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Abstract

Motivation: Network inference algorithms aim to uncover key regulatory interactions governing

cellular decision-making, disease progression and therapeutic interventions. Having an accurate

blueprint of this regulation is essential for understanding and controlling cell behavior. However,

the utility and impact of these approaches are limited because the ways in which various factors

shape inference outcomes remain largely unknown.

Results: We identify and systematically evaluate determinants of performance—including network

properties, experimental design choices and data processing—by developing new metrics that

quantify confidence across algorithms in comparable terms. We conducted a multifactorial ana-

lysis that demonstrates how stimulus target, regulatory kinetics, induction and resolution dynam-

ics, and noise differentially impact widely used algorithms in significant and previously unrecog-

nized ways. The results show how even if high-quality data are paired with high-performing

algorithms, inferred models are sometimes susceptible to giving misleading conclusions. Lastly,

we validate these findings and the utility of the confidence metrics using realistic in silico gene

regulatory networks. This new characterization approach provides a way to more rigorously inter-

pret how algorithms infer regulation from biological datasets.

Availability and implementation: Code is available at http://github.com/bagherilab/networkinfer

ence/.

Contact: n-bagheri@northwestern.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The advent of genome-scale and high-throughput experiments

demands network inference algorithms that accurately uncover regu-

lation of gene expression and protein activity (Bansal et al., 2007;

Bonneau, 2008; De Smet and Marchal, 2010; Marbach et al., 2010;

Oates and Mukherjee, 2012). These computational tools have been

invaluable for studying cell differentiation (Ocone et al., 2015), iden-

tifying genetic regulators and their targets in disease (Aibar et al.,

2017; Alexopoulos et al., 2010; Gu and Xuan, 2013; Sass et al.,

2015; Volinia et al., 2010) classifying diseases into subtypes

(Lee et al., 2008; Wu et al., 2008), and predicting mechanisms of
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drug responses (Ciaccio et al., 2015; Gardner et al., 2003; Iorio et al.,

2013; Korkut et al., 2015; Lecca and Re, 2016; Wildenhain, 2015).

Having a blueprint of the underlying network comprising genetic

components and their regulation is essential for understanding and

controlling cellular processes. Elucidating these complex blueprints

directly from experimental data has proven challenging. Each algo-

rithm offers advantages and limitations, and its reliability is shaped

by biological context and experimental design. For instance, algo-

rithms infer certain motifs with different accuracy, and so their per-

formance depends on the presence of these motifs (Marbach et al.,

2010). Such findings have helped spur efforts to benchmark algo-

rithm performance on experimental or in silico datasets with varying

properties (Chen and Mar, 2018; Hache et al., 2009;

Madhamshettiwar et al., 2012; Maetschke et al., 2014; Ud-Dean

and Gunawan, 2014; Zou and Feng, 2009), and some of these stud-

ies have yielded tools for further exploration of algorithm-dataset

pairings (Bellot et al., 2015; Tjärnberg et al., 2017; Wang et al.,

2013). Throughout, the most widely used metrics are predominantly

AUROC and AUPR: the area under the receiver operator character-

istic and precision-recall curves, respectively. This approach treats

the inference as a binary classification, which is possible only if a

gold standard network is known. However, applications with ex-

perimental data rarely have a gold standard network, making it

infeasible to use AUROC or AUPR. We postulate that factors relat-

ing to network properties, experimental design and data processing

affect algorithm performance, but that the type and extent of these

effects remain challenging to discern, in part, because of how they

typically might be assessed.

Here, we develop an in silico framework and new confidence

metrics [edge score (ES) and edge rank score (ERS)], and use them to

systematically evaluate the effects of kinetic parameters, network

motifs, logic gates, stimulus target, stimulus temporal profile, noise,

and data sampling on algorithms spanning widely used classes of

statistical learning methods. The analysis distinguishes between in-

ference accuracy and confidence, quantifies how well algorithms

utilize the input data, and enables comparisons in a manner that was

not previously possible. The guiding principle is that outcomes

across algorithms can now be assessed in like terms through normal-

ization to null models, which circumvents the need for a gold stand-

ard network. The results show that several factors—some within

and others outside one’s direct control—exert highly significant and

previously unrecognized effects, raising questions on how datasets

and algorithms ought to be effectively paired. Finally, we use realis-

tic in silico gene networks to validate our approach and apply it to

tune the sensitivity and specificity of inferred models.

