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Abstract

Motivation: The biological interpretation of differentially methylated sites derived from

Epigenome-Wide-Association Studies (EWAS) remains a significant challenge. Gene Set

Enrichment Analysis (GSEA) is a general tool to aid biological interpretation, yet its correct and un-

biased implementation in the EWAS context is difficult due to the differential probe representation

of Illumina Infinium DNA methylation beadchips.

Results: We present a novel GSEA method, called ebGSEA, which ranks genes, not CpGs, accord-

ing to the overall level of differential methylation, as assessed using all the probes mapping to the

given gene. Applied on simulated and real EWAS data, we show how ebGSEA may exhibit higher

sensitivity and specificity than the current state-of-the-art, whilst also avoiding differential probe

representation bias. Thus, ebGSEA will be a useful additional tool to aid the interpretation of EWAS

data.

Availability and implementation: ebGSEA is available from https://github.com/aet21/ebGSEA, and

has been incorporated into the ChAMP Bioconductor package (https://www.bioconductor.org).

Contact: a.teschendorff@ucl.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The number of Epigenome-Wide-Association Studies (EWAS) has

grown rapidly, yet the biological interpretation of the differentially

methylated sites found in these studies remains a significant problem

(Lappalainen and Greally, 2017; Teschendorff and Relton, 2018).

EWAS typically use Illumina Infinium beadchips to measure DNA

methylation (DNAm) at over 480 000 or 850 000 CpGs, depending

on the beadchip version (Beck, 2010; Moran et al., 2016), and genes

represented on these chips may have widely different numbers of

probes mapping to them (Phipson et al., 2016). It has been noted

that this differential probe representation may cause significant bias

when conducting differential methylation and Gene Set Enrichment

Analysis (GSEA), favouring genes with more probes (Geeleher et al.,

2013; Phipson et al., 2016). This is similar to the well-known bias of

RNA-Seq differential expression calls towards longer genes, and for

this reason, methods that adjust for this bias in RNA-Seq data have

been adapted to the DNAm context (Phipson et al., 2016). However,

drawing an analogy between RNA-Seq and DNAm data is also mis-

leading, because in the RNA-Seq context the length of the gene only

affects the reliability of the measured expression level, whereas in the

DNAm context, the reliability of the measured DNAm level at a given

CpG site does not depend on the number of probes mapping to the
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same gene. Thus, although genes with higher probe representation are

more likely to be called differentially methylated, directly adapting

methods from RNA-Seq data to DNAm beadchips may introduce

other biases and still lead to suboptimal GSEA.

2 Description

Here we present a novel GSEA method for Illumina DNAm data,

with an empirical Bayes interpretation (thus called ebGSEA),

which overcomes the differential probe representation bias, whilst

also avoiding some of the residual biases of current state-of-the-

art methods like GSAmeth (Phipson et al., 2016). GSAmeth works

by ranking differentially methylated CpGs (DMCs), selecting

those that pass a genome-wide significance threshold, then map-

ping these to genes and finally to biological terms (pathways).

Adjustment for differential probe representation is carried out

at the gene-mapping stage, whereby the significance of the

number of DMCs mapping to a given gene is assessed in relation

to how many probes map to that gene. This, however, may result

in two undesirable outcomes. First, genes in a pathway where a

substantial fraction of marginal DMCs do not pass genome-wide

significance levels may result in the enrichment of the pathway

being missed (Fig. 1a–d, Supplementary Material). Second, two

pathways, matched for all variables (number of genes, probes

mapping to each gene, number of genes containing at least one

DMC) but differing widely in terms of the number or effect size of

DMCs within a gene, will be ranked equally (Supplementary

Material). ebGSEA overcomes these problems by adapting the

global test (Goeman et al., 2004) to directly rank genes according

to their overall level of differential methylation, as assessed using

all of the probes that map to the given gene and in a manner which

avoids favouring genes containing more probes. Subsequently,

enrichment of biological terms is performed on this ranked list

of genes using either a standard one-tailed Wilcoxon rank sum

test, or a recently introduced more powerful version known as

the Known Population Median test (Parks, 2018). As a result, in

the first scenario considered above, affected genes will be relative-

ly highly ranked via ebGSEA (Fig. 1c), and the ensuing ranked list

leads to significant enrichment of the pathway (Fig. 1d). In the se-

cond scenario, ebGSEA will favour the pathway containing more

DMCs, as required (Supplementary Material).

We also compared ebGSEA to GSAmeth in a smoking-EWAS

performed on 400 buccal swabs (Teschendorff et al., 2015). Here,

ebGSEA ranked a biological term associated with smoking-related

head&neck cancer much more highly than GSAmeth, the latter

exhibiting wide variation depending on the number of top-ranked

DMCs (Fig. 1e, Supplementary Material). For instance, selecting the

top-500 DMCs, GSAmeth would not have ranked this smoking-

related term among the top-25% enriched ones, in contrast to

ebGSEA which ranked it among the top 1% (Fig. 1e). Of note,

the ranking or statistical significance of genes derived from ebGSEA

did not correlate with the number of CpGs mapping to the gene,

confirming that ebGSEA, like GSAmeth, avoids differential probe

representation bias (Fig. 1f). Similar results were observed in other

EWAS (Fig. 1g–i, Supplementary Material).

3 Conclusion

We propose that ebGSEA be used alongside other GSEA methods to

obtain a more objective and comprehensive assessment of GSEA in a

given EWAS.
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Fig. 1. Validation of ebGSEA. (a) Example of a differentially methylated gene mapping to a hypothetical ‘pathway-A’, and of a gene containing a top-ranked DMC

not mapping to pathway-A. Y-axis labels the absolute differential methylation between two phenotypes. Each datapoint corresponds to a CpG mapping to the

gene, with the position relative to the transcription start site (x¼0). (b) Volcano plot of the resulting DMCs with the grey dashed line indicating the line of signifi-

cance (FDR¼0.05). (c) Significance (y-axis) versus rank position of the gene (x-axis), as ranked by ebGSEA. (d) Significance of 8567 biological terms, as assessed

using GSAmeth and ebGSEA combined with either a Wilcoxon test or the Known Population Median test. Dashed line marks Bonferroni threshold. (e) Plot of the

rank position (expressed as a fraction) of a biological term containing genes overexpressed in smoking-related head&neck cancer in a smoking-EWAS performed

in buccal swabs versus the number of top-ranked selected CpGs used in GSAmeth (blue line). Red line indicates the rank position of the same term under

ebGSEA. (f) Significance of the genes, as given by ebGSEA, versus the number of CpGs mapping to the gene, as derived using ebGSEA in the same smoking-

EWAS. R2 value demonstrates that ebGSEA is unbiased. (g–h) As (e–f), but now for a term of transcriptionally altered genes in an age-EWAS performed in blood.

(i) As panels f and h, but now for rheumatoid arthritis in an EWAS performed in blood
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