
3.4 s long (plus 0.2 s of buffer time to load), and was shown 
and recalled 21 times each (3 times per run). All trials were 
cued by a short title that matched each video (e.g., “Race 
Car,” “Skate- boarding Dog”). During encoding trials, a 
title was shown in blue-green letters (0.9 s) in the center of 
the screen, followed by the matching video (3.6 s) and an 
interstimulus interval (ISI) of 0.25–1 s. During recall trials, 
a title was shown in red letters (0.9 s), followed by a gray 
rectangle that covered the same portion of the screen as 
the videos shown on perception trials (4.85  s). Although 
the gray rectangle was on the screen, participants were 
instructed to mentally replay the video from memory as 
vividly and with as many visual and auditory details as pos-
sible. Participants were then given 2.75 s to rate the viv-
idness of their recall on a 1–4 scale (1 = not vivid at all; 
2–3 = average; 4 = extremely vivid), followed by an ISI of 
0–0.75 s. On the basis of piloting, recall trials were 1.25 s 
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longer (4.85 s compared to 3.6 s) than the actual duration of 
the videos to give sufficient time for participants to retrieve 
the episode from long-term memory. Note that the short 
ISIs between trials made it very unlikely that subjects would 
have time to rehearse the kind complex multimodal stimuli 
used in this study. Before scanning, participants were given 
instructions and practiced the task using a separate set of 
four videos. Another practice session with these same four 
practice videos was completed during an anatomical scan 
acquired immediately before the first functional run. The 

experimental stimulus set was only shown to participants 
when they performed the in-scan task.

MRI Scanning and Preprocessing

Participants were scanned with a 3.0-T Siemens 
MAGNETOM Trio MRI scanner using a 12-channel head 
coil system. High-resolution gradient-echo multi-slice 
T1-weighted scans (160 slices of 1-mm thickness, 19.2 × 
25.6  cm field of view) coplanar with the echo-planar 

Table 1.  Peak Coordinates of Recall/Recall Searchlight Analysis

Older group: Positive repetition trend

x y z Hemi Label z stat Area

−42.5 −30 6.5 left Planum temporale 4.825018 12,582
−45.5 −60 51.5 left Lateral occipital cortex, superior division 4.781150 12,582
−54.5 −45 30.5 left Supramarginal gyrus, posterior division 3.116875 12,582

Younger group: negative repetition trend

x y z Hemi Label z stat Area

−57.5 0 −17.5 left Middle temporal gyrus, anterior division 4.553251 31,536
−57.5 −63 0.5 left Lateral occipital cortex, inferior division 4.225403 31,536
−48.5 −60 9.5 left Middle temporal gyrus, temporooccipital part 4.119994 31,536
−36.5 −39 −14.5 left Temporal fusiform cortex, posterior division 4.097682 31536
−27.5 −48 −5.5 left Lingual gyrus 4.087710 31,536
−18.5 −39 −2.5 left Cingulate gyrus, posterior division 4.023847 31,536
−57.5 −9 −5.5 left Superior temporal gyrus, anterior division 3.882009 31,536
−54.5 −21 6.5 left Planum temporale 3.674305 31,536
−51.5 −36 −5.5 left Middle temporal gyrus, posterior division 3.430697 31,536

Young > old contrast of linear trend of repetition

x y z Hemi Label z stat Area

−42.5 −60 48.5 left Lateral occipital cortex, superior division 5.139753 83,565
−51.5 −21 6.5 left Heschl’s gyrus (includes H1 and H2) 4.904393 83,565
−39.5 −54 33.5 left Angular gyrus 4.848567 83,565
−33.5 −21 9.5 left Insular cortex 4.765009 83,565
−51.5 −36 9.5 left Planum temporale 4.658340 83,565
−36.5 −39 −17.5 left Temporal fusiform cortex, posterior division 4.102604 83,565
−60.5 −60 −5.5 left Middle temporal gyrus, temporooccipital part 3.854847 83,565

−9.5 −60 54.5 left Precuneous cortex 3.780770 83,565
−51.5 −69 6.5 left Lateral occipital cortex, inferior division 3.384498 83,565

41.5 −18 42.5 right Postcentral gyrus 4.294886 28,107
23.5 −6 −14.5 right Right amygdala 3.917757 28,107
62.5 −30 −2.5 right Middle temporal gyrus, posterior division 3.368567 28,107
56.5 −12 −29.5 right Inferior temporal gyrus, posterior division 3.243302 28,107
59.5 6 −11.5 right Temporal pole 3.182020 28,107
53.5 −30 18.5 right Parietal operculum cortex 3.179239 28,107
35.5 −48 66.5 right Superior parietal lobule 4.443508 5,832

