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Abstract
Objectives:  Past research has reported an association between neighborhood disadvantage and healthy aging, but most 
of these studies utilize self-report measures of health or physical functioning and do not properly account for neighbor-
hood selection effects, creating concerns regarding inflated associations. To overcome these limitations and provide a more 
stringent estimate of effects, the current study investigated the effect of neighborhood disadvantage on aging using newly 
developed epigenetic methods to assess rate of biological aging and marginal structural modeling (MSM) to account for 
potential confounds due to neighborhood selection.
Methods:  We tested the hypothesis that neighborhood disadvantage accelerates aging using U.S. census data and five waves 
of interview data from a sample of 100 middle-aged African American women. Using a recently developed epigenetic index of 
aging, biological age was measured using weighted methylation values at 71 CpG sites. We calculated a measure of accelerated 
methylomic aging (in years) based upon the residual scores resulting from a regression of methylomic age on chronological age.
Results:  Controlling for a variety of individual difference factors that could be confounded with neighborhood effects, including 
various health behaviors, neighborhood disadvantage was associated with accelerated biological aging. Using MSM to account 
for selection effects, a standard deviation increase in neighborhood disadvantage accelerated aging an average of 9 months.
Conclusions:  Our findings converge with prior work to provide strong evidence that neighborhood context is a significant 
determinant of healthy aging.

Keywords:   Aging—Biological age—Marginal structural modeling—Neighborhood—Selection bias

Over the past two decades, numerous studies have reported 
an association between living in a disadvantaged neighbor-
hood and a range of negative physiological consequences 
(Beard et al., 2009; Bosma, van de Mheen, Borsboom, &  
Mackenbach, 2001; York Cornwell & Cagney, 2014). 
Although this research suggests that neighborhood con-
text likely plays a pivotal role in health disparities and 
the aging process, the studies to date have been plagued 

by methodological issues that remain to be addressed. 
First, most studies employ self-report measures of both 
neighborhood context and aging. Thus, the associations 
reported in previous research are vulnerable to concerns 
about inflated or deflated associations due to measure-
ment error. Second, critics of this research have argued 
that people may select themselves into neighborhoods, 
leading neighborhood to be confounded with a range of 
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individual difference variables. The present study attempts 
to avoid these limitations by using Census data to assess 
neighborhood disadvantage and a recently validated DNA 
methylation index to assess accelerated biological aging. 
Further, we utilize marginal structural modeling (MSM) 
to adjust for potential neighborhood selection effects 
resulting in a test of neighborhood effects on health that 
is not dependent on self-report and that controls for a 
range of confounds.

Neighborhood Disadvantage and Aging
A long history of research has indicated that neighbor-
hood disadvantage increases morbidity and mortality risks 
(Bosma et al., 2001). This relationship appears to be due 
to the fact that individuals residing in such neighborhoods 
often perceive that people in the area cannot be trusted, 
feel powerless, struggle with financial hardships, and 
believe that life is essentially chaotic (Ross, 2011). Thus, 
prolonged involvement with such environments provides 
highly salient cues of threat that trigger physiological 
stress, negative emotionality, and a cascade of biological 
responses that, over time, cause wear and tear on physi-
ological systems and increased risk of premature aging 
(Simons et al., 2016).

Compared to members of other racial groups, many 
African Americans live in disadvantaged neighborhoods 
(Peterson & Krivo, 2010). Despite moving, they often still 
reside in economically disadvantaged areas. They are what 
Wilson (1987) has labeled, the “truly disadvantaged.” 
Building on this idea, we expect that neighborhood effects 
for African Americans operate as chronic stressors lasting for 
years or a lifetime even controlling for residential mobility.

Methylomic Age as an Objective Measure of 
Accelerated Aging
Prior health-related research has often relied on self-
report measures of health status and physical functioning. 
Unfortunately, such measures often suffer from measure-
ment error and social desirability that may serves to under- 
or over-estimated (Altman, Van Hook, & Hillemeier, 2016; 
Benitez-Silva, Buchinsky, Man Chan, Cheidvasser, &  
Rust, 2004). Since the 1960s, however, researchers have 
been aware that there is a strong association between 
age and DNA methylation (Jones, Goodman, & Kobor, 
2015; Weidner & Wagner, 2014). Based upon this find-
ing, Hannum and colleagues (2013) recently construct an 
index that quantifies level of DNA methylation in regions 
found to be highly reliable markers of cellular-level aging. 
Using blood leukocytes, Hannum and colleagues (2013) 
identified 71 CpG sites scattered throughout the human 
genome where methylation levels correlate strongly with 
chronological age. The correlation between age and the 
weighted sum of the methylation scores at these 71 sites 
correlated over .90 in the samples used to develop the 