2 Materials and methods

Methods are detailed in Supplementary Material. Briefly, networks

were formulated with logic gates for cellular mechanisms (Inoue and

Meyer, 2008; Kalir et al., 2005; Mangan and Alon, 2003; Setty

et al., 2003; Sudarsan et al., 2006). Target node activation was

defined as a function of input nodes and affinities for the target

(Ackers et al., 1982; Bintu et al., 2005; Shea and Ackers, 1985).

Efficiencies for enzyme activity and gene regulation span a wide

range (Bar-Even et al., 2011; Hargrove et al., 1991; Ronen et al.,

2002), so varying parameter values were applied.

The panel of algorithms includes GENIE3 (Huynh-Thu et al.,

2010) [which uses Random Forests (Breiman, 2001)], TIGRESS

(Haury et al., 2012), BANJO (Hartemink et al., 2001; Yu et al., 2004),

MIDER (Villaverde et al., 2014) and correlation (abbreviated here as

CORR). We note that additional algorithms have been developed also

using Random Forests (Huynh-Thu and Geurts, 2018; Huynh-Thu

and Sanguinetti, 2015), regression-based methods (Bonneau et al.,

2006; Ciaccio et al., 2015), dynamic Bayesian (Li et al., 2011) and in-

formation theory (Faith et al., 2007; Giorgi et al., 2014; Margolin

et al., 2006; Wang et al., 2009; Zhang et al., 2013), and some

approaches use multiple methods (de Matos Simoes and Emmert-

Streib, 2012; Xiong and Zhou, 2012) or multiple algorithms (Madar

et al., 2010; Marbach et al., 2012; Ruyssinck et al., 2014). Our focus

was not to span a large number of algorithms or to determine a most

effective one, but rather to evaluate determinants of performance using

a concise set of established algorithms spanning different statistical

methods. Therefore, and per convention, we do not include an ex-

haustive analysis with other algorithms, but note that the presented

analysis is extensible. Additionally, we do not include algorithms

intended to infer gates in large networks, but the analysis is similarly

extensible, and here we indicate instances where observed trends hold

across the specified gates.

Validation networks were generated using GeneNetWeaver

(GNW) (Schaffter et al., 2011). Results for the five-node networks

can be visualized using the online data browser at https://bagheri.

northwestern.edu/browsers/networkinference/.

As described in detail in Supplementary Material, null datasets

for five-node networks were generated by shuffling data across gate/

motif dimensions. Null datasets for GNW networks were generated

by shuffling data across nodes and stimulus conditions. To calculate

ES and ERS, the necessary outcome from any method of generating

the nulls is that the inferred weights (IW) and null weights (NW) are

uncorrelated.

3 Results

3.1 A methodology to assess and compare algorithm

performance
To identify how different factors affect inference outcomes in a con-

trolled manner, we started by formulating in silico networks represent-

ing a range of scenarios for cellular regulation. Given the large

combinatorial space, and the potential for a large network to compli-

cate interpretation, we used a concise testbed—a strategy that has also

been used in other studies (Cantone et al., 2009; Ud-Dean and

Gunawan, 2014; Zou and Feng, 2009). Each network has five nodes:

three (A, B, C) comprise a fan-in and the other two (D, E) are down-

stream of the fan-in target (C). Regulation among A, B and C is speci-

fied by a motif, and C is activated via a logic gate (Fig. 1a,

Supplementary Fig. S1a–d, Tables S1 and S2). We considered 36 gate-

motif combinations and four orders of magnitude of kinetic variation

in gate edges. For the network inference, we chose a panel of algo-

rithms representative of widely used statistical methods, including top

performers in DREAM challenges (Haury et al., 2012; Huynh-Thu

et al., 2010). The methods (and the abbreviations used here and algo-

rithms) are Random Forests (RF, using GENIE3), least-angle regression

(REG, using TIGRESS), dynamic Bayesian (DB, using BANJO), mutual

information (MI, using MIDER) and correlation (CORR) (Fig. 1b).

We take a multifactorial approach to evaluate performance.

Parameter values for gate edges are varied to reflect different strengths

of regulation. Nodes A and/or B receive a stimulus representing the

start of an experiment, such as ligand-induced pathway activation. At

the halfway point, the stimulus is discontinued, representing its re-

moval (or treatment with an inhibitor) as in the DREAM challenge

(Marbach et al., 2009). Timecourse data from simulations are sampled
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at regular intervals, and varying levels of noise are added. Lastly, algo-

rithms are provided for different time intervals of the data.

