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“By far the greatest danger of Artificial Intelligence is that peo-
ple conclude too early that they understand it.” —Eliezer
Yudkowsky (1)

Advances in machine learning (ML) have brought artificial
intelligence (AI) and its biomedicine applications into the spot-
light as part of a larger and (we hope) smarter approach to
many health-care challenges. Driving these advancements has
been the availability of large and diverse datasets such as elec-
tronic and personal health records, disease registries, imaging
and genomic repositories, and wearable sensors. Studies are
showing that AI/ML algorithms can outperform humans at vari-
ous diagnostic tasks from detecting polyps to diagnosing cancer
(2). However, as we transition from models that are proofs-of-
concept to decision support tools that affect patient care, both
AI/ML developers and the end users who interact with them
need to fully appreciate how and what these models are
“learning.”

In this issue, Hu et al. (3) describe a supervised, deep
learning-based approach to predicting cervical precancers and
cancers. Briefly, deep learning attempts to discover the hidden
structure of complex, high dimensional data inputs using a hi-
erarchical network consisting of multiple layers (where each
layer is a collection of nodes in the network that operate to-
gether). Higher layers in the hierarchy are defined using fea-
tures from lower layers. This approach has gained enormous
traction in a variety of applications in health care (4). Using a
retrospective dataset of 9406 women who underwent cervical
cancer screening using photographic images of the cervix (cervi-
cography), the authors trained a variant of a deep learning
method called the Faster R-CNN (Region-based Convolutional
Neural Network). The Faster R-CNN approach first transforms
an image into a convolutional feature map using a CNN. The
feature map is processed by a region proposal network, which
generates regions containing objects of interest. These regions
are reshaped into a fixed size and fed into a Fast R-CNN detec-
tor, which predicts the label of the inputted region. The authors’
algorithm achieves better accuracy in predicting precancer/can-
cer compared with the original physician readers who

interpreted the cervicography (P< .001) and better accuracy
when compared with other screening tests such as conven-
tional cytology (P< .001). The study highlights the power of AI/
ML techniques when trained on a large, diverse dataset.
However, the nuanced methodological issues that affect model
generalizability (eg, the ability to reliably use the model on dif-
ferent cohorts) are not always reflected in summary statistics
and P values.

A wide variety of AI/ML algorithms exist, including super-
vised, unsupervised, and reinforcement learning approaches.
Hu et al. used supervised learning, which uses labeled informa-
tion (eg, the known outcome of a patient, a region of interest
drawn by a physician annotator on an image) as “truth” during
model training to elucidate the hidden relationships among the
input data and output labels. Algorithms in this class include lo-
gistic regression, support vector machines, and random forests.
Unsupervised learning requires no predefined labels but rather
uses a predetermined measure of similarity or distance to dis-
cover inherent structure within data. Algorithms that perform
dimensionality reduction (eg, modeling the input dataset using
fewer features) and clustering (eg, finding groups of similar fea-
tures) are examples. Reinforcement learning attempts to recom-
mend an action (eg, perform a diagnostic test) that achieves a
desired outcome (eg, arrive at a definitive diagnosis for a given
patient) by observing the outcome of the action (eg, whether the
diagnostic test reveals the correct, definitive diagnosis). The
outcome is a quantified value called a reward, which is positive
in situations with good outcomes and negative in situations
with poor outcomes. By observing cumulative rewards for a
given action over time, reinforcement learning algorithms use
this feedback to determine the optimal sequence of actions that
result in the best long-term strategy. Reinforcement learning is
widely being used to enable autonomous driving of cars and is
increasingly being explored to suggest interventions such as
when and how to prompt an individual to take a medication or
to exercise (5).

A longstanding question for AI/ML developers and end users
alike is: What AI/ML approach is best suited for my prediction
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task? Selecting the appropriate model is frequently nuanced
but may be guided by a series of questions. What is being pre-
dicted? Is the target or outcome variable that is being pre-
dicted categorical (eg, binary or multiple distinct labels such
as tumor stage) or continuous (eg, a numerical value such as
the number of days to recurrence)? What is the dimensional-
ity of the dataset (eg, the number of input features) being
used to train the model? Are there a handful of data points,
or do they number in the hundreds or thousands? What is
the sample size and quality of the dataset? How many cases
have missing values? Does the sample size support training a
model with the number of predictors being included?
Figure 1 illustrates a basic decision aid that takes these crite-
ria into consideration in selecting the appropriate AI/ML
modeling approach.

Developing generalizable AI/ML models is dependent on
the quality and representativeness of the data used to train
the model. Hu et al. (3) had access to 59 634 cervical images
from over 9000 patients as part of the Guanacaste natural
history study, which was a large public health study under-
taken in Costa Rica. Participants in this study underwent cy-
tology and cervicography followed by colposcopy if the
patient had an abnormal screening result. However, the
dataset was highly imbalanced: the number of cases (eg,
patients ultimately diagnosed with cervical precancer/can-
cer) was far less than those who were normal (279/9406,
3.0%). Although this reflects the natural proportion of cases
as often seen in cancer screening programs, training these
models requires a sufficient number and diversity of exam-
ples to distinguish between precancer/cancer and noncancer
features. To compensate, Hu et al. (3) used transfer learning
where instead of learning the model from scratch using their
data, they used the first four layers and weights from an
existing model trained on 1.28 million color photographs of
over 1000 types of objects (eg, animals, instruments, cars)

and their labels called ImageNet (6). They then updated the
values of the remaining layers using data from the
Guanacaste study. Data augmentation was also performed to
generate additional event cases by randomly flipping, rotat-
ing, and shearing the images as well as varying the bright-
ness of the images as a means of simulating variability
within the data. Although these strategies have been shown
to improve model generalizability, the simulated cases are
highly correlated with one another and may not reflect the
range of possible precancer/cancer presentations.

The ability to understand models and their predictions, par-
ticularly as they model increasing numbers of data inputs, is
critical. Techniques for characterizing data and model complex-
ity such as dimensionality reduction can be applied. For models
that are classifying on pixel data, visualizations such as a
heatmap-like class activation map are used to visualize what
regions of an image the model finds to be most informative in
predicting a given class (eg, precancer/cancer vs no cancer). Hu
et al (3) use class activation maps to understand model atten-
tion in correct and incorrect cases, providing a general sense of
regions of the image that contributed to the prediction.

Before AI/ML models can make the transition from proof-of-
concept to clinically useful algorithms, we must learn how to
make the models more generalizable and understandable. As
Yudkowsky’s quote captures eloquently, users of AI/ML models
must not see them as a “black box” but rather seek greater
transparency from model developers about the inherent quality
of the dataset used to train the model, the rationale behind
choosing the model’s representation, and the explanation asso-
ciated with a model’s prediction.
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Figure 1. A simplified decision tree illustrating one approach for selecting appropriate machine learning algorithms. *Dataset sizes are not defined as fixed thresholds

because the number of data points is often relative to the target variable and quality of data being used to train the model. Adapted from https://scikit-learn.org/stable/

tutorial/machine_learning_map/index.html.
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