measure and between .82 and .85 in subsequent studies 
using this instrument (Beach et al., 2015). Indeed, chrono-
logical age is much more strongly related to methylation-
based aging than to telomere length or other biological 
markers of aging (e.g., Horvath 2013; Marioni et  al., 
2015; Wolf et al., 2016; Zheng et al., 2016), and this may 
be especially true when the sample is African American, 
for whom telomere length may be longer than for Whites 
(Diez Roux et al., 2009), and for whom some researchers 
have reported positive associations with stress (Boks et al., 
2015). Many of the markers included in the Hannum and 
colleagues (2013) index are within or near genes with 
known functions in aging-related conditions, including 
Alzheimer’s disease, cancer, DNA damage, tissue degrada-
tion, and oxidative stress. After age 20, there appears to 
be a rather constant rate of methylation change in the 71 
sites identified by Hannum and colleagues (2013). Thus, 
they can be used as a “biological clock” to assess, at any 
point during adulthood, the extent to which an individual 
is experiencing accelerated or decelerated biological aging 
(Hannum et al., 2013).

Recent evidence suggests that biological aging can 
be influenced by environmental conditions throughout 
the life span. Simons et al. (2016), for example, recently 
reported a robust relationship between economic hard-
ship and the Hannum index of accelerated aging that 
remained significant even after controlling for a variety 
of health-related behaviors. Neighborhood studies have 
presented evidence that for people living in disadvantaged 
neighborhoods, ambient threat, social strain, social isola-
tion, disrespect, and hopelessness, promote physiological 
distress which, in turn, influences health-related outcomes 
(Ross, 2011). These various findings suggest that long-
term living in neighborhoods characterized by concen-
trated disadvantage likely accelerates biological aging or 
what Geronimus (2013) has labeled “biological weather-
ing.” This hypothesis is tested in the present study.

Marginal Structural Modeling
Individual characteristics may confound the relationship 
between neighborhood disadvantage and individual well-
being. This potential problem is usually referred to as the 
issue of self-selection bias, but encompasses all individual 
differences that could confound the effect of an independ-
ent variable when it is studied in the absence of random 
assignment to level of exposure. This selection process is 
complex as it is affected by time-varying individual charac-
teristics (Sampson, 2012). Previous studies have attempted 
to reduce this bias by controlling for baseline neighbor-
hood status and other potentially confounding variables. 
Simply incorporating control variables into a traditional 
regression model, however, has been criticized for being 
inadequate to control for confounding variables that vary 
over time and are affected by previous treatment (Robins, 
2000). In particular, traditional regression models ignore 
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the fact that reciprocal cause-and-effect relationships exist 
between exposures and covariates. For example, as shown 
in Figure 1, the effects of baseline covariates predict neigh-
borhood disadvantage at baseline which, in turn, predict 
both covariates and neighborhood disadvantage at follow-
up. Covariates at baseline may also have indirect effects on 
neighborhood disadvantage at follow-up through covari-
ates at follow-up.

MSM offers a significant advantage over traditional 
models when controlling for time-varying confounders 
affected by previous treatment. This method uses the inverse 
probability of treatment weighting (IPTW) to balance 
previous treatment and confounding factors across treat-
ment groups at each time period. Based upon this idea, the 
weighting creates a pseudo-population in which there is no 
association between an exposure (e.g., neighborhood dis-
advantage) and covariates (e.g., individual socioeconomic 
measures), but the effect of an exposure on an outcome 
is the same as in the actual study population. Simulation 
studies (e.g., Havercroft & Didelez, 2012) have shown that 
MSM not only provides more accurate estimates of time-
varying measures than traditional regression models, but 
also makes causal inference possible with observational 
data if the assumptions of exchangeability (i.e., no unob-
served confounding), positivity (i.e., positive probability of 
exposure at every level of observed confounders), consist-
ency (i.e., well-defined exposure), and correct model speci-
fication are met.

Using MSM and the biological clock developed by 
Hannum and colleagues (2013), the current study tested 
the hypothesis that residing in a disadvantaged neighbor-
hood is associated with accelerated methylomic aging, even 
after adjusting for neighborhood disadvantage and poten-
tial confounders at a previous time point.