−24.5 −9 60.5 left Precentral gyrus 4.345305 1,323
−18.5 −39 −5.5 left Parahippocampal gyrus, posterior division 4.143515 594

17.5 −93 24.5 right Occipital pole 3.773453 54
26.5 −66 −20.5 right Occipital fusiform gyrus 3.687650 54
65.5 −42 30.5 right Supramarginal gyrus, posterior division 3.411494 27
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imaging scans (EPIs), as well as whole-brain magnetization 
prepared rapid gradient-echo (MP-RAGE) 3D T1-weighted 
scans were first acquired for anatomical localization, 
followed by T2*-weighted EPIs sensitive to blood oxygen-
ation level-dependent contrast. EPI images were acquired 
using a two-shot gradient-echo EPI sequence (22.5  × 
22.5 cm field of view with a 96 × 96 matrix size, resulting 
in an in-plane resolution of 2.35 × 2.35 mm for each of 26 
3.5-mm axial slices with a 0.5-mm interslice gap; repetition 

time 1.5 s; echo time 27 ms; flip angle 62 degrees). All EPI 
images were realigned to the average image volume of the 
first scanning run using 3dvolreg, a 6-parameter rigid-body 
algorithm implemented in the AFNI program (Cox, 1996). 
No spatial smoothing was applied to the EPI images.

Each subject’s high-resolution structural MRI was 
warped to a standard 1  mm MNI template (“MNI152_
T1_1mm_brain.nii”) shipped with the FSL 5.0 software. 
Symmetric diffeomorphic nonlinear registration from the 

Figure. 1 Schematic overview of the experimental functional magnetic resonance imaging (fMRI) task from St-Laurent et al. 2014. Top, in-scan cued 
recall paradigm. Teal-colored titles were always followed by the matching video, whereas red titles were followed by a gray rectangle. Participants 
mentally replayed the video corresponding to the title while the rectangle was displayed on the screen, and then rated the quality of their recall from 
1 to 4. Bottom, title, screenshot, and sound track description for the set of 11 videos viewed and recalled by the participants.
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advanced normalization tools (Avants, Epstein, Grossman, 
& Gee, 2008) was used to register each subject’s MRI to 
the standard template. This transform was then used to 
warp images in the subject’s native space to standardized 
template space. Note that only the searchlight analysis 
(described later) made use of these transforms, as the 
whole-brain classification analyses were conducted on clas-
sifier outputs computed in native EPI space.

Multivariate classification analysis generally requires a 
one-to-one relationship between a data point, or an obser-
vation, and a “label.” Here, the labels to be classified were 
the identity of the video encoded or recalled at any partic-
ular trial. Because the hemodynamic response to a stim-
ulus event evolves slowly over the course of approximately 
10–15 s, several seconds of consecutive fMRI data points 
map onto the label associated with each trial. To estimate 
the fMRI response to each event, we used a multiple regres-
sion model that included a hemodynamic regressor for each 
trial in the experiment (21 × 11 encoding trials + 21 × 11 
retrieval trials = 462 beta estimates per brain voxel). Each 
trial-wise regressor was generated by convolving a delta 
function (duration = 3.4 s) with the SPM canonical hemo-
dynamic response function. Owing to the large number of 
parameters in this model, estimates of the beta coefficients 
were computed using a form of ridge regression (Mumford, 
Turner, Ashby, & Poldrack, 2012) as implemented in the 
AFNI program 3dLSS. Five additional nuisance parameters 
were also included in the model to account for low-
frequency drift in the fMRI signal. Regression models 
were estimated separately for each run, to avoid any 
cross-run dependencies in beta estimates. Each subject’s 7 
runs of 66 betas estimates (total of 462 betas per voxel) 
were concatenated and the resultant 462 beta estimates 
per voxel were then used as inputs into multivariate pat-
tern classifiers trained to discriminate distributed activity 
patterns that could reliably predict which video was viewed 
or recalled at individual trials.

To define the voxels to be included in the classification 
analysis, we used a gray matter probability image computed 
with the FSL program FAST (Smith et al., 2004) using the 
subjects high-resolution MP-RAGE structural image. The 
estimated gray matter probability image was downsampled 
to match the resolution of the EPI data, and thresholded at 
.33 to create a whole-brain gray matter mask (i.e., a mask 
included all voxels with a gray matter probability estimate 
greater than .33).

Whole-Brain Multivoxel Pattern Analysis

For all MVPA analyses, we used shrinkage discriminant 
analysis (SDA; Ahdesmäki & Strimmer, 2010), a form of 
linear discriminant analysis that can be applied to high-
dimensional data where there are more variables (i.e., 
voxels) than observations (i.e., experimental trials). All 
SDA analyses were performed separately for each sub-
ject, and the input data to the classifier were the trial-wise 

beta coefficients estimated using the voxel-wise regression 
method described above.

