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Abstract

Motivation: Increasing evidence has shown that nucleotide modifications such as methylation and

hydroxymethylation on cytosine would greatly impact the binding of transcription factors (TFs).

However, there is a lack of motif finding algorithms with the function to search for motifs with

modified bases. In this study, we expand on our previous motif finding pipeline Epigram to provide

systematic de novo motif discovery and performance evaluation on methylated DNA motifs.

Results: mEpigram outperforms both MEME and DREME on finding modified motifs in simulated

data that mimics various motif enrichment scenarios. Furthermore we were able to identify methy-

lated motifs in Arabidopsis DNA affinity purification sequencing (DAP-seq) data that were previous-

ly demonstrated to contain such motifs. When applied to TF ChIP-seq and DNA methylome data in

H1 and GM12878, our method successfully identified novel methylated motifs that can be recog-

nized by the TFs or their co-factors. We also observed spacing constraint between the canonical

motif of the TF and the newly discovered methylated motifs, which suggests operative recognition

of these cis-elements by collaborative proteins.

Availability and implementation: The mEpigram program is available at http://wanglab.ucsd.edu/

star/mEpigram.

Contact: wei-wang@ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation is a major epigenetic mark that plays crucial roles

in many key biological processes. For example, the DNA methylation

level at promoters is anti-correlated with gene expression (Smith and

Meissner, 2013). DNA methylation often disrupts TF-DNA binding

and thus represses transcription (Smith and Meissner, 2013).

However, recent studies show that some TFs preferentially bind to

methylated sequences that are often different from the canonical

motifs they recognize (Hu et al., 2013). For example, Hu et al. have

found that Kruppel-like factor 4 (KLF4) can bind to CCmCGCC se-

quence (mC refers to the methylated cytosine), which is different

from its canonical motif (CACACC) (Hu et al., 2013).The protein

RBP-J was also demonstrated to bind specifically to a methylated

CpG-containing sequence (Bartels et al., 2011) (GmCGGGAA) in a

methylation-dependent way. These observations illustrate the import-

ance of identifying methylated motifs (m-motifs).

Currently, aside from Viner et al.’s work (Viner et al., 2016),

which was submitted at the same time to BioRxiv as our tool (Ngo

and Wang, 2016), there is no other computational method to iden-

tify m-motifs. Here we present a new version of our published motif

finding method Epigram (Whitaker et al., 2015) to identify sequence

motifs containing modifications such as methyl cytosine 5mC, non-

CpG methyl cytosine mCpH, hydroxymethyl cytosine 5hmC, for-

mylcytosine 5fC and carboxylcytosine 5caC. Epigram can identify

motifs in very large sets of sequences such as in a previous study in

980 465 sequences with a mean length of 1640 bp (Whitaker et al.,

2015). Such a large set of sequences would be impractical for other

motif finding programs to process. For example, HOMER would

simply crash given such a dataset (Heinz et al., 2010; Whitaker

et al., 2015); MEME only accepts input size of �60 000 characters

with sequence lengths of �1000 base pairs (Bailey et al., 2006; Tran

and Huang, 2014). Epigram’s scaling efficiency is comparable to
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that of DREME (Bailey, 2011) but it can find motifs longer than

8 base pairs, which is the default motif length in DREME (Bailey,

2011). The program discovers motifs by building position-specific

weight matrices (PWMs) from the most enriched k-mers in the posi-

tive sequences over the negative sequences as ‘seeds’ and extending

the motifs to both directions (Whitaker et al., 2015). We have

expanded the alphabet that can in principle represent any modifica-

tion such as 5mC, 5hmC, 5fC and 5caC. The latest version of

MEME and DREME allows quite flexible alphabet but our method

shows comparable or superior performance on various scenarios.

This new algorithm provides a powerful tool to identify DNA motifs

containing any modifications, which would greatly facilitate analyz-

ing the epigenomic data mapping different DNA or RNA

modifications.