Importantly, as each algorithm uses a distinct statistical method

and infers edge weights with different ranges and distributions, the

output values cannot be directly compared. Additionally, if an algo-

rithm correctly identifies an edge, it is not possible to determine if this

outcome was discerned from information within the data or if it could

have been recovered spuriously. These shortcomings motivated us to

develop new, generalizable metrics to compare performance across

algorithms and assess the confidence of true edges, which we arrive at

by comparing IW from true data to NW from N permuted datasets

(Fig. 1c). The first metric, ES, quantifies the frequency with which the

true-data model outperforms a set of permuted-data models. It repre-

sents the confidence of the IW. ES for the edge from node i to node j,

across N null datasets indexed by k, is given by:

ESij ¼
1

N

XN

k¼1

1:0; IWij > NWijk

0:5; IWij ¼ NWijk

0:0; IWij < NWijk

8<
:

9=
; (1)

The second metric, ERS, quantifies the frequency with which an

edge is more highly ranked in the true-data (predicted) model versus

permuted-data models. ERS represents the confidence for if a true

edge is inferred relative to other edges in a network, and is given by:

ERSij ¼
1

N

XN

k¼1

1:0; rankðIWijÞ > rankðNWijkÞ
0:5; rankðIWijÞ ¼ rankðNWijkÞ
0:0; rankðIWijÞ < rankðNWijkÞ

8<
:

9=
; (2)

Both metrics quantify the extent to which algorithms utilize the

input data. Values between (0.5, 1] indicate that the predicted model

outperforms null models; 0.5 indicates equivalent performance; and

[0, 0.5) indicates that null models outperform the predicted model.

The use of permuted data, as opposed to randomly generated values,

ensures that the null data have an overall distribution consistent

with that of the true data.

To situate the new metrics in an existing framework, we consider

a standard binary classification. Among the four outcomes—true

positive (TP), false positive (FP), true negative (TN) and false nega-

tive (FN)—a true edge can be TP or FN (Fig. 1d, left). An algorithm

that predicts true edges correctly has high recall (i.e. sensitivity),

defined as TP divided by condition positive (TPþFN). However,

the recall does not inform whether an algorithm truly discerns regu-

lation based on the data or if the inference can be made by chance.
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Fig. 1. Evaluating performance of network inference. (a) Networks differ in features such as motifs and gates. Gates differentially regulate node C based on the ac-

tivity of nodes A and B. Color-coding (white to purple for low to high activity) characterizes node C in the fan-in motif. (b) Panel of algorithms that use distinct stat-

istical learning methods. (c) Networks were simulated under different conditions to produce timecourse data. Noise was added before data samples were

obtained, and true data were permuted to produce null data. Regulation was inferred by each algorithm, and inferred weights (IW) and null weights (NW) were

compared to determine the confidence metrics ES and ERS. (d) Left: for a true edge, the two possible outcomes from a binary classification are true positive and

false negative. The IW classification threshold depends on algorithm and context. Right: four-quadrant analysis of confidence and IW suggests reasons for algo-

rithm performance. Confidence values above 0.5 indicate that a predicted model tends to outperform null models. Ideal outcomes are in the upper-right quadrant.

(e) Left and middle: analysis with IW and confidence; right: comparison of confidence metrics. Results are color-coded by algorithm. For the 36 gate-motif combi-

nations, inference outcomes are shown that are specific to edge A!C, using: nine representative kinetic parameters (kA ; kB 2 f10�2 100 102g), stimulus to nodes

A and B, no added noise, and data sampled from the full timecourse
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To gain this insight, we use confidence to sub-categorize TP and FN

(Fig. 1d, right). If IW is high and confidence>0.5, then we deduce

that the algorithm is correct for the right reasons. If IW is high but

confidence<0.5, it is correct for the wrong reasons; it guessed cor-

rectly by chance. If IW is low and confidence>0.5, it is incorrect

due to deception; it does not uncover the edge well but still outper-

forms the nulls, suggesting features of the data ‘deceive’ the algo-

rithm. Lastly, if IW is low and confidence<0.5, it is incorrect due

to a difficult inference; the outcome is incorrect and has no confi-

dence. Among the four quadrants, ideal performance is in the upper

right. We note that this analysis applies to true edges. For false

edges, while IW should be low, the interpretation is not defined

analogously for the four quadrants.