We trained two SDA pattern classifiers to discriminate 
between video-specific activation patterns present during 
encoding and retrieval trials, respectively. Classifier perfor-
mance was assessed via 7-fold cross-validation (1-fold per 
fMRI run): for each fold, the training set consisted of all 
the encoding or all the recall trials from 6 runs of data, and 
the test set consisted of the remaining trials from the held 
out run. As there were three repetitions of each video per 
run, class predictions for repetitions 1–3 were derived from 
a classifier trained on trials from runs 2–7; predictions for 
repetitions 4–6 were derived from a classifier trained on 
runs 1 and 3–7; predictions for repetitions 7–9 were de-
rived from a classifier trained on runs 1–2 and 4–7; and 
so on.

With this cross-validation scheme, we produced three 
different metrics of neural pattern reliability, based on the 
experimental condition of the trials included in the training 
and testing sets. We used a classifier trained on encoding 
trials and tested on the held out encoding trials (Encoding/
Encoding) to quantify the consistency of video-specific 
neural patterns during viewing. We used a classifier trained 
on recall trials and tested on the held out recall trials (Recall/
Recall) to quantify the consistency of video-specific neural 
patterns during recall, regardless of whether these patterns 
were modeled on perception. Finally, we used a classifier 
trained on encoding trials and tested on recall trials from 
the held out run (Encoding/Recall) to quantify “reactiva-
tion,” a subjects’ capacity to reinstate video-specific activity 
patterns present at perception while mentally replaying 
videos from memory.

Each time a trained SDA classifier is applied to a new 
observation (i.e., a held out experimental trial), it outputs a 
vector of 11 probabilities with a single value for each label 
(i.e., one label for each video) in the stimulus set. Each ele-
ment of the vector is the predicted probability for a different 
video, with the elements of this probability vector summing 
to 1. If the highest probability in this vector corresponds to 
the true label in the test set, then the classifier has correctly 
predicted which video the subject was viewing or recalling.

Although classification performance can be understood 
in simple binary terms (correct/incorrect), a probabilistic 
classifier output that estimates the likelihood of each label 
provides a continuous—and richer—measure of perfor-
mance. Even when the classifier is nominally “wrong” 
(i.e., when the maximal probability does not correspond 
to the true label), there is still information to be derived 
by reading out the classifier’s estimated probability for the 
true test label.

Baseline Classification Model

Because our experiment had 11 videos that that were re-
peated an equal number of times in each run (3 encoding, 
3 recall) a classifier trained on 6 runs to predict the videos 
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in a held out run has a theoretical chance performance of 
1/11 (.0909). However, biases in our randomization, sys-
tematic head motion, or other unknown dependencies in 
the data set could cause the chance classification rate to 
empirical diverge from this theoretical level. To test for this 
possibility, we replicated the analyses described in the pre-
vious section, except instead of using voxels derived from 
a gray matter mask we created a mask that included only 
voxels with a cerebrospinal fluid (CSF) probability estimate 
greater than .95. A model trained only using voxels in the 
CSF should also be corrupted by the kind of biases associ-
ated with head motion, failures of randomization, or other 
temporal dependencies that would affect the chance accu-
racy rate in a similar way as in the gray mater analysis. 
We, therefore, use the CSF classification analysis to con-
firm that the results of the gray matter classification anal-
ysis are not only above the “theoretical chance” level of 
.0909 but also exceed the chance level calculated using the 
cross-validated performance metrics derived from the CSF 
classifier predictions.

Linear Mixed-Effect Modeling of Whole-Brain 
Classifier Outputs

To analyze how neural patterns of activity change with 
repeated encoding and retrieval attempts, we computed 
general linear mixed-effect models based on probabilistic 
classifier output. We derived a separate model for each of 
our three classification metrics: Encoding/Encoding, Recall/
Recall, and Encoding/Recall. In each model, we included a 
within-subjects fixed effect for the linear trend of repeti-
tion (1–21), a between-subjects factor for age group (old/
young), and a repetition by age group interaction term. 
Random effects were also included for the subject (random 

intercepts) and repetition (random slope) terms. Because 
the dependent variable was a probability, we used a logistic 
regression model, as implemented in the glmer function of 
the lme4 package in R (Bates, Maechler, Bolker, & Walker, 
2015). Each mixed model examined whether video-specific 
activity patterns changed over repetition and/or group. In 
each case, a main effect of group indicated an overall differ-
ence in the classifier’s ability to predict the correct video be-
tween young and older adults; a significant repetition trend 
indicated that the classifier’s prediction accuracy changed 
as a function of repetition; finally, a group by repetition in-
teraction indicated that the slope of the accuracy function 
(as a function of repetition) differed across age groups.