2 Materials and methods

2.1 Data processing and filtering
2.1.1 Bisulfite sequencing data processing

For H1, the processed whole genome bisulfite sequencing (WGBS)

data was obtained from the Roadmap Epigenomics project (GEO:

GSM429322); for GM12878, the raw WGBS data was obtained

from the ENCODE consortium (GEO: GSM1002650). We used

Bismark (Krueger and Andrews, 2011) to process the GM12878

methylome data. We chose bowtie2 (Langmead and Salzberg, 2012)

as the option for the process. In addition, we ignored the first 3

nucleotides on read number 2 of each pair-end reads since they have

the tendency to be biased. When computing methylation level, we

only considered loci covered by at least 2 reads.

Methylated genomes for both H1 and GM12878 were created.

Cytosines with beta value �0.5 were considered methylated

and incorporated into the methylated genomes as the character E in-

stead of C.

2.1.2 ChIP-seq data

TF ChIP-seq peaks for both H1 and GM12878 were downloaded

from the ENCODE Consortium. The ChIP-seq datasets contain

from 1113 to 75 690 peaks each, with an average of 13 980 peaks;

the average length of each peak ranges from 152 to 1426 bp. Peaks

were called by the ENCODE consortium (Landt et al., 2012).

2.1.3 DAP-seq data

DAP-seq data for Arabidopsis were downloaded from GEO:

GSE60143. Called methylation data was obtained from GEO:

GSM1085222. A methylated genome was constructed using methy-

lation calls from the downloaded data.

2.1.4 Data availability

Processed data including methylated genomic sequences of H1 and

GM12878 are available in the mEpigram github repository.

2.2 Methods
2.2.1 Motif comparison

To compare our identified motifs with the original PWMs in the

simulations, the correlation between the identified PWMs and the

original PWMs are calculated. During the comparison, a PWM

slides on top of the other and Pearson correlation is calculated for

the overlapping segment. The Python function scipy.stats.pearsonr()

was used to calculate Pearson correlation. The minimum size of the

overlapping segment is 6 bp. Let m1, m2 be two motif PWMs. Let

the overlapping segment start at position i for m1 and j for m2. For

each overlapping position, a Pearson correlation score is calculated,

which compares distribution of bases at m1i and m2j.

These scores were then averaged to get the overall score. The

average score per position was calculated as:

Average alignmentð Þ ¼ 1
n a1 þ a2 þ � � � þ anÞ
�

, with n being the

number of overlapping positions (n � 6).

The similarity scores of all possible alignments, including reverse-

complementary, were computed and the smallest one was the dis-

tance between m1 and m2.

2.2.2 Motif scanning tool

Because of the introduction of the new bases, a new motif-scanning

tool is needed in Epigram to search for matching k-mers using the

modified motifs (m-motifs). To scan for the occurrences of a motif

of interest in a set of DNA sequences, the program first simulates a

score distribution for the motif by dinucleotide-shuffling the input

sequences and calculates the scores for all of the k-mers inside the

shuffled sequences using the motif’s PWM. The shuffling is repeated

several times until an adequate number of k-mers is achieved (set to

be 1 million in this study). Motif matches are called by passing a

score threshold. This score threshold is defined by given P-values so

that only a fraction equaling to the P-value can pass. For example,

the score threshold for P-value of 0.01 is the lowest score in the top

1% of the k-mers from the shuffled sequences. The score of a k-mer

given a motif (represented as a PWM) is calculated as:

S ¼ log

Qw
i¼1

PiðxiÞ

Qw
i¼1

PbðxiÞ

0
BBB@

1
CCCA

where w is the motif width, PiðxiÞ and PbðxiÞ are the probabilities of

observing nucleotide xi at position i from the motif and the back-

ground distributions, respectively. In this study, we use P-value cut-

off of 0.0001.