We observed that each algorithm has characteristic trends for its

IW distribution and the relationship between IW and confidence

(Fig. 1e, left). For the IW values, Random Forests is low, regression

is intermediate, dynamic Bayesian is binary (as expected), mutual in-

formation is clustered, and correlation is wide-ranging. Because of

these differences, a low IW by one algorithm can potentially convey

better edge recovery than a high IW by another, confounding direct

comparisons. However, this limitation could be overcome by map-

ping each IW distribution onto a shared metric. To this end, we note

that (i) the IW–ES relationship is monotonic for each algorithm,

and (ii) for algorithms that are continuous in IW, ES surpasses

0.5 (y-axis) at a characteristic IW value (x-axis)—which in this con-

text is 0.15 for Random Forests, 0.2 for correlation and 0.4 for

regression—such that these values indicate equivalent performance

compared to null models. Therefore, for a given network context,

ES can be used as a common currency to directly compare IW across

algorithms.

The relationship between IW and ERS is more complex than

with ES, because ERS also accounts for within-model rankings. ERS

can therefore capture the possibility that a low IW may convey bet-

ter recovery than a high IW by the same algorithm (given a differ-

ence in motif, gate, kinetics, etc.). For example, the vertical Random

Forests pattern (Fig. 1e, center) shows that one IW value can occupy

different within-model rankings relative to the null expectation, and

the horizontal pattern for correlation shows that different IW values

can occupy similar ones. Exact trends vary across conditions

(Supplemenatry Fig. S1e–g), further highlighting the distinct infor-

mation captured by ERS (Fig. 1e, right). In summary, ES and ERS

provide complementary information that can be applied across algo-

rithms to augment the standard interpretation of IW.

3.2 Performance characteristics are highly variable
Given the high dimensionality of the data, we organized the simula-

tions and inference outcomes in an online browser that allows for

interactive visualization. We focus on the region where combinator-

ial variation was introduced and for which the results are the most

informative, i.e. the fan-in edges. The kinetic landscapes for confi-

dence show striking patterns that vary as uniform, graded, steep

boundaries and speckled. The shapes of the regions for these pat-

terns also vary as kinetically symmetric (mirror imaged across the

diagonal), bounded by one or both kinetic parameters, or thin bands

with linear or curved boundaries. Many landscapes have surprising

combinations of features resembling phase diagrams with phase

boundaries and triple points. As a representative example, we high-

light a single network that produces different timecourse trajectories

depending on the kinetics and stimulus (Fig. 2a), and for which algo-

rithm performance varies as a function of kinetics, stimulus, time

interval of input data and gate edge (Fig. 2b). The range of outcomes

all from the same network underscores the fundamentally challeng-

ing task of network inference.

Despite wide variation, the results are still informative. First,

much of the variation originates from decisions that in principle are

within one’s control but in practice are nonobvious. For instance,

confidence varies based on the employed algorithm and the time

interval of input data. Additionally, stimulus choices that increase

confidence in one edge are not necessarily advantageous for recover-

ing another edge. These effects for ERS also hold for IW and ES

(Supplementary Fig. S2a and b). Second, some outcomes of low con-

fidence are due to high NW (rather than only low IW), which, in

context, suggest that an algorithm would have an elevated propen-

sity to call FPs (Supplementary Fig. S2c). For regression, NW values

are relatively high, and for mutual information, NW values are low

with the full timecourse dataset but high with the first and second

time intervals. Lastly, each algorithm has characteristic contours in

the landscapes: Random Forests, dynamic Bayesian and mutual in-

formation have defined boundaries; regression is usually highly uni-

form; and correlation often has several tiers. These patterns hold

across networks (Supplementary Fig. S2d and e), indicating that

algorithms differ in sensitivity to kinetic variation.

3.3 Differential effects of the time interval of input data

and the stimulus target
Since the stimulus was applied for half of the timecourse, we consid-

ered three intervals of the data: the first half for activation, the se-

cond half for relaxation toward the initial state or continued

activation, and the full timecourse. While the latter contains the

most information—both in terms of data quantity and trajectory

shapes—we hypothesized that the contrasting dynamics for induc-

tion and resolution of gene expression in the same dataset could po-

tentially clarify or obscure the underlying regulation depending on

the algorithm. To visualize the outcomes, kinetic landscapes are con-

solidated as violin plots (Fig. 3a). The results show that Random

Forests performed best with the second interval and poorly with the

full timecourse, and the effect was prominent. Regression often per-

formed better with one of the two halves, and dynamic Bayesian

often performed better with the full timecourse or first half. Mutual

information performed best with the full timecourse and poorly

with second half; full was the only one where the mean surpassed

0.5 confidence. Correlation performed best with the first half and

poorly with the second, and the effect was prominent. These

algorithm-specific trends hold across motifs, gates, edges and with

ES (Supplementary Fig. S3a–h), demonstrating that across the net-

works examined here, there are certain types of dynamics from

which algorithms are consistently confident or not confident. For

algorithms that were most differentially affected, the time intervals

for ideal performance all differed: first, second and full, for correl-

ation, Random Forests and mutual information, respectively.