Searchlight Pattern Analysis

A multivariate searchlight analysis (Kriegeskorte, Goebel, 
& Bandettini, 2006) was carried out to identify the regions 
of the brain that underlie the age by repetition crossover 
interaction trends identified with the Recall/Recall pattern 
classification conducted on whole brain(see Figure 2). To 
gain information about the spatial distribution and tem-
poral trends associated with the Recall/Recall classifier, we 
conducted a multivariate searchlight analysis with an 8-mm 
spherical radius. The searchlight analysis was conducted 
in a manner analogous to the whole-brain classification 
analysis, using the same cross-validation procedure, and 
producing the same probabilistic classifier outputs. The 
principal difference between the searchlight analysis and 
the aforementioned whole-brain analysis was the number 
of voxels entered in each classifier: the searchlight was re-
peated for each 8-mm spherical neighborhood around each 
voxel in the subject’s native EPI space to localize voxels 
whose activity contributed to classification.

Figure 2. Classifier evidence as a function of repetition. Probabilistic classifier evidence for the correct video for training and test set combinations: 
Encoding/Encoding, Recall/Recall, and Encoding/Recall (reactivation). For reference, chance probability in all three cases is 1/11 = .0909. Shaded con-
fidence bands represent 95% bootstrap confidence intervals.
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To examine which regions of the brain are primarily 
driving the repetition trends observed in the whole-brain 
analysis of the Recall/Recall classifier (see Results), a similar 
strategy to the one used for the whole-brain analysis was 
adopted (see Linear Mixed-Effect Modeling of Whole-Brain 
Classifier Outputs). In this case, however, the trend analysis 
was separately computed for each voxel and could, therefore, 
be used to isolate regions in the brain where Recall/Recall 
classifier performance increased or decreased as a function 
of repetition. In addition, because it was not computation-
ally practical to estimate a linear mixed-effects model for 
each voxel, we instead estimated trend effects using a two-
stage approach. In the first stage, a standard logistic regres-
sion model using R’s glm function was carried out for every 
voxel in each subject’s native EPI space to estimate the ef-
fect of repetition on classifier performance, which was again 
expressed as the classifier’s maximum predicted probability 
for every trial. In each logistic regression model (one for 
every subject and voxel) the dependent variable was classi-
fier probability for the correct category, and the independent 
variable was repetition (1–21). The estimated normalized 
effect of repetition at each voxel was the z-score derived 
from the logistic regression model output (i.e., the ratio of 
the estimated effect normalized by the standard error). The 
set of voxel-wise z-scores, therefore, formed, for each sub-
ject, a map of estimated trends of the accuracy of the Recall/
Recall pattern classifier. These maps were then warped to 
MNI space and analyzed at the group level using standard 
voxel-wise t tests. The resulting statistical maps were then 
tested for statistical significance using a randomization test 
implanted in the FSL 5.0 program randomise, which im-
plement a stringent correction for multiple comparisons 
(Eklund, Nichols, & Knutsson, 2016).

Results

Age Differences in Classifier Accuracy

Classifier results for the three train-test configurations 
(Encoding/Encoding, Recall/Recall, Encoding/Recall) are 
plotted in Figure 2. In all three cases, classification was gener-
ally more accurate for young than for older adults. However, 
only for Recall/Recall and Encoding/Recall classification 
was the main effect of age group statistically significant: 
(Encoding/Encoding, main effect of group: z= 1.38, p = .16; 
Recall/Recall: z = 10.63, p < .0001; Encoding/Recall: z = 6.1, 
p < .0001). This result is consistent with our previous findings 
from St-Laurent et al. (2014) where we showed much larger 
age differences for pattern reactivation during recall than for 
video-specific activity pattern present at encoding.

Changes in Whole-Brain Gray Matter Classifier 
Accuracy Over Repetition

For the Encoding/Encoding model, there was a main ef-
fect of repetition such that classifier accuracy declined as a 