2.2.3 Choosing appropriate P-value for motif-scanning

For motif scanning, the lower P-value cutoffs gave higher precision

but lower sensitivity while the higher cutoffs gave lower precision

and higher sensitivity. We calculated the average information con-

tent (IC)/position for all known motifs in human (Kulakovskiy

et al., 2015). We tested different P-value cutoffs and found that the

value of 0.0001 is the most appropriate: for motifs with IC per pos-

ition of 0.6–1.0, the sensitivity ranges from 0.6 to 0.93

(Supplementary Table S1) while the precision stays above 0.5 for

motifs inserted into more than 2% of the sequences. Thus, the de-

fault P-value cutoff was set at 0.0001.

2.2.4 Spatial analysis

We carried out functional analyses of the m-motifs using our cus-

tomized scripts. The approach is based on SpaMo (Whitington

et al., 2011). The peak sequences were reformatted into 500 bp-long

sequences centered at the center of each original peak.

RepeatMasker (Smit et al., 1996) was used to mask repeated sequen-

ces with chains of ‘N’ to reduce false positives. We first used our

motif scanner to find matches for each of the novel m-motifs in TF

peak sequences. The P-value cutoff chosen was 0.001, as the stricter

cutoff 0.0001 did not result in many significant matches for our spa-

tial analysis. Our primary interest is the novel methylated motifs;

therefore, we used the m-motifs as the primary motifs and look for

their significant binding partners. The algorithm assumes that every

3288 V.Ngo et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz079#supplementary-data


spacing between the primary and secondary motifs is equally prob-

able if there is no spatial constrain between the two motifs. Then,

the number of co-occurrences of the two motifs at a given displace-

ment will follow a binomial distribution with the number of trials as

the total number of co-occurrences. The P-values are calculated

using this model. Bonferoni’s correction was used to adjust the P-

values. The P-value threshold for identifying a significant spacing

was chosen at 0.001.

2.2.5 Cross-scan between H1 and GM12878

The motifs found for each TF in H1 were scanned against the peaks

for the same TF in GM12878, vice versa. For each TF with repli-

cates, the peak sequences were pooled together to calculate an aver-

age enrichment. To determine a significant enrichment level, we

generated a distribution of possible enrichment scores using shuffled

sets of sequences. The distribution is approximately normal; the en-

richment score of 1.5 is approximately 3 standard deviations from

the mean (Figure S1). Therefore, we chose 1.5 as the enrichment cut-

off for our motifs. An m-motif is considered to have consistent en-

richment in both cell types if it has an enrichment score of at least

1.5 in its original cell type, appears in at least 1% of the peaks, and

when compared to the original enrichment score (E1), the new en-

richment score (E2) has to be similar to it, i.e: E1/E2<1.5 and E2/

E1<1.5. For differentially enriched m-motifs, the enrichment scores

have to satisfy: E1/E2>1.5 or E2/E1>1.5.

2.2.6 Scanning after de-methylation

Similarly to cross-scanning between H1 and GM12878, the m-motif

has to have original enrichment of at least 1.5 and appear in at least

1% of the peaks.

2.2.7 Information content calculation

Motifs’ ICs are calculated as:

IC ¼ 2þ
X

i;j
pi;j � log2ðpi;jÞ

With pi, j as probability of the DNA sequence having character j

at location i of the sequence. The probabilities are provided in the

motif’s PWM.