Though these specific outcomes could vary across dataset contexts,

the results more broadly demonstrate that providing data in greater

quantity or of greater dynamical complexity does not guarantee bet-

ter network models.

We next examined the time interval-dependent relationship be-

tween IW and ERS across more of the data (Fig. 3b). For mutual in-

formation, the best interval was primarily in the upper-right

quadrant and the worst was in the lower left. For Random Forests

and correlation, the best interval respectively was also in the upper

right, but many low-performing cases appeared in the upper left,

indicating that these algorithms were unable to infer true edges well

due to misleading features of the full dataset. Distinct trends were
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not present for regression, indicating insensitivity to the type of dynam-

ics in the data. Dynamic Bayesian was widely varied for the second

interval and full dataset, whereas the first interval was tightly clustered.

For all algorithms, the observations held for both gate edges.

Since the target node(s) of the stimulus dramatically shaped the

simulations and inference outcomes, we next examined whether the

choice of target node conferred specific effects (Fig. 3c). Some edges

were not inferred due to flat trajectories resulting from the combin-

ation of gate, motif, and stimulus (Table S3), but in nearly all other

cases, the gate edge emanating from the node that was not the target of

the stimulus was inferred with greater confidence. That is, B!C was

recovered with higher confidence than A!C when the stimulus tar-

geted A, and A!C was recovered better than B!C when the stimu-

lus targeted B. Targeting both nodes was generally disadvantageous.

These trends hold across motifs, gates and algorithms, and with ES

(Supplementary Fig. S3i–p). The most discernable stimulus-dependent

effect on whether performance was ideal (i.e. correct for the right rea-

sons) occurred with Random Forests and correlation (Fig. 3d). These

outcomes suggest that a traditional principle—perturbing nodes to elu-

cidate their regulation and that of downstream nodes—may come with

a caveat for network inference, which is that algorithms can potentially

perform worse in the topological vicinity of external interventions. As

with the time interval effects, specific outcomes could vary across data-

set contexts, and therefore we propose that the extent of this effect

merits investigation as part of the development and benchmarking of

algorithms. If it proves to be a recurring phenomenon, then an advan-

tageous experimental strategy could be to introduce perturbations out-

side of the core network of interest.

3.4 Differential robustness to noise in the data
Experimental data inevitably contain noise from sources such as bio-

logical noise (Balázsi et al., 2011; Snijder and Pelkmans, 2011), cell

cycle asynchrony (Buettner et al., 2015), sample preparation (Novak

et al., 2002), and measurement imprecision (Stegle et al., 2015), and

different noise profiles are associated with different experiments.

Although methods for generating in silico data from gold standard

networks often include noise (Coker et al., 2017; Mendes et al.,

2003; Schaffter et al., 2011; Van den Bulcke et al., 2006), the specif-

ic ways in which this variance affects performance are poorly under-

stood. We varied the level of noise in the data and assessed the

inference outcomes (Fig. 4a), and observed that Random Forests

was the least affected by noise; regression had a sharp decrease in

ERS with a little noise, though additional noise had no further ef-

fect; correlation had the greatest decrease in IW; for dynamic

Bayesian, the distribution of landscape-average IW values tightened;

and for mutual information outcomes were varied.

A consistent consequence of noise was an increase in the uneven-

ness of each algorithm’s performance across the kinetic landscape.

To assess this effect, we developed a concise measure of nonuni-

formity that we term speckling to account for differences between
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all adjacent kinetic coordinates. Speckling quantifies the robustness

of an algorithm to subtle variation in the data or the network from

which data are collected. A uniform pattern is 0, and a checkerboard

pattern is 1 (the maximum). If accuracy or confidence is highly var-

ied between adjacent kinetic coordinates, which typically have simi-

lar dynamics, then, based on the speckling metric, we conclude that

the algorithm is not robust to the variation. Without any noise,

speckling was low for regression, mutual information and correl-

ation; varied for Random Forests; and high for dynamic Bayesian

(Fig. 4b). Regression had the lowest speckling and highest confi-

dence. Notably, in all cases, as noise increases, the edge confidence

approaches 0.5 (regardless of whether it is higher or lower without

noise) and speckling approaches 1 (Supplementary Fig. S4).