Method

Sample
We tested this hypothesis using data from the five waves of 
the Family and Community Health Study (FACHS). FACHS 
is a longitudinal study of several hundred African American 
families that was initiated in 1997. Details regarding 
recruitment are described by Simons et al. (2016). At the 
first wave (1997−1998), the FACHS sample consists of 889 
African American children and their primary caregivers 
(PCs; 829 women and 60 men). The second, third, fourth, 

and fifth waves of data were collected from 1999 to 2000, 
2001 to 2002, 2004 to 2005, and 2007 to 2008 to capture 
information when target youths were ages 12 to 13, 14 to 
15, 17 to 18 and 20 to 21 years, respectively. Of the 889 
PCs interviewed at Wave 1, 693 were interviewed again at 
Wave 5 (77.26% of the original sample).

At Wave 5, using only those identified as being of 
African American descent, 100 women were randomly 
selected from the roster of PCs to participate in an epi-
genetic assessment. Due to the costs associated with the 
blood draws and epigenetic assays, the use of a subsam-
ple was necessary. Studies have indicated that popula-
tion genetic admixture may confound genetic effects. We 
employed the Structure program, version 2.3.4 (Falush, 
Stephens, & Pritchard, 2007) with a panel of 24 ancestry 
informative markers to estimate an ancestry proportion 
of each participant. The average proportion of African 
ancestry in our sample is 94.7% (Lei, Simons, Edmond, 
Simons, & Cutrona, 2014). There were no missing values 
at waves 4 and 5 on any of the study variables. We used 
the last observation carried forward approach for imput-
ing missing values at waves 1, 2, and 3. Comparisons of 
this subsample with those who were not included in the 
methylation assessment did not reveal any significant dif-
ferences with regard to either demographic characteris-
tics or health-related variables (see Supplementary Table 
S1).

Procedures

Informed consent was obtained from participants and all 
study procedures were approved by the University insti-
tutional review board. Computer-assisted interviews were 
administered in the respondent’s home and took on aver-
age about two hours to complete. The instruments were 
presented on laptop computers. Questions appeared in 
sequence on the screen, which both the researcher and par-
ticipant could see. The researcher read each question aloud 
and the participant entered an anonymous response using 
a separate keypad.

In addition, participants were also asked to provide a 
blood sample at Wave 5.  A  certified phlebotomist drew 
four tubes of blood (30  ml) from each participant and 
shipped it the same day to a laboratory at the University of 
Iowa for preparation. Upon receipt, the blood tubes were 
inspected to ensure anticoagulation and aliquots of blood 
were diluted 1:1 with phosphate buffered saline pH 8.0. 
Mononuclear cell pellets were separated from the diluted 
blood specimen by centrifugation with ficoll (400  g, 
30  min) and the mononuclear cell layer was removed 
from the tube using a transfer pipette, resuspended in a 
phosphate buffered saline solution, and briefly centri-
fuged again. The resulting cell pellet was resuspended in 
a 10% DMSO/RPMI solution and frozen at −80 degrees 
Celsius until use. Genomic DNA was extracted with 
Qiagen DNA Mini Kits, and quality verified on an Agilent 

Figure  1.  Casual models linking covariates, neighborhood disadvan-
tage, and accelerated biological aging.
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2100 Bioanalyzer. Typical DNA yield for each pellet was 
between 10 and 15 µg of DNA.

Methylation Procedures

Genotyping was conducted with the Illumina Infinium 
(Sequenom, Inc., San Diego, CA) HumanMethylation450 
Beadchip. Participants were randomly assigned to 16 sam-
ple “slides/chips” with groups of eight slides being bisulfite 
converted in a single plate, resulting in two “batches/
plates.” A replicated sample of DNA was included in each 
plate to aid in assessment of batch variation and to ensure 
correct handling of specimens. The replicate sample was 
examined for average correlation of beta values between 
plates and was found to be greater than .99. Using the 
ChAMP pipeline for quality control and normalization 
(Morris et al., 2014), data were filtered based on these cri-
teria: (a) probes with the detection p value >0.01 in more 
than one sample; (b) probes with the beadcount <3 in at 
least 5% of the samples; (c) probes containing SNP sites; 
and probes on the X or Y chromosome. This resulted in 
a data set of 433,188 informative CpG sites. Finally, the 
remaining probes were normalized for adjusted Type I and 
Type II assays using Beta-Mixture Quantile (BMIQ) nor-
malization method (Teschendorff et al., 2013). The results 
showed that there were no significant batch or chip effects 
after quantile normalization (see Supplementary Figure 
S1). Details regarding processing and preparation of the 
methylation data are described by Simons and Colleagues 
(2016).