3 Results

3.1 Expansion on de novo motif discovery
In general, mEpigram looks for enriched motifs, both unmethylated

and methylated ones, enriched in the input sequences. The program

first computes an enrichment score for each k-mer based on how

often it appears in the input sequences compared to the shuffled in-

put sequences and a genomic background. K-mers are then ranked

based on their final weights:

W ¼ log PPð Þ�ðlog Ewg

� �
þ log Eshð ÞÞ

With W as the k-mer’s enrichment weight, PP as the proportion

of sequences that contains the k-mer over the total number of input

sequences, Ewg as the k-mer’s enrichment over the genomic back-

ground and Esh as its enrichment over the shuffed input. PWMs are

then generated by first picking a top k-mer and enriched k-mers

similar to it to construct a ‘seed’ PWM, which is then extended by

adding more enriched k-mers that are a few base pairs shifted from

the original one (for more details, see Whitaker et al., 2015,

Supplementary Online Methods). The motifs output by mEpigram

are ranked based on their enrichments in the input sequences. The

enrichment is calculated as the ratio of number of motif matches in

the input sequences over the number of motif matches in the di-

nucleotide shuffled sequences.

The de novo discovery step requires input of both DNA sequen-

ces of interest and the DNA modification data such as DNA methy-

lation data. It has two modes: typeE for finding motifs containing

methylated CpG dinucleotides (mCpG), typeEF for other cytosine

modifications such as non-CpG methyl cytosine mCpH, hydroxy-

methyl cytosine 5hmC, formylcytosine 5fC and carboxylcytosine

5caC. The typeE mode only finds symmetrical CpG methylation, i.e

mC appears on both strands of the DNA sequence and the reverse

complement (the DNA sequence on the other strand of the DNA

double helix) of a mCpG dinucleotide is itself, e.g. the reverse

complement of ACGTmCG is mCGACGT. In this scenario, there is

no need to mark the guanine that pairs with mC and thus we only

need to add one base (E) to the conventional four bases (A, C, G, T)

to represent mC. In the typeEF mode, we introduce another

base F to mark the guanine that pairs with the modified cytosine.

This mode creates a more complex alphabet with an increased run-

ning time.

The algorithm can reliably identify canonical motifs in ChIP-seq

datasets (Fig. 1).

3.2 mEpigram outperforms MEME Suite’s algorithms in

simulated tests
To evaluate the performance of mEpigram, we conducted several

rounds of simulated tests and compared the results with those of

MEME Suite’s motif finders. Motifs of different information con-

tents (IC, which measures how conserved a motif is, see Methods)

and lengths are inserted to different numbers of sequences at differ-

ent abundances (Supplementary Table S1). Known motif PWMs

were taken from HOCOMOCOv10 (Kulakovskiy et al., 2013) data-

base, with the addition of a constructed PWM to represent our test

motif gataEGca. For known motifs, a pair of mCpG was added to

each PWM manually at a random site with the probability of mC

between 0.7 and 1.0 (Supplementary Table S1). Random sequences

of average length 250 and standard deviation of 50 are generated

using the human genome as background. The number of sequences

is 250, 1000, 5000, 20 000, respectively. For each sequence set, ran-

dom k-mers from motif PWMs are generated and inserted into 1, 2,

5, 10 and 25% of the sequences.

To determine whether a motif is found, we calculated the

Pearson correlation between the original PWM and the output

PWMs from each method (see Methods). For each run, only the top

three outputs were considered. A motif is considered found in a se-

quence set if one of the output PWMs has a Pearson correlation of

at least 0.85 compared to the original. Default parameters were used

for the tests. Since by default, MEME does not allow more than

60 000 base pairs of input, we only performed the test with 250

sequences for MEME. We have also tested MEME by setting the -

Fig. 1. Top ranking non-methylated motifs found by mEpigram are consistent

with canonical motifs. For each alignment, the top image is the canonical

motif; the bottom image is mEpigram’s result. The top motifs found by

mEpigram are compared to other databases using TomTom (Gupta et al.,

2007). Matches with P-value lower than 10�6 are reported
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maxsize parameter to accept larger sequence sets. However, the run

time increases quadratically with respect to sequence size, thus mak-

ing it impractical to use MEME on larger sequence sets. On a com-

puter with a CPU of Xeon E5630 2.53GHz, version 4.12 of MEME

took 23.4 min to process 250 sequences of average length of 250 bp,

and 353.6 min to process 1000 sequences. For 5000 sequences, the

program would take about 6 days. In contrast, our method scales

linearly with time. On the same CPU, it takes 19.6 min for 1000

sequences, and 232.2 min for 40 000 sequences.