Therefore, for the cases where noise increases the average IW or

confidence towards 0.5, this result can now be interpreted as an arti-

ficial inflation of confidence. We propose that a speckling analysis

could allow one to identify a noise level above which performance is

no longer robust, to determine whether an algorithm is reliable as a

function of the estimated amount of noise in a dataset.

3.5 Resilience to kinetic and topological variation
We investigated how inference might be predictably shaped by top-

ology and kinetics—attributes that are typically set and outside of

one’s control. While none of the logic gates imparted a consistent

signature to the kinetic landscapes, three motifs (FI, UFB and DFB)

each did. However, despite intra-motif similarities across algorithms
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and edges (Supplementary Fig. S5a), consistent types of motif pat-

terns were not discernible. This result led us to ask whether infer-

ence outcomes could be attributed more directly to the data. To this

end, we note two reciprocal observations that guided the subsequent

analysis: (i) many networks with the same motif and gate but differ-

ent regulatory kinetics produce dissimilar data, and (ii) many net-

works with different motifs, gates, and/or kinetics produce similar

data.

To evaluate the extent to which variation in performance is at-

tributable to the network (topology) or the data (trajectories), we

evaluated representative outcomes from the two reciprocal cases as

follows: (i) if an algorithm interprets dissimilar datasets consistent-

ly, then it is robust to kinetic variation; and (ii) if it interprets simi-

lar datasets consistently, then it is robust to topological variation.

For concise visualization, trajectories are condensed to their mean

and standard deviation (SD), and IW and ERS outcomes are con-

densed to their SD. In the first case (Fig. 5a, Supplementary Fig.

S5b), dynamic Bayesian and mutual information had the largest

SD in confidence, followed by Random Forests and correlation.

SD was generally greater for an edge across algorithms than across

edges within an algorithm, indicating algorithms differ substantial-

ly in their robustness to kinetic variation. The second case showed

similar outcomes for robustness to topological variation (Fig. 5b,

Supplementary Fig. S5c), and this result held for ES

(Supplementary Fig. S5d–e). In all, the results show that perform-

ance is affected by both factors, and algorithms differ from each

other in robustness. Additionally, the second case highlights the

challenge of identifiability (Oates and Mukherjee, 2012): different

networks can produce similar data, and algorithms are not

guaranteed to infer the correct topology even when provided low-

noise time-resolved data.

3.6 Impact of modifying experimental design and

algorithm implementation
Since the choice of time interval and stimulus target had significant

effects, we hypothesized two strategies to produce datasets that

algorithms might interpret better (Fig. 6a). The first is to modify the

temporal profile of the stimulus input (‘SI’) such as with dynamic

ramps or pulses. Experimentally, this level of temporal control over

ligand treatment and cell signaling has been implemented using

optogenetic (Toettcher et al., 2013; Zhang et al., 2014) and micro-

fluidic (Junkin et al., 2016; Zambrano et al., 2016) techniques,

though these options are not widely adopted for cell culture experi-

ments. The second (and simpler) strategy is to provide stimulus

trajectory ‘data’ for algorithms to infer regulation involving a

stimulus-specific node (‘HN’ for hidden node). We hypothesized

that if the influence of the stimulus could be assigned to an edge for

the hidden node, then low confidence in the vicinity of the target

node might be alleviated.

We tested the strategies individually and in combination, first

evaluating the impact the hidden node. For stimulus to node A, the

expected new edge is HN! A. However, we note that in principle,

performance could potentially be improved by assigning influence

incorrectly via an edge from the hidden node to another node (‘:A’

for ‘not A’) and/or in the opposite direction. Since the main goal is

to improve the core network model, we are more interested in the ef-

fect on the edges between original nodes, and hidden node edges

could always be discarded.