Measures

Accelerated methylomic aging
Peripheral blood mononuclear cells (PBMC) methylomic 
age was calculated following the method proposed by 
Hannum and colleagues (2013). Using peripheral blood 
from several large cohorts of adults and penalized regres-
sion models and subsequent bootstrap analyses, Hannum 
and colleagues (2013) identified 71 CpG sites scattered 
throughout the human genome where methylation levels 
correlate strongly with chronological age. In the current 
study, the measure of PBMC methylomic age is based 
upon the weighted sum of methylation values at these 71 
CpG sites (Hannum et al, 2013). Finally, we formulated 
a measure of accelerated aging using the unstandardized 
residual scores from the regression of PBMC methylomic 
age on chronological age (Marioni et  al., 2015; Wolf 
et  al., 2016; Zheng et  al., 2016). These residuals had a 
mean of zero and represented both positive and nega-
tive deviations from chronological age (in years), with 
positive scores indicating accelerated aging. Consistent 
with previous studies (Marioni et al., 2015; Zheng et al., 
2016), accelerated aging was significantly correlated 
(r = .199, p = .047) with self-reported chronic illness (see 
Supplementary Table S2).

Cell-type composition
To adjust for cellular heterogeneity that can affect methyla-
tion-based scores, we controlled for cell-type distribution in 
the models. Cell-type composition was estimated using the 
“EstimateCellCounts” function in the minfi Bioconductor 
package, which is based on the reference-based method 
developed by Houseman and colleagues (2012). Using this 
approach, we estimated cell-type proportions in whole 
blood for CD4+ T cells, CD8+ T cells, Natural Killer cells, 
B cells, and monocytes.

Neighborhood disadvantage
At waves 4 and 5, the measure of neighborhood disad-
vantage was created using the data from the U.S. Census 
Bureau’s American Community Survey 5-Year Estimates 
(2006–2010), which was mapped onto the geocodes for our 
study participants’ residential addresses in 2004 and 2007. 
At waves 1 and 3, neighborhood disadvantage was assessed 
with the 2,000 census Summary Tape File 3A, which was 
geocoded with participants’ residential addresses in 1997, 
1999, and 2001. We formed a scale of neighborhood dis-
advantage using five census-tract items: median household 
income (reverse coded), percent unemployed males, percent 
below the poverty threshold, percent who are single-mother 
families, and percent receiving public assistance. The mean 
and standard deviations among these five indicators are 
presented in Supplementary Table S3. The five items were 
standardized and summed. A  higher score represented a 
more disadvantaged neighborhood. Across all five waves of 
data collection, 22% never moved, 58% moved one or two 
times, and 20% of respondents moved three or more times, 
and the average number of moves was 1.48 (SD = 1.16).

Covariates
To isolate the effect of neighborhood disadvantage per se, 
analyses were controlled for a comprehensive set of time-
varying covariates at waves 1–5. Sociodemographic covari-
ates included family per capita income, employment status 
(employed = 1), receives welfare (yes = 1), the total num-
ber of children in the household, and residential reloca-
tion (yes = 1). “Educational attainment” was measured as 
dummy variables indicating respondents with less than a 
high school diploma, a high school diploma, or a graduate 
equivalent degree (GED), some college, or at least college 
degree. “Marital status” was measured by dummy variables 
for single, cohabiting, or married. “Health insurance” was 
measured dichotomously (yes = 1, no = 0).

We also included health-related covariates at waves 
1–5. Thus, current status of the covariates was meas-
ured at the time of the blood draw (Wave 5). Two items 
indexed substance use: binge drinking and cigarette use. 
Respondents reported whether during the prior 12 months 
they had smoked cigarettes (yes = 1, no = 0); had three or 
more drinks of alcohol, ranging from 0 (never) to 5 (every 
day). “Healthy diet” was assessed using two items that 
asked about frequency of fruit and vegetable consumption 
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during the previous 7 days. The relationship between the 
two items was significant (r =  .237, p =  .016). Responses 
ranged from 0 (none) to 4 (twice a day or more) and were 
averaged to form the healthy diet variable. “Exercise” was 
measured with two items: On how many of the past 7 days 
did you exercise or participate in physical activity for at 
least 30 min that made you breathe hard such as running 
or riding a bicycle hard? And, on how many of the past 
7 days did you exercise or participate in physical activity 
for at least 30 min that did not make you breathe hard, 
but was still exercise such as fast walking, slow bicycling, 
skating, pushing a lawn mower, or doing active household 
chores? The response categories ranged from 0 (0 days) to 
4 (all 7 days). These two items were correlated (e.g., Wave 
5: r = .419, p < .001). Scores on the two items were aver-
aged to form the exercise measure.