function of repetition (z= −3.8, p = .00014). However, there 
was no group by repetition interaction (p = .304), indicating 
that the rate and magnitude of change was not different 
for the two age groups. By contrast, there was a significant 
group by repetition interaction for the Encoding/Recall 
model (z = 2.222, p =.0262), indicating a differential slope 
in classifier accuracy as a function of repetition between age 
groups. In this case, the negative slope for the young group 
was significantly different from zero (z= −2.838, p =.0045), 
whereas the slope for the old group was not (z=.718; p 
=.476). This result indicates that distributed patterns of 
memory representation became increasingly distinct from 
patterns elicited at perception in young adults, converging 
toward levels observed in older adults, which were lower 
and constant. Finally, the Recall/Recall model also re-
vealed a clear group by repetition interaction (z = 3.345, 
p = .0008): classification accuracy decreased as a function 
of repetition in young adults, whereas it increased with 
repetition in older adults. Although in opposite directions, 
the simple effect for the linear trend of repetitions was sig-
nificant within each age group (young: z= −2.175, p =.02; 
older: z = 2.588, p =.0096). Importantly, the Recall/Recall 
classifier captured the most consistent patterns of stimulus-
specific representation elicited at retrieval, regardless of 
whether such patterns were modeled on perception. With 
repetition, the salience of these patterns increased in older 
adults, but decreased in young adults. Thus, whereas clas-
sifier accuracy declined as a function of repetition for all 
three models in the young group, classifier accuracy for the 
older group declined for the Encoding/Encoding model, 
increased for the Recall/Recall model, and remained stable 
for the Encoding/Recall model.

Effect of Age on Reactivation on the First Trial

A key contribution of the current analyses was the ability 
to test whether repeated stimulus viewing and stimulus re-
trieval was responsible for our prior finding (St-Laurent et al. 
2014) in neural pattern reactivation. The aforementioned 
analyses do not support this interpretation: pattern reactiv-
ation (Encoding/Recall classification) declined as a function 
of repetition in young adults, while it remained constant in 
older adults. If anything the age effect was attenuated by 
the repetition component of the task, as it brought young 
adults’ performance closer to levels observed in the older 
group. To quantify this effect more precisely, we computed 
1,000 bootstrap estimates of the effect size (Cohen’s d) 
of the young–older difference in Encoding/Recall classi-
fier performance for each of the 21 recall trials. Using the 
bootstrap distributions, we also computed the 95% confi-
dence intervals for each of these difference scores, yielding 
bootstrapped estimates of the difference scores and corre-
sponding confidence intervals for each of the 21 repetitions. 
As is evident in Figure 3, there is a modest decreasing trend 
in age differences across repetitions. It is also clear that the 
confidence intervals overlap between the first repetition and 
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subsequent repetitions, offering little statistical evidence 
supporting the idea that age differences in reactivation are 
driven by a learning effect that benefits young adults dis-
proportionally, or that repetition distorts age differences 
in neural reactivation. Nonetheless, it is true that the ef-
fect size of the very first repetition (Cohen’s d  =  .601) is 
lower than the effect size for the second repetition (Cohen’s 
d = 1.46), although this difference is not statistically sig-
nificant—as assessed via a general linear mixed-effects 
model testing for an age group by repetition interaction, 
and including only the first two repetitions in the exper-
iment: (z =  .894, p =  .372). Note, however, that this is a 
low powered statistical test that is based on the first two 
repetitions, which consists of only 22 trials per subject (11 
per video per repetition). Thus, three conclusions are prob-
ably warranted: (a) there is little evidence supporting the 
contention that age differences in reactivation are driven or 
exaggerated by learning, and (b) there is suggestive qualita-
tive evidence indicating that young adults show increased 
pattern reactivation early in the learning phase (between 
the first and second trial) relative to older adults, while the 
age differences decrease with additional repetitions (trials 
11–21).

Regional Searchlight Analysis of Age-Related 
Differences in Recall/Recall Classifier Accuracy

Linear modeling of the change in classification accuracy as 
a function of repetition revealed a crossover interaction for 
the Recall/Recall pattern classifier, whereby younger adults 
showed a significantly negative slope and older adults 
showed a significant positive slope (see Figure 2, middle 

panel). Because the pattern classifier that produced these 
effects was trained on all gray matter voxels in the brain, 
we could not identify the particular brain regions driving 
the interaction. We therefore used a roving multivariate 
searchlight approach (Kriegeskorte et  al., 2006) to train 
pattern classifiers over 8-mm spherical “patches” spanning 
the entire brain volume to gain a better understanding of 
the spatial distribution of repetition-related changes in pat-
tern activity associated with mental recall.

The result of the searchlight analysis revealed that, 
consistent with the whole-brain classification analysis, 
younger adults showed only decreases in classification ac-
curacy as a function of repetition, whereas older adults 
primarily showed increases in classification accuracy with 
repetition. As can be seen in Figure 4, these repetition-
related decreases in younger adults were concentrated in 
the left lateral temporal lobe, including the anterior por-
tion of the superior temporal gyrus, the posterior supe-
rior temporal sulcus, and the posterior middle temporal 
gyrus. Right hemisphere decreases were prominent in the 
posterior lateral occipital region. The repetition-related 
increases seen in older adults were observed in the pos-
terior temporoparietal regions—including the planum 
temporale, the supramarginal gyrus, the superior tem-
poral sulcus, and angular gyrus. Increases were also seen 
in the left precentral gyrus, left ventral anterior prefrontal 
cortex, and the right hippocampus (see Table 1). A t test 
showing regions where the trend differs by group shows a 
similar pattern (Figure 4, bottom panel; Table 1), although 
this contrast identifies some regions where younger adults 
decreased and older adults were stable over repetitions 
(e.g., the mid portion of the left superior temporal sulcus). 
Broadly speaking, the major repetition-related effects were 
observed in regions associated with verbal-semantic proc-
essing and language (Binder, Desai, Graves, & Conant, 
2009; Hickok & Poeppel, 2007; Price, 2012; Rose, Spalek, 
& Abdel Rahman, 2015), with a clear concentration in the 
left hemisphere.