At large sequence sizes and high ICs (more conserved),

mEpigram is able to find motifs in as low as 1% of the sequences

(Supplementary Table S1). Compared to the MEME Suite,

mEpigram can more reliably retrieve inserted motif in 48.43% of

the test cases (Table 1). DREME has the closest performance to

mEpigram (44.69%), however the motifs generated by DREME are

mostly shorter (6–7 bp, compare to mEpigram’s 8–9 bp), which

ignores parts of inserted motifs. MEME has the best performance

when the number of input sequences is small. One advantage the

MEME suite has over our method is the flexibility in incorporating

different alphabets to the motif finder. However, although our

method restricts the extension to character E and F, they can still be

used to represent other nucleotide modifications (5hmC, 5fC, 5caC,

etc.). In this work, we focus on methylated cytosine.

3.3 Identifying m-motifs in known TFs that preferentially

bind methylated sites
O’Malley et al. (2016) have demonstrated certain TFs do prefer

methylated sequences when bind with DNA. We obtained 270 TF

DAP-Seq datasets from this study to test our algorithm’s ability to

find m-motifs in validated data. The TFs were categorized based on

their sensitivity toward changes in methylation levels. This was cal-

culated as the change in binding affinity after removing methylation

from the sequences (O’Malley et al., 2016). Out of 270 TFs, 11 are

considered to bind to methylated sequences preferentially, 66 have

no preference between methylated and non-methylated DNA, 193

are disrupted by methylation.

We added an additional filter to the program to replicate

O’Malley et al.’s method. TF binding specificity was used to simulate

TF binding affinity. The binding specificity of a TF motif is defined as

the ratio of the density of its loci (number of loci over region length)

within the TF-binding regions over the density of its loci found in

other regions of the genome. Motif loci are found using our scanning

method (see Supplementary) at P-value of 10�4. The importance of

methylation in a motif is measured by the logarithm of the fold

change in binding specificity before and after removing methylation

information from an m-motif (logFC). To remove methylation infor-

mation from a methylated motif, we simple convert the probabilities

for mC in the motif’s PWM to 0.0, and add that probability to the

probability of C at the same position. A significant m-motif is thus

defined as: i) Appears in at least twice as many regions in the input

sequences compared to the dinucleotide-shuffled sequences. ii) When

methylation information is removed, m-motif’s binding specificity is

reduced by at least 2.83 folds, which corresponds to logFC of 1.5.

Since 5-methylcytosine (5mC) in plants, as opposed to mammals, also

occur largely in CHG context (Saze et al., 2012), typeEF of the algo-

rithm was used as it does not assume only CpG methylations.

As the result, we were able to find significant m-motifs for all of

the 11 TFs reported to bind preferentially to methylated DNA. Out of

66 TFs that were considered insensitive to DNA methylation, seven

of them contain significant m-motifs. Only 1 out of 193 TFs known

to be disrupted by DNA methylation have m-motifs. Without this

additional filter, the numbers are respectively: 11, 40 and 46.

3.4 Application of mEpigram to TF ChIP-seq data
3.4.1 Retrieval of m-motifs

DNA methylation has been believed to disrupt binding of TFs but re-

cent studies suggested that some TFs may prefer methylated motifs [e.g

CEBPB (Mann et al., 2013)]. mEpigram provides a tool to study the im-

pact of DNA methylation on TF using the in vivo ChIP-seq binding

data. To this end, we applied mEpigram to 55 TF ChIP-seq data in H1

and 44 datasets in GM12878 generated by ENCODE together with the

whole genome bisulfite sequencing (WGBS) data. A cytosine is consid-

ered methylated when its beta-value is >0.5. In the mEpigram runs, the

maximum number of output motifs was set at the default 200. Motifs

from the same run were aligned to each other and redundant motifs

were removed. Since the data we used only contains CpG methylation

information, we took advantage of the typeE mode as it can handle lon-

ger k-mers and thus offers higher sensitivity.