Analytic Strategy

For all analyses, we used STATA 14 (StataCorp, 2015). 
Given that more than 70% of census tracts had only one 
participant and there was no significant intra-class correla-
tion for accelerated aging, this study did not use multilevel 
modeling. To avoid overestimating the results, parameters 
in our models are examined using maximum likelihood 
estimate with robust standard errors. We begin by exam-
ining OLS regression models with robust standard errors 
using data at the time of the blood draw. This method is 
comparable to previous cross-sectional neighborhood stud-
ies. Next, we will run a mediating model to investigate the 
impact of cumulative neighborhood disadvantage on indi-
vidual differences in rate of aging. And, given that respond-
ents were not randomly assigned to residential locations, 
we will then run MSM and IPTW using five waves of data 
to assess the relationship between neighborhood disadvan-
tage and aging. Because neighborhood disadvantage is a 
continuous measure, conditional densities were used and 
estimated through linear regression (Robins, 2000). Let 
N

i denote neighborhood disadvantage and Ci be a set of 
time-varying and invariant covariates. The IPT weights are 
given by
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For individual i, the IPT weighting calculates conditional 
densities of exposure to disadvantaged neighborhoods at 
time t, conditional on the set of neighborhood disadvantage 
and covariates at t−1. However, the weight (wi) would have 
infinite variance. Hernán, Brumback, & Robins (2000) sug-
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where stabilized weights (swi) has the same denominator 
as in Equation 1. The numerator of the stabilized weights 

(swi) is conditional densities of exposure to a disadvantaged 
neighborhood given neighborhood disadvantage at the 
previous time point. Finally, pooled regression models are 
weighted by the stabilized IPT weights. Therefore, individu-
als who are underrepresented in exposure assignment are 
given proportionately higher weights, whereas those who 
are highly represented in exposure assignment are given 
proportionally lower weights. Sample STATA code related 
to the stabilized IPT weights is provided in Supplementary 
Appendix 1.

Results

Initial Findings
At the time of the blood draw, the mean chronological age of 
the respondents was 48.52 years (SD = 9.30). As expected, 
methylomic age was strongly associated with chronological 
age (r =.815, p = 5.964e−25, see Figure 2), and all but five of 
the 71 CpGs showed a significant association with chron-
ological age in our sample (see Supplementary Table S4). 
Mean ages predicted by the Hannum’s methylomic index 
were 1.22 years higher than the actual chronological age of 
the sample. Fifty-four percent of respondents had a methy-
lomic age greater than their chronological age. This indi-
cates a tendency in the sample toward accelerated aging.

The zero order correlations among the study variables 
are presented in Supplementary Table S5. As hypothesized, 
although the strength of the relationship was low to moder-
ate given the relative homogeneity of the sample, there was 
a significant relationship between neighborhood disadvan-
tage and per capita income (r = −.287, p = .004). In addi-
tion, these two variables were significantly associated with 
accelerated aging estimates residualized for chronological 
age (r = .291, p = .003 and r = −.290, p = .003, respectively).

OLS Regression Modeling

The G*Power program was used to assess the extent to 
which we had sufficient power to detect neighborhood 

Figure 2.  The relationship between methylomic age and chronological age.
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effects with 100 participants. The program indicated a sta-
tistical power greater than 80% at α = .05 for the model 
used in our regression analysis presented below (effect size 
of η2 = .084). Further, regression diagnostics revealed that 
assumptions for normality (Shapiro–Wilk test: W =  .989, 
p  =  .551) and homoscedasticity (Breusch–Pagan/Cook–
Weisberg test χ( )1

2
 = .040, p = .832) were met.

The results of the analysis using regression models with 
robust standard errors are presented in Table 1. Model 1 
shows that the main effect for neighborhood disadvantage 
is significant (b  =  1.370, p  =  .002), and that a standard 
deviation increase in neighborhood disadvantage is associ-
ation with 1.370 years increase in methylomic age. In other 
word, individuals living in disadvantaged neighborhoods 
show significantly accelerated aging.