The algorithm that best inferred HN !A (i.e. the true influence

of the stimulus) was dynamic Bayesian (Fig. 6b). GENIE3, regres-

sion and mutual information almost never detected it, and while cor-

relation usually did, the :A edges had higher IW. Next, we

examined the consequences of the hidden node with the SI panel,

and whether the strategies’ combined effects were synergistic, antag-

onistic or neither (strictly additive) (Fig. 6c). The hidden node had

no effect on correlation (as expected), modest effects on Random

Forests and regression, and larger, often positive effects on dynamic

Bayesian and mutual information. Changing the SI had modest

effects on correlation, Random Forests and regression; large and

varied effects on dynamic Bayesian; and generally improved effects

on mutual information. While the effects of certain SI were wide

ranging, the ramp up profile was the most likely to improve A !C

ERS (Supplementary Fig. S6). Therefore, for certain algorithms,

there may be steps that can be taken, in experimental design and in

how data are provided to algorithms, to improve inferred models.

However, in general it appears that algorithms are insensitive to

such strategies.

3.7 Validation of the metrics using 50-node networks
To investigate the application of the confidence metrics, we

extracted and analyzed 50-node networks from the yeast transcrip-

tional regulatory network using GNW. For each network, nodes

were individually stimulated, and timecourse data were collected

and provided to algorithms. Since the option to shuffle data across

motif-gate combinations was unavailable in this context, null trajec-

tories for the null models were instead generated by shuffling across

nodes and stimulus conditions, in a manner that could also be per-

formed with experimental data (Materials and methods). We

observed similar overall trends for the metrics compared to the five-

node networks (Fig. 7a, Supplementary Fig. S7a), and that the
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monotonic IW–ES relationship was maintained (Fig. 7, left,

Supplementary Fig. S7b). Additionally, we found that for NW and

IW to be uncorrelated (Fig. 7a, right; a necessary condition for cal-

culating confidence metrics), the null trajectories needed sufficient

variation. Therefore, generation of the nulls requires empirical as-

sessment to ensure their suitability. The large amount of shuffling of

the GNW data ensured suitability of the nulls, and as a side effect

the NW values are lower and the IW–ES relationship is steeper than

for the five-node networks. Importantly, these differences do not

prevent the analysis of interest, as comparisons between algorithms

are intended only within each network context.

We next revisited some of the phenomena from the five-node

analysis. As the time interval of input data and the stimulus both

affected confidence (Figure 3), we visualized the rank-ordered effects

on ERS for two-parent fan-in edges. Although the mean effect mag-

nitudes were lower for GNW, a substantial proportion of edges

were still affected (Fig. 7b and c, Supplementary Fig. S7c), reinforc-

ing that these experimental design choices have substantial and po-

tentially unpredictable consequences.

Finally, we asked whether ES and ERS could be applied to

inferred models post hoc by informing which edges to keep versus

discard. The standard approach for enforcing edge sparsity is to set
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a threshold for IW (e.g. based on an elbow, which refers to a sharp

drop-off in a plot of rank-ordered IW values) and retain edges that

pass the threshold, although there is no standard way to identify the

location of the threshold. If the threshold permits too many edges, a

model will tend to recover regulation with high sensitivity but low

specificity, and if it is too stringent the result will be high specificity

but low sensitivity. If the gold standard is known, this trade-off is

described by the ROC curve, which represents possible models

starting at the lower-left and extending to the upper-right as the

threshold is relaxed (Fig. 7d, upper). An ideal model is in the upper-

left corner, where specificity and sensitivity are both 1. For experi-

mental applications, the gold standard, ROC curve and location in

ROC space are unknown. However, we reasoned that it would still

be useful to be able to make controlled movements, such as when a

given application could benefit from erring on the side of greater

sensitivity or specificity. Therefore, we examined whether ES or ERS
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could be used to traverse upward (higher sensitivity) or leftward

(higher specificity) in a principled manner, without knowing the

gold standard, and without the constraint of the ROC curve. We

note that the ROC curve in Figure 7d is shown as a visual depiction

for the subsequent analysis, and a PR curve would illustrate the

same concept.

As a base case against which to compare each new post hoc pro-

cedure, the IW threshold for each model in the 5-node and 50-node

sets was determined using the elbow rule (Materials and Methods),

and sensitivity and specificity were calculated based on the true net-

work represented by the provided dataset. Since the rank order of

edges differs between metrics (Supplementary Fig. S7d and e), we

hypothesized that post hoc decisions based on ES, ERS or combina-

tions of metrics might produce networks with different properties

than the base case (Fig. 7d, lower). We evaluated three new methods

relative to the base case (elbow on IW). In the visualization, deviation

from zero denotes an increase or decrease (Fig. 7e). Outcomes were

similar between the 5-node and 50-node networks, indicating that the

observed trends hold for larger networks. For Method #1, networks

with edges based on the criterion of ES>0.5 had increased sensitivity

(with an exception for TIGRESS in the five-node case), indicating that

the standard IW elbow tended to exclude some high-confidence edges.