First of all, mEpigram successfully found the canonical motifs in

majority of the experiments, which indicates the success of the

motif-finding algorithm. In H1, 35 out of 40 known canonical

motifs were correctly identified by mEpigram in the top 5 most

enriched motifs from the corresponding TF ChIP-seq experiments

(Supplementary Table S2). For GM12878, 24 out of 31 known ca-

nonical motifs are identified (Supplementary Table S2).

The number of m-motifs with enrichment of >1.5 found for

each TF ranges from 0 to 16 (Supplementary Table S2). Out of 55

ChIP-seq datasets in H1, 31 show enrichment for m-motifs >1.5

Table 1. Performance comparison between mEpigram and MEME

Suite

Program 
Number of  Abundance in sequences Avg.

% success  
Sequences 0.01 0.02 0.05 0.1 0.25 

mEpigram 

-typeE

250 0.00 0.00 0.00 0.19 0.69 

48.43% 1000 0.00 0.13 0.31 0.88 1.00 

5000 0.13 0.38 0.75 0.94 1.00 

20000 0.13 0.38 0.81 1.00 1.00 

mEpigram 
-typeEF 

250 0.00 0.00 0.19 0.06 0.69 

47.18% 1000 0.00 0.06 0.38 0.75 0.94 

5000 0.13 0.31 0.69 0.94 1.00 

20000 0.19 0.38 0.75 1.00 1.00 

MEME-CHIP 
250 0.00 0.00 0.06 0.19 0.69 

43.43% 
1000 0.00 0.00 0.25 0.50 0.94 

5000 0.00 0.13 0.63 0.94 1.00 

20000 0.13 0.44 0.88 1.00 0.94 

DREME 
250 0.00 0.00 0.00 0.06 0.50 

44.69% 1000 0.00 0.00 0.25 0.75 0.88 

5000 0.19 0.31 0.88 0.94 1.00 

20000 0.13 0.31 0.88 1.00 0.88 

MEME* 250 0.00 0.00 0.13 0.38 0.94 28.75% 

Note: mEpigram is able to find inserted m-motifs in more cases than

MEME-Suite’s methods.

*Since it is impractical for MEME to process large sequence data, the pro-

gram is only tested on datasets of 250 sequences.
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fold (Supplementary Table S2). For GM12878, 24 out of 44 datasets

have significantly enriched m-motifs.

The presence of m-motif can have different meanings for each TF. A

TF can preferentially bind to methylated sequences or simple tolerate

methylations. For example, the top m-motif motif of CEBPB in H1 is

highly enriched and very similar to that of the canonical motif. It is iden-

tified at the majority of the canonical motif’s loci. For NRF1, the top

m-motif does appear at the canonical motif’s loci but less frequently

(Supplementary Fig. S2A). There is a sharp increase in methylation level

at the center of the motif-matching loci (Supplementary Fig. S3). This

suggests that the canonical CEBPB motif binds preferably to methylated

sequences. However, the methylation levels around the matching loci

for CEBPB’s canonical motif is significantly lower than that of its m-

motif, which shows CEBPB does not require methylation to bind with

its motif (Supplementary Fig. S2B). For NRF1, the canonical motif pre-

fers regions of lower methylation levels, whereas the m-motif is found

in regions with higher methylation levels (Supplementary Fig. S3). In

contrast to CEBPB, there is no spike of methylation level in the center

of the plot for NRF1’s canonical motif. It can be interpreted that the

NRF1 TF does not prefer methylated sequences, but it is insensitive to

methylation.