Comparison of Baseline CSF Classifier to Whole-
Brain Gray Matter Classifier

We confirmed that each of the whole-brain gray matter 
classification models were better able to classify the videos 
than corresponding models trained only on voxels in the 
CSF. Averaging over repetitions, we found that the average 
estimated probability for correct label for the CSF-only 
trained model ranged between .093 and .107, whereas 
theoretical chance probability is 1/11 or .0909. A  series 
of two-sample t tests comparing age groups showed that 
there was no difference between classification accuracy be-
tween the young and the older group for any of the three 
classifiers (Encoding/Encoding. Encoding/Recall, Recall/
Recall; all ps > .508).

For the Encoding/Encoding and Recall/Recall classifiers, 
the average classification accuracies (.107 and .098) were 

Figure 3. Age differences in reactivation over all repetitions. Effect size 
and 95% confidence intervals for young–old difference in reactivation 
(Encoding/Recall) as a function of recall repetition number.
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significantly greater than the theoretical chance value of 
.0909 (p < .001). However, these biases are small compared 
to the overall performance of the gray matter classifier, 
where the average Encoding/Encoding probability was .556 
(odds ratio = 10.45 with respect to CSF) and the average 
Recall/Recall probability was .223 (odds ratio = 2.64 with 
respect to CSF). Directly comparing the gray matter and 
classifiers separately with paired t tests for each group and 
classifier type yielded 6 separate comparisons (3 classifiers 
× 2 age groups). All comparisons showed that, regardless 
of the group or classifier type, gray matter classifier per-
formance was always significantly superior than predictive 
performance using the corresponding CSF classifier (all ps 
< 4e-05).

Effect of Head Motion and Number of Gray 
Matter Voxels

We also examined whether two other potential factors 
were associated with classifier accuracy: namely, subject 
head motion and the number of gray matter voxels used in 
the whole-brain classifier. To test for the influence of head 
motion, we examined whether the maximum frame-wise 

displacement, derived from AFNI’s 3dvolreg motion cor-
rection program, differed between age groups. Older adults 
moved slightly more than younger adults, but the differ-
ence was not statistically significant (t = 1.88, p =.0788). In 
addition, maximum frame-wise displacement was not a sig-
nificant predictor of average classification evidence for any 
of the three models (all ps > .161). Nor did motion interact 
with group in any of the three models (all ps > .103). Thus, 
we conclude that motion had little impact on its own or as 
a modulatory variable on classification accuracy.

Younger adults had more contributing gray matter 
voxels entering the whole-brain classifier than older adults: 
36,077 versus 29,262, respectively; a difference that is sta-
tistically significant (p < .001). However, in none of the 
three models (Encoding/Encoding, Encoding/Recall, Recall/
Recall) did we find that the number of gray matter voxels 
was a significant predictor of classification accuracy after 
accounting for the main effect of age group (all ps > .132). 
Nor did we find that voxel count interacted with age group 
in any of the three classification models (all ps > .504). 
In other words, even though the number of gray voxels 
differed between groups, this difference did not explain any 
additional variation in classifier performance.