Importantly, ES>0.5 represents a single point as opposed to a curve

in sensitivity-specificity space, and it can be distinct from but is gener-

ally in the vicinity of the ROC curve. The 0.5 criterion is derived from

the definition of ES and is less subjective than, for example, identify-

ing an elbow for IW. Method #2 used the intersection of edges satisfy-

ing elbow-thresholded IW and ERS>0.5, creating a curve of sparser

networks with lower sensitivity and higher specificity. Method #3

used the intersection of ES>0.5 and ERS>0.5, and the outcomes are

a point as with Method #1.

The fourth and fifth rows are controls. The fourth (ERS>0.5)

shows that: (i) ERS provides some information that is distinct from

ES and (ii) the increased specificity in Methods #2 and #3 is due to

the use of ERS in combination with other metrics. In the fifth row,

IW was thresholded at the same number of edges obtained with

Method #1. The similarity of the first and fifth rows are due to a com-

parable rank ordering of edges by IW and ES, as expected from their

monotonic relationship. We then extended this control to the other

cases and observed that there were statistically significant differences

in sensitivity and specificity (Supplementary Fig. S7f). While out-

comes could generally be ascribed to tuning the specificity-sensitivity

trade-off, there were cases with different rank ordering between IW,

ES and ERS, and thus there was movement off of the ROC curve as

anticipated. In summary, ES and ERS can be used to evaluate per-

formance of inference algorithms in like terms, and they can also be

applied to tune inferred models post hoc on the basis of how well

algorithms recover regulatory interactions from true data relative to

null data without relying on a gold standard.

4 Discussion

This study develops a way to evaluate the confidence and robustness

of inference outcomes, which is enabled through comparisons to

null models. While the analysis utilizes in silico data with many

timepoints, it can also be applied to experimental datasets with

fewer timepoints, and in principle it is extensible to any algorithm.

Overall, we find that performance is significantly shaped by previ-

ously unrecognized factors, some within and others outside of one’s

control. To promote exploration of the multidimensional analysis,

we produced an interactive online browser. The results show how (i)

kinetic parameters affect outcomes in complex ways; performance

can be affected (ii) by the type of dynamics portrayed by the data

and (iii) in the topological vicinity of a stimulus; (iv) algorithms dif-

fer in robustness to deviations in data arising from kinetic variation

or noise; (v) topological and kinetic variation have similar effect

magnitudes, which vary by algorithm; and (vi) there are ways to im-

prove performance under some conditions, but it remains to be seen

whether there are more corrective steps. Given the impact of these

factors, we suggest they could be considered more broadly in the

benchmarking of algorithms.

While there has been progress in creating, comparing, and refin-

ing algorithms, fundamental questions remain on how algorithms

ought to be used and how models ought to be interpreted. Our

results indicate that, counterintuitively, the pairing of high-quality

data with high-performing algorithms can still produce inaccurate

models. With the new metrics, a four-quadrant analysis provides an

interpretation for why some dataset-algorithm combinations do well

and others do not. In cases where the gold standard is known, estab-

lished metrics such as AUROC and AUPR can be used to quantify

outcomes. If the gold standard is unknown, as for applications with

experimental data, ES and ERS provide standard approaches to se-

lect edges in a network model. For the method with ES>0.5, this

defined threshold circumvents the need to identify an IW elbow (a

somewhat arbitrary threshold) and may produce high-confidence

models that balance sensitivity and specificity. Using ERS in combin-

ation with IW filters out highly ranked edges that are also highly

ranked in null models, potentially removing FPs.

The no free lunch theorems for optimization (Wolpert and

Macready, 1997) state that one should expect identical average algo-

rithm performance in the limit of all possible problems, but that some

algorithms will outperform others if better aligned with the subset of

problems at hand. In this light, network inference applications would

benefit especially from a greater understanding of the types of data

that algorithms interpret well and the circumstances under which

experiments can produce data that align with these criteria. Achieving

this goal will require experimental design (e.g., stimulus target/profile

and number/spacing of measurements) that is based, in part, on how

well the experiments position algorithms to extract information.

Reciprocally, this goal will also require more study on which algo-

rithms effectively utilize data portraying characteristic features of gene

regulation and cell signaling. Ultimately, further characterization of

the factors that benefit and hinder algorithms, and investigation on

how data and algorithms should be paired, will enable more accurate

models and their effective applications.
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