For m-motifs that are different from their TF’s canonical motifs,

for example CTCF and EGR1, they do not co-occur in the same

ChIP-seq peaks with the TF’s canonical motifs often. CTCF and

EGR1’s m-motifs are present in regions with high level of methyla-

tion (about 0.8) while their canonical motifs prefer low methylation

levels (0.1–0.2, Supplementary Fig. S3). Given that the ChIP-seq

peaks tend to occur in low methylation levels, these peaks having

high methylation levels suggests that these m-motifs counter-act the

DNA methylation to recruit the TF. We hypothesize that removing

the methylation of these m-motifs will disrupt the TF’s binding to

these loci.

In most of these cases, the m-motif is very different from the ca-

nonical one or the most enriched motif present; some examples are

shown in Table 2.

Some of the TFs in Table 2 have been previously shown to either

have interactions with DNA methylation or bind with specific

methylated DNA sequences. For instance, CTCF is known to bind

to DNA in a methylation specific manner and CTCF binding is regu-

lated partly by differential DNA methylation (Wang et al., 2012).

The top m-motifs for two replicates of CTCF in H1 are similar to

each other (Pearson correlation is 0.931 when aligned together with

several bp shift). The third CTCF experiment in H1 (H1_CIU) used

a different antibody and a different m-motif was found.

For CEBPB, the top motif is the methylated canonical CEBPB motif,

which is consistent with the previous observation that CEBPB binds to

39% of the methylated canonical sequence (Mann et al., 2013). We

also discovered a strong m-motif for NRF1, present in 3.68% of the

peaks, that is the canonical motif methylated at its CG dinucleotide. As

a comparison, the canonical motif is present in 25% of the sequences.

This finding is consistent with the observation that NRF1 TF exhibits

binding with methylated sequences (Hu et al., 2013).

3.4.2 Importance of cytosine

Furthermore, we evaluated the importance of cytosine methylation in

the identified m-motifs. For each sample, we first de-methylated the

m-motifs identified by mEpigram. In each PWM, at each position i,

the probability of E, Piðxi ¼ EÞ, was added to Pi xi ¼ Cð Þ and then

Piðxi ¼ EÞ was set to zero. The resulted PWMs were next scanned

against their respective peak regions without the methylation informa-

tion (containing only A, C, G, T). Some of the m-motifs, when

scanned after de-methylation, retain their enrichment (Table 3). This

is often because these m-motifs are the methylated canonical motifs.

For example, CEBPB and NRF1’s top m-motifs are both methylated

canonical motifs. Their enrichments remain relatively unchanged after

de-methylation. This further suggests that DNA methylation doesn’t

hinder the TFs bindings. In contrast, some m-motifs have their enrich-

ment significantly reduced after de-methylation (Table 3). These

motifs generally contain more than 1 methylated cytosine in their

sequences. Thus, removing the methylation greatly changes their en-

richment. These motifs are likely selectively bound by their TFs.

Table 2. Datasets with significant m-motifs: number of motifs and m-motifs of some of the samples with the most enriched m-motifs

Sample ID 
Canonical 
recovered by 
mEpigram 

Enrichment Top 
M-motif Enrichment 

H1_CDS CTCF 6.32 1.95 

H1_DAR CTCF 7.22 2.27 

H1_CIV EGR1 5.4 2.28 

GM12878_CGW EGR1 5.51 2.20 

H1_CQR CEBPB 6.31 24.38 

H1_CRC NRF1 15.70 3.77 

TF 
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3.4.3 Distance constraints

We next searched for distance constraints between methylated motifs

and other motifs using the SpaMo algorithm (Whitington et al., 2011)

(Table 4). RepeatMasker (Smit et al., 1996, at www.repeatmasker.org)

was used to mask repeated sequences with chains of ‘N’ to reduce false

positives. Some m-motifs exhibit highly significant spacing constraints

with other motifs, most notably the motifs identified from CTCF bind-

ing peaks. These CTCF motifs have enrichments over 1.5 and the

SpaMo analyses gave the adjusted P-values of less than 0.001.