The analysis presented in Model 2 added covariates 
and cell-type composition at Wave 5.  As hypothesized, 

with the covariates and cell-type variation controlled, the 
results remain significant and in the expected direction 
(b = 0.962, p = .018). The last column of Table 1 includes 
a squared term for neighborhood disadvantage as a test 
of potential nonlinear effects. This term is not statisti-
cally significant (b = −0.065, ns), indicating the absence 
of any substantial nonlinear effect. To insure robustness 
of effects, we repeated the analyses controlling for health-
related covariates by summing across Waves 1–5. The 
results showed no change in the pattern of effects (see 
Supplementary Table S6).

Mediating Model

Next, we ran a mediating model to determine whether 
cumulative exposure to neighborhood disadvantage is 
more important than exposure during any particular 

Table 1.  Robust Regression Models Examining Neighborhood Disadvantage as an Independent Variable of Biological Aging

Model 1 Model 2 Model 3

b SE p value b SE p value b SE p value

Neighborhood disadvantage 1.370** 0.434 .002 0.962* 0.398 .018 0.965* 0.399 .018
Neighborhood disadvantage 
squared

−0.065 0.273 .811

Per capita income −0.190 0.514 .712 −0.188 0.516 .717
Education (high school is 
reference)
 � Less than a high school 

education
0.407 1.093 .711 0.406 1.102 .714

  Some college 0.557 0.907 .541 0.577 0.934 .539
  At least a college degree −1.621 1.511 .286 −1.620 1.523 .291
Marital status (single is 
reference)
  Married −0.529 1.053 .617 −0.527 1.060 .620
  Cohabited 0.118 1.066 .912 0.140 1.080 .897
Employment status 1.652* 0.827 .049 1.638† 0.830 .052
Receives welfare −1.064 1.979 .592 −1.089 2.005 .589
Number of children in 
household

−0.025 0.254 .921 −0.024 0.255 .926

Number of relocation from 
W1 to W5

−0.143 0.399 .722 −0.127 0.414 .759

Health insurance −1.984* 0.987 .048 −1.968† 0.993 .051
Current cigarette use 0.989 0.839 .242 1.011 0.840 .233
Current binge drinking −0.883 1.386 .526 −0.897 1.393 .522
Current healthy diet 0.595 0.492 .230 0.601 0.499 .231
Current exercise 0.132 0.324 .684 0.126 0.330 .705
CD8+ T cells −32.892** 7.915 .000 −32.810** 8.060 .000
CD4+ T cells −13.691** 4.998 .008 −13.675** 5.054 .008
Natural killer cells 17.914* 6.989 .012 17.781* 7.027 .013
B cells −4.647 5.405 .393 −4.679 5.426 .391
Monocytes −7.759 5.960 .197 −7.711 6.043 .206
Constant 0.000 0.453 1.000 7.184* 3.296 .032 7.193* 3.303 .032
R2 0.085 0.525 0.525

Note: Unstandardized (b) coefficients shown with robust standard errors in parentheses; neighborhood disadvantage and per capita income are standardized by 
z-transformation (mean = 0 and SD =1). N = 100. †p ≤ .10, *p ≤ .05, **p ≤ .01 (two-tailed tests).

e55Journals of Gerontology: SOCIAL SCIENCES, 2019, Vol. 74, No. 7



stage of life. As Figure  3 shows, the association between 
neighborhood disadvantage (averaged across waves 1 and 
2) and neighborhood disadvantage (averaged across waves 
3 and 4) was significant (β = .673, p < .001), the relation-
ship between neighborhood disadvantage (averaged across 
waves 3 and 4) and neighborhood disadvantage at Wave 
5 was significant (β  =  .389, p < .001), and the associa-
tion between neighborhood disadvantage at Wave 5 and 
accelerated aging was also significant (β = .237, p < .023). 
Using a bootstrapping technique with 1,000 replications, 
the results indicated that the mediating effect of early 
neighborhood disadvantage on accelerated aging through 
both neighborhood disadvantage (averaged across waves 
3 and 4) and current neighborhood disadvantage was sig-
nificant (indirect effect  =  .033, 95% confidence interval 
[0.004, 0.107]). The results revealed that it is the cumula-
tive effect of neighborhood disadvantage that accelerates 
biological aging.