Figure 4. Searchlight analysis of repetition trend for Recall/Recall classifier. Top panel shows regions where Recall/Recall pattern classification accu-
racy linearly decreased as a function of repetition in the young group. Middle panel shows regions where Recall/Recall pattern classification accuracy 
linearly increased in older adults. Bottom panel shows regions where the linear trend in pattern classification accuracy was significantly greater for 
older than for young adults. Colors are in t-statistic units and are thresholded at p < .005 two-tailed for the purposes of visualization.
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Discussion
We have reported that older adults were impaired relative 
to younger adults in reactivating patterns of brain activity 
during cued mental recall of short audiovisual episodes 
(St-Laurent et  al., 2014). These results suggest that age-
related decrease in the quality and precision of episodic 
memory is associated with corresponding decreases in the 
specificity of neural reactivation during cued retrieval of 
complex experiences (see also Abdulrahman et al., 2017; 
Dennis, Bowman, & Peterson, 2014; Johnson et al., 2015; 
McDonough et  al., 2014; Trelle et  al., Preprint; but see 
Wang et  al., 2016). Our previous report, however, was 
based on an analysis that pooled reactivation measures 
over a series of 21 repetitions per stimuli. Knowing that 
repetition can “tamper” with the memory trace (Nadel & 
Moscovitch, 1997; Sekeres, Winocur, & Moscovitch, 2018; 
Winocur & Moscovitch, 2011), these results left open the 
possibility that the age differences we reported reflected an 
impairment in learning to reactivate brain patterns (with 
young adults learning at a faster rate, and to a greater ex-
tent, than older adults with subsequent repetitions), rather 
than a more standard reactivation deficit observed with a 
trial-unique protocol. From a methodological standpoint, 
stimulus repetition provides important advantages when 
the aim is to capture neural signal that is stimulus-specific: 
for example, many independent trials are required per 
item to train a pattern classifier that discriminates among 
exemplars from the same category. Nevertheless, it is good 
practice for investigators to assess and report how repeti-
tion may have influenced their results, most importantly 
when studying context-specific episodic memory.

With the current reanalysis, we illustrated to what ex-
tent, and in which manner, repeated encoding and re-
trieval influenced stimulus-specific memory representation 
in distributed patterns of activity as a function of age. 
We showed, first, that stimulus specificity was reduced 
in older adults throughout our task, although this differ-
ence decreased somewhat as a function of repetition due 
to a gradual decline observed in the young group. This 
pattern is contrary the proposition that different (posi-
tive) learning rates over repetitions could account for age 
differences in cortical reinstatement in our previous results 
(as hypothesized by Wang et al., 2016). If anything, repeti-
tion did not improve the precision of memory representa-
tion past the first few trials in our data; instead, it caused a 
downward change in cortical reinstatement in young adults 
that pushed the memory representation further away from 
true reinstatement closely modeled on perception, while re-
instatement remained constant in older participants. This 
result is consistent with evidence that retrieval practice 
enhances memory accessibility, but not quality (Sutterer & 
Awh, 2016).

This downward trend in reinstatement specificity is 
consistent with the idea that repeated retrieval contributes 
to the semanticization of the memory trace (Sekeres, 

Winocur, & Moscovitch, 2018; Winocur & Moscovitch, 
2011) that is, that each subsequent recall helps along 
the process by which context-specific, experience-near 
memory (and its neural representation) is transformed 
into decontextualized, generalized information that is in-
tegrated into a broader knowledge structure that supports 
what we understand about the world (Conway, 2009; 
Conway & Pleydell-Pearce, 2000), that is, what we call 
semantic memory (Tulving, 1985, 2002). As noted, we 
observed age differences in memory representation from 
the very first repetition onward, which is consistent with 
the well-documented fact that episodic and associative 
memory declines with old age. What emerged next, over 
each subsequent repetition, is telling: performance by the 
Encoding/Recall classifier, which quantifies how closely the 
reactivated pattern is modeled on perception, declined in 
the young group, suggesting a more general or abstracted 
level of representation. In fact, specificity levels converged 
toward those observed in older adults, in whom neural re-
instatement remained low but constant across repetitions.

Interestingly, Recall/Recall classifier performance 
increased over repetitions in the older group, revealing the 
gradual emergence or sharpening of a consistent form of 
memory representation that was orthogonal to patterns 
elicited at encoding (otherwise Encoding/Recall classifier 
performance would also increase). This representation 
may reflect the strengthening of a transformed, processed 
or otherwise semanticized memory representation that is 
consistent and item-specific, but not a faithful perceptual 
reactivation per se. A regional searchlight analysis further 
elucidated the brain regions that contributed most to the 
repetition effects identified in the Recall/Recall whole-brain 
classifier. Young adults showed only negative changes in 
the classifier accuracy as a function of repetition, and these 
were most evident in superior portion of the left lateral tem-
poral lobe. In contrast, older adults showed increasing pat-
tern classification in regions also in the left hemisphere but 
generally more dorsally and posteriorly situated. Indeed, it 
appears the negative-going activation patterns in younger 
adults and the positive-going activation patterns in older 
adults are in rough accordance with the auditory-verbal 
ventral and dorsal streams, respectively (Buchsbaum et al., 
2005a; Hickok & Poeppel, 2004; Rauschecker & Scott, 
2009). It has been proposed that the auditory dorsal stream 
is critical for sensorimotor control of language, which is 
most critical for the production, repetition, and imitation 
of temporally structured stimuli, including spoken lan-
guage (Buchsbaum et al., 2011), sign language (Buchsbaum 
et al., 2005b), and music (Hickok, Buchsbaum, Humphries, 
& Muftuler, 2003). Thus, one potential explanation for 
the increase in dorsal stream pattern activity as a function 
of repetition in older adults is that they are increasingly 
relying on a verbal-sensorimotor—rather than a more ve-
ridical ventral-stream mediated “what” representation—
representations of the temporal structure of the videos to 
maintain and rehearse them in memory.
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Another region of the brain that increased pattern classifi-
cation as a function of repetition in older adults was the left 
angular gyrus, a region commonly associated with semantic 
cognition (e.g., Binder et al., 2009). It is generally accepted 
that general knowledge, crystallized cognition and other 
forms of semantic knowledge are typically well preserved 
well into old age (Allen et al., 2002; Mitchell, 1989; Nyberg 
& Pudas, 2019; Rönnlund et al., 2005; Spaniol et al., 2006), 
and older adults have been shown to rely on these faculties 
to compensate for episodic memory deficits in some contexts 
(Craik & Bialystok, 2006; Mohanty et  al., 2016; Spreng 
et al., 2018). Here, our results indicate that older adults may 
have relied on their preserved semantic memory to construct 
and reactivate item-specific representations during recall that 
were unrelated to perception.