3.5 Comparison of m-motifs in H1 and GM12878
To identify m-motifs that are common or unique in H1 and

GM12878, we scanned motifs found in H1 peaks against GM12878

peaks and vice versa using our own method (P-value <10�4). The

enrichments of the m-motifs in the other cell type were calculated

and compared with the enrichment in the cell type where they were

discovered. For CTCF, ERG1 and NRF1, several m-motifs are

enriched in both GM12878 and H1. These motifs have enrichments

of over 1.5 and appear in at least 2% of the peaks in both of the

datasets. The top NRF1 m-motifs found in H1 and GM12878 are

very similar to each other (Table 5). The top m-motifs for EGR1, on

the other hand, are different from one another. The top CEBPB

m-motifs found in in H1 were enriched in GM12878. In general, the

motifs found in GM12878 for CEBPB appear significantly less

often, the maximum enrichment is 4.7 compared to 24.38 in H1

(Table 5). This is unsurprising given the differences between the H1

and GM12878 data.

3.6 Effect of 5hmC on mEpigram results
Because 5-hydroxymethylcytosine and 5-methylcytosine are undistin-

guishable by bisulfite sequencing, we examined the effect of 5hmC’s

presence on our findings. Using TAB-seq data for H1 (Yu et al.,

2012), we found that the large majority of CG loci only contain 5hmC

in low probability (95% of the CpG loci in H1 have 5hmC level of

less than 0.1, with the mean of 0.045). Removing 5hmC from H1

methylation data did not significantly change the mEpigram results.

Table 3. A) Examples of the m-motifs retaining high enrichments after de-methylation. B) Examples of the m-motifs enriched in their methy-

lated form but not after de-methylation

Motif ID

A B

TF Motif Logo Motif ID TF Motif Logo
Original 

Enrichment 

Post-

Demethyl. 

Enrichment 

Original 

Enrichment 

Post-

Demethyl. 

Enrichment 

H1_CQR_0 CEBPB 24.38 21.03 H1_CRC_54 NRF1 2.25 1.24 

H1_CRC_3 NRF1 3.77 4.04 H1_CQR_10 CEBPB 2.46 1.22 

H1_DAR_10 CTCF 2.27 2.67 GM12878_CIC_47 YY1 1.85 1.08 

Table 4. Most significant spacing pairs between m-motifs and other motifs

Sample ID TF Primary Secondary Displacement distribution P-value 

Note: The motifs were scanned against HOCOMOCOv10 (Kulakovskiy et al., 2013) database and only matches with E-value less than 0.1 were accepted. The

distance is the base pairs between the 3’ end of the primary motif and the 5’ end of the secondary motif. The P-value cutoff for significant displacement was set at

0.001. The histograms show the distributions of displacements between the primary and secondary motifs. The X-axis is the displacement, the Y-axis is frequency.
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4 Discussion

We present here one of the first attempts to expand alphabet in

motif search to meet the need of integrative analysis of sequence and

epigenomic data. We have demonstrated the power and usefulness

of mEpigram in identifying methylated motifs when combining se-

quence and DNA methylation. mEpigram can readily consider other

modifications such as 5hmC, 5fC and 5cacC. When applied to ana-

lyzing human TF ChIP-seq data, mEpigram found that several TFs

have significantly enriched methylated motifs. The most enriched m-

motifs are the methylated canonical motifs (CEBPB, NRF1), which

suggests that these TFs may be tolerant or prefer binding to their

methylated sequences. Furthermore, additional novel m-motifs, that

are not necessarily as enriched as canonical motifs, were also found

in many TF binding regions (CTCF, EGR1). Particularly interesting,

some of these methylated motifs are significantly enriched in the

methylated form compared to the unmethylated form, which sug-

gests possible impact of TF binding by methylation.
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