Marginal Structural Modeling

Given the presence of significant cumulative effect of 
neighborhood disadvantage, we used MSM to adjust for 
time-invariant and time-varying covariates thought IPTW. 
Prior to running MSM, we ran the unadjusted and adjusted 
pooled regressions on five waves of data. As can be seen in 
Table 2, without controlling for covariates, the main effect 
for neighborhood disadvantage is significant in Model 1 
(b  =  1.002, p  =  .006). Model 2 adds sociodemographic 
and health-related covariates. As expected, the relationship 

between neighborhood disadvantage and accelerated aging 
remains statistically significant (b = 0.671, p = .004).

Next, the IPTW was calculated using regression mod-
els after adjustment for all time-invariant and time-varying 
covariates shown in Supplementary Table S7. To avoid an 
extreme variation of weights, we first checked the vari-
ance of IPT weights. Unstabilized IPTW (w

i) were associ-
ated with substantial variability (δ2 = 4598.823), whereas 
this variability was eliminated by using stabilized IPTW 
(δ2 = 0.016). Since extreme weights can bias the standard 
error estimates (Hernán, Brumback, & Robins, 2000), sta-
bilized IPTW are considered to be the most appropriate 
approach for adjusting our models.

As shown in Model 3 of Table 2, neighborhood disad-
vantage continues to be a significant exposure of biological 
aging (b  =  0.903, p  =  .011) after adjusting for the time-
varying and time-invariant covariates through stabilized 
IPT weights. Controlling for time-invariant covariates (e.g., 
number of relocations and cell types) in a pooled regression 
with stabilized IPTW, Model 4 shows a pattern of findings 
that are very similar to those found for models 1 to 3. The 
effect in Model 4 is stronger in magnitude than for conven-
tional adjusted regression models. The finding suggests that 
a standard deviation increase in neighborhood disadvan-
tage is associated with .752 years increase in methylomic 
age. Supplementary Figure  2 depicted this effect. As can 
be seen, the regression line crosses the line of deviation of 
methylomic age from chronological age at zero, suggest-
ing that individuals living in disadvantaged neighborhoods 
show significantly accelerated aging whereas those living 
in advantaged neighborhoods demonstrate significantly 
decelerated aging.

Taken together, the substantive findings across these 
models are entirely consistent with the results showed in 
Table  1 and Figure  3. This pattern of findings supports 
our hypothesis that long-term exposure to disadvantaged 
neighborhoods is associated with accelerated biological 
aging. Even though some of the effect may be attribut-
able to baseline differences in health behaviors and other 
individual differences, or the way those factors influence 
further selection into neighborhoods, there is a continuing 
significant effect of neighborhood characteristics on accel-
erated aging even after taking into account potential bias 
due to selection effects.

Figure 3.  Mediated model of the relationship between early and later 
neighborhood disadvantage on biological aging. The values presented 
are standardized parameter estimates. **p ≤ .01; *p ≤ .05 (two-tailed 
tests).

Table 2.  Effects of Cumulative Exposure to Neighborhood Disadvantage on Biological Aging

b SE 95% CI p value

Unadjusted pooled regression
  Model 1: without control variables 1.002 0.355 0.296, 1.707 .006
  Model 2: with control variables 0.671 0.226 0.223, 1.119 .004
Marginal structural model (weighted by stabilized IPTW)
  Model 3: without time-invariant variables 0.903 0.348 0.213, 1.594 .011
  Model 4: with time-invariant variables 0.752 0.241 0.272, 1.232 .002

Note: Coefficients and robust standard error are obtained from a pooled regression using five waves of data. †p ≤ .10, *p ≤ .05, **p ≤ .01 (two-tailed tests).

e56 Journals of Gerontology: SOCIAL SCIENCES, 2019, Vol. 74, No. 7



Discussion
Although the link between neighborhood context and 
healthy aging has long-attracted attention in the social sci-
ence and public health literatures, this research has been 
plagued by methodological questions. Studies have often 
relied on self-report measures of aging and fail to con-
trol potential neighborhood selection effects. Thus, past 
research on the effect of neighborhood context on aging is 
vulnerable to concerns that effect estimates may have been 
overestimated or worse, entirely spurious. To overcome 
these limitations, the current study used newly developed 
epigenetic methods to directly assess rate of biological 
aging and utilized marginal structural models to control 
for selection effects. This approach entailed a more strin-
gent test of the causal effect of neighborhood disadvantage 
on biological aging than has been provided in past studies.