Of note, Recall/Recall classifier performance decreased 
over repetition in our young group, that is, the consistency 
of the item-specific neural representations they activated at 
retrieval—whether or not it was modeled on perception—
declined over trials. This decline could simply suggest a 
gradual disengagement with the task (i.e., fatigue), although 
the absence of a similar effect in the older group makes us 
question this interpretation. Instead, this result could indi-
cate a switch in representation (from specific to abstract or 
transformed) that is more drastic than in the older group. 
The Recall/Recall classifier was optimized to pick up which-
ever patterns were most “average” or “consistent” over trials. 
Initially, young adults retrieved highly specific and detailed 
memory representations (as shown by the Encoding/Recall 
classifier); a gradual switch toward a more processed or se-
mantic form of mental representation, if too dramatic, may 
have hindered the performance of a Recall/Recall classifier 
optimized to pick up patterns that recapitulated perception. 
If, on the other hand, a more semantic or transformed type 
of representation was favored from the onset of the task, 
the Recall/Recall classifier would be “tuned” to pick up this 
“semanticized” pattern instead, and its performance over 
repetition would fluctuate according to the sharpness of this 
pattern at recall, as seen in our older group. Indeed, a signif-
icantly closer resemblance between the Encoding/Recall and 
Recall/Recall searchlight maps averaged over repetition in 
young compared to older adults, as revealed when correlating 
the two searchlight volumetric classification maps, supports 
this interpretation (t(27) = 4.1, p = .0003; mean r = 0.8634 for 
young adults; mean r = 0.5028 for older adults). This anal-
ysis strongly suggests that classification accuracy declined 
over repetitions within similar sets of brain regions for the 
Encoding/Recall and Recall/Recall classifiers in the young 
group, supporting the idea that Recall/Recall classifiers were 
tuned to pick up patterns that were more closely modeled on 
perception in young adults. Nevertheless, the current para-
digm could not dissociate fatigue or other temporal processes 
from the transformation of the memory trace in our younger 
group, highlighting the needs for a paradigm that can resolve 
these potential explanations. Moreover, there is reason to 
believe that even more dramatic changes occur in memory 
representations where retrieval is tested hours or days after 

the initial encoding (Lee, Kravitz, & Baker, 2018; Sneve et al., 
2015; Vidal-Piñeiro et al., 2017).

Conclusion
Our results demonstrate that reasonably accurate and stable 
estimates of item-specific reactivation can be obtained with 
paradigms that include multiple item repetitions with mul-
tiple retrieval attempts for those items. Some changes in ac-
tivity patterns consistent with the emergence of abstracted 
or semantic forms of memory representation were observed, 
however, especially in the older group. Older adults showed 
overall less reactivation than younger adults throughout 
the experiment, consistent with the well-known age-related 
decline in the precision of memory. However, the consist-
ency of their recall-related memory patterns increased as a 
function of repetition—even though these patterns did not 
resemble encoding-related activation patterns. We interpret 
this finding as indicating a transformation process, whereby 
older adults adaptively encode a repeated event into a stable, 
semanticized, or low-resolution form that discards some of 
the perceptual detail of the fully encoded stimulus.

Overall, item-specific pattern classification based on 
multiple trials is a valid approach to understand the in-
terplay of neural events that give rise to episodic memory, 
while it can also be used to determine the influence of time 
and experimental manipulations on the transformation of 
memory trace. In general, however, we recommend that 
experimenters interested in the methodological advantages 
offered by stimulus repetition quantify its effects on their 
neural patterns of interest.
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