Across several analytic strategies, our findings provide 
consistent evidence that residing in a disadvantaged neigh-
borhood accelerates biological aging. This effect remained 
after including stabilized IPTW in our regression mod-
els (Robins, 2000) to control for neighborhood selection 
effects. Specifically, our results indicated that, even after 
controlling potential effects of health behavior and other 
individual differences, a one standard deviation increase in 
neighborhood disadvantage increased an individual’s meth-
ylomic age by roughly 9 months. More broadly, this find-
ing supports the theoretical view that the ambient stress of 
disadvantaged neighborhoods fosters biological wear and 
tear throughout the life course or what has been labeled 
biological weathering (Geronimus, 2010, 2013), and that 
effects are not entirely attributable to individual level finan-
cial strain or health behaviors engendered by neighborhood 
context.

The current study is not without limitations. First, 
because our sample was limited to middle-aged African 
American women it does not allow us to test for gender dif-
ferences. It might be that the effects would be different for 
African American men. In some respects, however, this limi-
tation might be seen as a strength. Indeed, there is evidence 
that mortality rates for Black women worsened after 1990, 
and that the most prominent differences in health between 
Black and White women are in middle age (Geronimus 
et  al., 2010). Numerous studies have also indicated that 
Black women are disproportionally likely to reside in 
extremely disadvantaged neighborhoods (Peterson &  
Krivo, 2010), making them an ideal sample for investigat-
ing the link between neighborhood conditions and aging. 
A second limitation is that the current sample did not allow 
us to test for differences across ethnic or racial groups. 
According to the racial invariance hypothesis (Sampson, 
2012), neighborhood conditions equally affect people of all 
racial/ethnic groups. Still, the current results clearly need to 
be replicated with samples that are more ethnically diverse 
and that include males.

Third, our results may have been influenced by 
unmeasured confounds. We included a comprehensive 

list of potential confounders that have been previously 
reported to be associated with neighborhood disadvan-
tage (Sampson, Sharkey, & Raudenbush, 2008) and bio-
logical aging (Simons et al., 2016). However, as with all 
observational studies, unmeasured and residual confounds 
may remain that potentially influence the effect sizes. 
Fourth, the current study was limited by its small sample 
size. Although the findings clearly need to be replicated 
with a larger sample to increase confidence in generaliz-
ability of the findings, our study had enough statistical 
power to test our hypotheses. Fifth, our study assessed 
methylation status at only one point in time. Future stud-
ies should focus on longitudinal changes in DNA meth-
ylation. Unfortunately, it is difficult to generate such data 
sets given the challenge of drawing blood from subjects 
scattered across neighborhoods and the costs of methyla-
tion assays. Finally, our assessment of methylation relied 
on peripheral whole blood. Some methylation patterns are 
tissue specific and vary depending on cell types, indeed this 
is a primary mechanism for cell-type differentiation. Thus, 
we measured methylomic age through the Hannum and 
colleagues (2013) measure which is designed to be used 
with peripheral blood samples. To control for cell type-
specific effects, we also estimate our models by control-
ling for individual differences in mononuclear white blood 
cell types. That said, it would be interesting to examine 
the effect of neighborhood conditions on methylomic age 
using tissue samples other than blood.

In conclusion, recent studies have reported that methy-
lomic aging is a robust predictor of mortality and chronic 
diseases. Marioni and colleagues (2015), for example, used 
four longitudinal data sets and found that, even after con-
trolling for socioeconomic status and various health-related 
behaviors, individuals had a 21% greater mortality risk 
when their biological age was five years greater than their 
chronological age. In another study, Zheng and colleagues 
(2016) revealed that, even after controlling for telomere 
length, individuals with a biological age one year greater 
than their chronological age showed a 6% increased risk of 
getting cancer within three years and a 17% increased risk 
of cancer death within five years. Therefore, new indices of 
epigenetic aging provide a more direct method of assessing 
biological aging than what has been available. The current 
research is the first to demonstrate a robust link between 
neighborhood disadvantage and epigenetic aging that holds 
even after adjusting for selection issues. This finding points 
to the importance of intervention strategies based upon 
neighborhood renewal and regeneration as avenues for 
reducing the personal and societal costs of chronic illness 
due to accelerated aging.

Supplementary Material
Supplementary data is available at The Journals of 
Gerontology, Series B: Psychological Sciences and Social 
Sciences online.
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